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Abstract

It is well known that biological and social interaction networks have a varying degree of

redundancy, though a consensus of the precise cause of this is so far lacking. In this paper, we

introduce a topological redundancy measure for labeled directed networks that is formal,

computationally efficient, and applicable to a variety of directed networks such as cellular

signaling, and metabolic and social interaction networks. We demonstrate the computational

efficiency of our measure by computing its value and statistical significance on a number of

biological and social networks with up to several thousands of nodes and edges. Our results

suggest a number of interesting observations: (1) Social networks are more redundant that their

biological counterparts, (2) transcriptional networks are less redundant than signaling networks,

(3) the topological redundancy of the C. elegans metabolic network is largely due to its inclusion

of currency metabolites, and (4) the redundancy of signaling networks is highly (negatively)

correlated with the monotonicity of their dynamics.

I. INTRODUCTION

The concepts of degeneracy and redundancy are well known in information theory. Loosely

speaking, degeneracy refers to structurally different elements performing the same function,

whereas redundancy refers to identical elements performing the same function1. In
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electronic systems, such measures are useful in analyzing properties such as fault tolerance.

It is an accepted fact that biological networks do not necessarily have the lowest possible

degeneracy or redundancy; for example, the connectivity of neurons in brains suggest a high

degree of degeneracy [2]. However, as Tononi et al. observed in their paper [3]:

“Although many similar examples exist in all fields and levels of biology, a specific

notion of degeneracy has yet to be firmly incorporated into biological thinking,

largely because of the lack of a formal theoretical framework”.

The same comment holds true about redundancy as well. A further reason for the lack of

incorporation of these notions in biological thinking is the lack of effective algorithmic

procedures for computing these measures for large-scale networks even when formal

definitions are available. Therefore, such studies are often done in a somewhat ad hoc
fashion, as in Ref. [4]. There do exist notions of “redundancy” in the field of analysis of

undirected networks based on clustering coefficients (see e.g., [5]) or betweenness centrality

measures (see e.g., [6]). However, such notions are not appropriate for the analysis of

biological networks where one must distinguish positive from negative regulatory

interactions, and where the study of dynamics is of interest.

II. BRIEF REVIEW OF AN INFORMATION-THEORETIC DEGENERACY AND

REDUNDANCY MEASURES

Formal information-theoretic definitions of degeneracy and redundancy for dynamic

biological systems were proposed in [3] (see also [7,8]) based on mutual-information
contents. These definitions assume access to suitable perturbation experiments and

corresponding accurate measurements of the relevant parameters. Thus, they are not directly

comparable to the topology-based redundancy measures that we propose in this paper.

Nonetheless, we next briefly review these definitions as a way to illustrate some key points

of other measures often used in the literature that motivated us to define our new redundancy

measure.

The authors of [3] consider a system consisting of n elements that produces a set of outputs

O via a fixed connectivity matrix from a subset of these elements. The elements are

described by a jointly distributed random vector X that represents steady-state activities of

the components of their system. The degeneracy D(X ; O) of the system is then expressed as

the average mutual information (ℐ) shared between O and the “perturbed” bi-partitions of X
summed over all bipartition sizes [Eq. (2b) of [3]], that is,

D(X; O) = 1
2 × ∑

k = 1

n
∑

j
ℐP Xj

k; O +ℐP X\Xj
k; O − ℐP(X; O) , (1)

1We remind the reader that the term “redundancy” is also used in other contexts in biology unrelated to the definition of redundancy in
this paper. For example, some researchers use redundancy to refer to paralogous genes that can provide functional backup for one
another [1]. In addition, some researchers use the two terms, redundancy and degeneracy, interchangeably or use other terminologies
for these concepts.
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where Xj
k is a jth subset of X composed of k elements and the notation ℐP(A; O) denotes the

mutual information between a subset of elements A and an output set O, when A is injected

with a small fixed amount of uncorrelated noise2; see [3,7] for details. One can immediately

see a computational difficulty in applying such a definition: the number of possible
bipartitions could be astronomically large even for a modest size network. For example, for a

network with 100 nodes which is a number smaller than all but one of the networks

considered in this paper, the number of bi-partitions is roughly 2100 > 1030. Measures

avoiding averaging over all bi-partitions were also proposed in [3], but the computational

complexities and accuracies of these measures remain to be thoroughly investigated and

evaluated on larger networks.

In a similar manner, the redundancy ℞(X; O) of a system X was defined in [3] as the

difference between summed mutual information upon perturbation between all subsets of

size up to 1 and O, and the mutual information between the entire system and O [Eq. (3) in

[3]], that is,

℞(X; O) = ∑
j = 1

n
ℐP Xj

1; O − ℐP(X; O) . (2)

Note that a clear shortcoming of this measure is that it only provides a number, but does not

indicate which subset of elements is redundant. Identifying redundant elements is important

for the interpretation of results, and may also serve as an important step of the network

construction and refinement process, as we will illustrate in our application to the C. elegans
metabolic network and the oriented PPI network. Tononi et al. [3] illustrated the above

measure on a few model networks as a proof of concept, but large networks clearly

necessitate alternate measures that allow efficient calculations.

In this paper we propose a new topological measure of redundancy. A benefit of our new

redundancy measure is that we can actually find an approximately minimal network and, in

the case of multiple minimal networks of similar quality, a subset of them by enabling a

randomization step in the algorithmic procedure. We determine this redundancy value for a

number of biological and social networks of large sizes and observe a number of interesting

properties of our redundancy measure.

III. MODELS FOR DIRECTED BIOLOGICAL AND SOCIAL NETWORKS

There are two very different levels of models for biological systems. A so-called network
topology model (also known as a “wiring diagram” or a “static graph”) provides a coarse

diagram or map of the physical, chemical, or statistical connections between molecular

components of the network, without specifying the detailed kinetics. In this type of model, a

network of molecular interactions is viewed as a graph: Cellular components are nodes in a

network, and the interactions between these components are represented by edges

2ℐP(A; O) = ℋ(A) + ℋ(O) − ℋ(A, O), where ℋ(A) and ℋ(O) are the entropies of A and O considered independently, and
ℋ(A, O) is the joint entropy of the subset of elements A and the output set O.
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connecting the nodes. In this paper, we are mainly concerned with this type of model; exact

details are described in Sec. III A.

In the other type of model, a network dynamics model, mathematical rules (e.g., systems of

Boolean rules or differential equations) are used to specify the behavior over time of each of

the molecular components in the network. Our investigation is not directly concerned with

such dynamic models. However, since we will show a correlation of our redundancy

measure for the network topology model with a property, namely monotonicity, of an

associated network dynamics model, we briefly review this model in Sec. III B.

A. Network topology model

Three common types of molecular biological networks are as follows: transcriptional
regulatory networks, metabolic networks, and signaling networks. The nodes of

transcriptional regulatory networks represent genes, and edges represent (positive or

negative) regulation of a given gene’s expression by proteins associated with other genes.

The nodes of metabolic networks are metabolites and the edges represent the enzyme-
catalyzed reactions in which these metabolites participate as reactants or products. The

nodes of signaling networks are proteins and small molecules, and the edges represent

physical or chemical interactions or indirect positive or negative causal effects. A unified

formalism to describe all these types of networks uses a directed graph G = (V,E,w) with

vertex set V, edge set E, and an edge labeling function w : E ↦ {−1,+1} in which a label of

1 (respectively, −1) represents an positive (respectively, negative) influence. A pathway is

then a path P from vertex u to vertex v, and the excitory or inhibitory nature of the pathway

is specified by the parity Πe∈P w(e) ∈ {−1,+1} of such a path P; see Fig. 1 for an illustration.

Our model for directed social interaction networks is simply a directed graph in which edges

represent significant relationships between the entities, for example, nodes may represent

Web pages and directed edges may represent hyperlinks of one Web page in another.

Obviously, we can think of such a model as one of the above type in which all edges are

labeled +1 (and, thus all paths have the same parity); this allows us to treat both social and

biological networks in a mathematically uniform manner for the purpose of designing and

analyzing algorithms.

B. Network dynamics and monotonicity

Consider systems modeled via ordinary differential equations:

dxi(t)
dt = fi x1(t), x2(t), …, xn(t) for i = 1, 2, …, n, (3)

where xi(t) indicates the concentration of the ith entity in the model at time t and the fi’s are

functions of n variables. We assume that x(t) = (x1(t),x2(t), … ,xn(t)) evolves in an open

subset of ℝn, the fi’s are differentiable, and solutions are defined for t ⩾ 0. For example, a

simple two-species interaction could be described by

dx1
dt (t) = 3x1(t) − 5x2(t),
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dx2
dt (t) = x1(t) + x2(t) .

A particularly appealing class of dynamics is that of monotone systems [9,10]. Informally,

the dynamics of a monotone system preserves a specific partial order (hierarchy) of its

inputs over time. Mathematically, monotonicity can be defined as follows.

Definition 1 [9,10].—Given a partial order ⪯ over ℝn, system (3) is said to be monotone
with respect to ⪯ if

∀t ⩾ 0: x1(0), …, xn(0) ≼ x1(0), …, xn(0) y1(0), …, yn(0) x1(t), …, xn(t) ≼ y1(t), …, yn(t) ,

where (x1(t), … ,xn(t)) and (y1(t), … ,yn(t)) are the solutions of (3) with initial conditions

(x1(0), … ,xn(0)) and (y1(0), … ,yn(0)), respectively.

We will restrict our attention to orthant orders. These are the partial orders ⪯s over ℝn, for

any given s = (s1, … sn) ∈ {−1, 1}n, defined as (see [10–12])

x⪯s y ∀i : si xi ⩽ si yi .

In particular, the “cooperative order” is the partial order ⪯s for s = (1, 1, … ,1).

Monotone systems constitute a nicely behaved class of dynamical systems in several ways.

For example, for these systems pathological behaviors (chaotic attractors) are ruled out.

Even though they may have an arbitrarily large dimensionality, monotone systems (under an

additional irreducibility assumption) behave in many ways like one-dimensional systems;

for example, bounded trajectories generically converge to steady states, and stable

oscillatory behaviors do not exist. Monotonicity with respect to orthant orders is equivalent

to the nonexistence of negative loops in systems; analyzing the behaviors of such loops is a

long-standing topic in biology in the context of regulation, metabolism, and development,

starting from the work of Monod and Jacob in 1961 [13]. In this paper, we will define a

measure of “degree of monotonicity” for dynamical systems and relate it to our topology-

based redundancy measure.

IV. A NEW MEASURE OF REDUNDANCY

We will use the following notations for conciseness:

1. For any two vertices u and υ, u
x

υ (respectively, u x υ) denotes a path

(respectively, an edge) from u to v of parity x. We include the empty path u 1 u
for each vertex u.

2. For any E′ ⊆ E, reachable (E′) is the set of all ordered triples (u,v,x) such that

u
x

υ exists in the subgraph (V,E′).
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For example, for the network in Fig. 1, B
1

D exists because of the path B ⊣ A ⊣ D and also

because of the path B → C ⊣ A ⊣ D, and reachable ({B → C, A ⊣ D}) = {(A, A, 1), (B, B,

1), (C, C, 1), (D, D, 1), (B, C, 1), (C, C, 1), (A, D, −1),}.

We next state a combinatorial optimization problem that will be needed in order to introduce

our new redundancy measure.

Problem Name: Binary Transitive Reduction (BTR).

Instance: a directed graph G = (V,E) with a subset of edges Efixed ⊂ E and an edge

labeling function w : E ↦ {−1, 1}.

Valid Solution: a subgraph G′ = (V,E′) such that

1. E ⊇ Efixed and

2. reachable (E′) = reachable (E).

(E \ E′ is referred to as a set of “redundant” edges.)

Goals: minimize |E′|.

Intuitively, the BTR problem prunes pathways for which alternate equivalent pathways exist

(see e.g., [14,15]). The set of edges in Efixed in the definition of BTR represents edges that

may not be removed during the algorithm; this is useful in the context when one wishes to

reduce a network while preserving specific pathways. For the redundancy calculations

performed in this paper, we assume no prior knowledge of direct interactions; thus for the

rest of the paper we set Efixed = ∅. As an illustration, in Fig. 1 if we let E′ = E \ {B ⊣ A}

then reachable (E′) =reachable (E) because of the path B → C ⊣ A.

Finding a maximum set of edges that can be removed is nontrivial; in fact, the problem is

NP hard [17]. To illustrate the algorithmic difficulties, consider the network shown in Fig. 2.

Removal of all the black edges provides a nonoptimal solution of BTR, whereas an optimal

solution with about half the edges compared to the nonoptimal solution can be obtained by

keeping all the black edges and removing all but two of the gray edges. The special case of

BTR with Efixed = ∅ and w(e) = 1 for all edges e is the so-called classical minimum
equivalent digraph problem, and it has been investigated extensively in the context of

checking minimality of connectivity requirements in computer networks (see e.g., [17]).

Other examples of applications of BTR –type network optimizations include the work by

Wagner [18] employing a special case of BTR to determine network structure from gene

perturbation data in the context of biological networks and the work by Dubois and Cécile

[19] in the context of social network analysis and visualization.

Based on the BTR problem, we propose a new combinatorial measure of redundancy that

can be computed efficiently. Note that BTR does not change pathway level information of

the network and removes edges from one node to another only when a similar alternate

pathway exists, thus truly removing redundant connections. Thus, E′
|E|  provides a measure of

global compressibility of the network and our proposed new redundancy measure ℞new is

defined to be
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℞new = 1 − E′
E . (4)

The |E| term in the denominator of the above definition translates to a “min-max

normalization” of the measure [20], and ensures that 0 < ℞new < 1. Note that the higher the

value of ℞new is, the more redundant the network is.

A. Properties of our topological redundancy measure and applications of a minimal
network

Any topological redundancy measure should have a desirable property: The measure must

not only reflect simple connectivity properties such as degree sequence or average degree, it

must also depend on higher-order connectivity. Our redundancy measure indeed has this

property, since paths of arbitrary length are considered for removal of an edge. For a

concrete example, consider two graphs shown in Fig. 3; the in-degree and out-degree

sequence of each graph is 1, 1, …, 1, 1
n
2 + 1

, 2, 2, …, 2
n
2 − 1

, but their redundancy values are drastically

different. Similarly, higher average degree does not necessarily imply higher values of

redundancy; for example, the network in Fig. 3, when generalized on n nodes, has an

average degree below 2 and a redundancy value of roughly 0.33, whereas the graph Kn
2 ⋅ n

2
 (a

completed bipartite graph with each partition having n/2 nodes and all edges directed from

the left to the right partition) has an average degree of n/2 but a redundancy value of 0.

B. Computing ℞new

Although solving BTR exactly is an NP-hard problem, it has a rich combinatorial structure

that allowed us to design an efficient approximation algorithm. The resulting algorithms

were incorporated in our NET-SYNTHESIS software [15] (publicly available at [16]).

Although it is impossible to provide all details of the algorithmic approaches that was used

for NET-SYNTHESIS, we provide some high-level details of the algorithm used; the reader

can find further details, correctness proofs, and algorithmic analysis in [14,21]. It was

proved in [21] that any strongly connected component (SCC) of the given graph G = (V,E),

say (V1,E1) with V1 ⊆ V and E1 = (V1 × V1) ∩ E, can be classified as one of the two types: a

single parity SCC if, for any two vertices u,v ∈ V1, u
x

υ exists in the SCC for exactly one

x from {−1,1}, and a multiple parity SCC if, for any two vertices u,v ∈ V1, u
x

υ exists in

the SCC for both x = 1 and x = −1. A high-level view of the algorithmic approach is shown

in Fig. 4.

The running time of NET-SYNTHESIS is dominated by Step 2. Theoretically, the worst-

case running time of the algorithm is O(n3) when n is the number of vertices in G, but

empirically the implementation allows us to calculate ℞new for networks up to about five to

ten thousand nodes, thereby allowing us to compute the redundancy parameter for large

networks. We expect that a future improved implementation of BTR will allow the

calculation of redundancy values for even larger networks. Regarding optimality of the
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computed solution, theoretically NET-SYNTHESIS returns a solution that is a 3-

approximation [14] (i.e., |Esolution| is no more than three times of that in an optimal solution

in the worst case). However, extensive empirical evaluations reported in [14] suggest that in

practice |Esolution| is almost always close to optimal (within an extra 10% of the optimal).

C. Illustration of redundancy calculation for a small biological networks

Our results of redundancy calculations on large-size biological and social networks are

reported later, in Sec. VII, but here we illustrate the redundancy and minimal network

calculations on a biological network that arises from the repetition of a fixed gene regulatory

network over a number of cells. This gene regulatory network is formed among products of

the segment polarity gene family, which plays an important role in the embryonic

development of Drosophila melanogaster. The interactions incorporated in this network

include translation (protein production from mRNA), transcriptional regulation, and protein-

protein interactions. Two of the interactions are intercellular: Specifically, the proteins

wingless and hedgehog can leave the cell they are produced in and can interact with receptor

proteins in the membrane of neighboring cells. We select this network for several reasons.

First, the core part of the network for a single cell is small, consisting of 13 nodes and 22

edges, which enables analytical calculations of redundancy and visual depiction of

redundant edges. Secondly, in spite of its simplicity and regularity, the associated multicell

network does exhibit nontrivial redundancies due to the intercellular interactions and the

cyclic arrangement of cells. The network for a single cell was first published in [22] and

later in slightly modified form in [23,24]. Figure 5 (a) shows the network of [22] with the

interpretation of the regulatory role of PTC_m on the reaction CI → CN as PTC_m → CN

and PTCm ⊣ CI . We note that the intercellular interactions are present at the whole cell

membrane and not just the right boundary as shown for simplicity in all reconstructions. In a

manner similar to that in other papers (e.g.,, see [11]), we build a one-dimensional

multicellular version by considering a row of y cells, each of which has separate variables

for each of the compounds, letting the cell-to-cell interactions be as in Fig. 5 (a), but acting

on both left and right neighbors, and using cyclic boundary conditions; see Fig. 5 (b) for an

illustration.

If the network contains y > 2 cells, then

1. The number of vertices and edges are 13y and 22y, respectively; and

2. NET-SYNTHESIS, after performing BTR , keeps 16y – 2 edges, giving

℞new = 6y + 2
22y ≈ 3

11 .

Identifying a molecule in the ith cell via a subscript i, NET-SYNTHESIS removed the

following edges:

1. the two edges WG_m2 → en1 and WG_m1 → en2, and

2. the set of six edges from each cell i : PTC_mi → PH_mi , PTC_mi ⊣ CIi, WGi

→ wgi, CNi ⊣ eni, CIi → wgi, and CIi → ptci.
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As can be seen, the redundancies depend in a nontrivial manner on higher-order connections.

For example, the light gray edge WG 1 → wg 1 is redundant because of the alternate dark

gray pathway shown in Fig. 5.

D. Computing the confidence parameter for ℞new

We apply our redundancy measure on seven biological networks and four social networks

(see Table I). For each (social or biological) network G in Table I, except networks (9) and

(10), having a redundancy value of ℞new(G), we generated 100 random networks, and

computed the redundancies ℞new Grandom1 , ℞new Grandom2 , …, ℞new Grandom100  of these

random networks. We then use a (unpaired) one-sample student’s t test to determine the

probability that ℞new G  can be generated by a distribution that fits the data points

℞new Grandom1 , …,℞new Grandom100 .

The current implementation of NET-SYNTHESIS runs slowly due to its intensive disk

access on networks (9) and (10) in Table I because network (9) is very dense (an average

degree of 9.62 on 1133 nodes) and network (10) has a very large number of edges (24 316

edges). Redundancy analysis of a single random graph generated for either of these two

networks requires a week or more, and any meaningful statistics would require on the order

of 100 random graphs for each network. Due to the prohibitive time requirements we were

not able to report p values for these two networks Since the characteristics of various

biological and social networks are of different nature, we generate random networks for the

various networks using two different methods as explained below.

Ideally, for networks of a particular type, one would prefer to use an accurate generative null

model for highest accuracy in p values. For signaling and transcriptional biological networks

[networks (1)–(5) in Table I], Ref. [14], based on extensive literature review of similar kinds

of biological networks in prior papers, arrived at the characteristics of a generative null

model that is described below and used by us for these networks3. One of the most

frequently reported topological characteristics of such networks is the distribution of in-

degrees and out-degrees of nodes, which exhibit a degree distribution that is close to a power

law or a mixture of a power law and an exponential distribution [27–29]. Specifically,

transcriptional regulatory networks have been reported to exhibit a power-law out-degree

distribution, while the in-degree distribution is more restricted [25,30]. Based on such

topological characterizations of signaling and transcriptional networks reported in the

literature, Ref. [14] used the following degree distributions for the purpose of generating

random networks for the biological transcriptional and signaling networks such as the ones

in (1)–(5) in Table I:

1. The number of vertices is the same as the network G whose redundancy value

was computed.

2. The in-degree and out-degree distributions of the random networks are as

follows:

3Our simulations with the alternate Markov-chain model used for the remaining networks show that the p values still remain
negligibly small; this is consistent with similar observations in another context made by Shen-Orr et al. [25].
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The distribution of in-degree of the networks is exponential, that is, Pr[in-

degree =x]= c1 e−cx with 1
2 < c1 < 1

3  and a maximum in-degree of 12.

The distribution of out-degree of the networks is governed by a power law,

that is, for x ⩾ 1, Pr[out-degree =x]= c2 x−c, for x = 0 Pr[out-degree = 0]⩾
c2 with 2 < c2 < 3 and a maximum out-degree of 200.

The parameters in the above distribution are adjusted such that the sum of

in-degrees of all vertices are equal to the sum of out-degrees of all vertices

and the expected number of edges is the same as G.

3. The percentage for activation/inhibition edges in the random network is the same

as in G.

Each of the r random networks with these degree distributions are generated using our

private implementation of the method suggested by Newman et al. in [31].

For social networks, for the C. elegans metabolic network and for the oriented PPI network

[networks (6)–(11) in Table I], in the absence of a consensus on an accurate generative null

model, we generated the r random networks using a Markov-chain algorithm [32] in a

similar manner as in, say [25], by starting with the real network G and repeatedly swapping

randomly chosen pairs of connections in the following manner4:

V. MEASURE OF MONOTONICITY FOR BIOLOGICAL NETWORKS

To explain the intuition behind the computation of a monotonicity measure of the dynamics

of a biological system, we start by relating the time dynamics of the system with the graph-

theoretic model of the network in the following way [10–12]. The time-varying system as

defined by Eq. (3) defines a labeled-graph model G = (V,E,w) of the biological network in

the following manner:

V = {x1, … ,xn};

if 
∂fj
∂xi

⩾ 0 for all x(t)= (x1(t),x2(t), … ,xn(t)) and 
∂fj
∂xi

> 0 for some x(t), then (xi,xj) ∈ E

and w(xi,xj) 1;

if 
∂fj
∂xi

⩽ 0 for all x(t) and 
∂fj
∂xi

< 0 for some x(t), then (xi,xj) ∈ E and w(xi,xj) = −1.

4Shen-Orr et al. [25] consider swapping about 25% of the edges.
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(we assume that, for each i and j, either 
∂fj
∂xi

⩾ 0 for all x or 
∂fj
∂xi

⩽ 0 for all x.)

As an example, consider the following biological model of testosterone dynamics [33,34]:

dx1
dt (t) = A

K + x3(t) − b1x1(t),
dx2
dt (t) = c1x1(t) − b2x2(t),

dx3
dt (t) = c2x2(t) − b3x3(t) .

(5)

The corresponding labeled network for this system is shown in Fig. 6. It is easy to show that

(5) is not monotone with respect to ⪯s, for all possible s. On the other hand, if we remove the

term involving x3 in the first equation, we obtain a system that is monotone with respect to

⪯s, s (1,1,1). A cause of nonmonotonicity of the system is the =existence of sign-
inconsistent paths between two nodes in an undirected version of the network (i.e., the

existence of both an activation and an inhibitory path between two nodes when the directions
of the edges are ignored). To be precise, define a closed undirected chain in the labeled

graph G as a sequence of vertices xi1, … ,xir such that xi1 = xir , and such that for every λ =

1, … ,r − 1 either xiλ, xiλ + 1 ∈ E or xiλ + 1, xiλ ∈ E. Then, the following result holds [11]

see also [35] and [36], page 101].

Lemma 2 [11] Consider a dynamical system (3) with associated directed labeled graph G.

Then, (3) is monotone with respect to some orthant order if and only if all closed undirected

chains of G have parity 1.

Note that the combinatorial characterization of monotonicity in Lemma 2 is via the absence

of undirected closed chains of parity 1. Thus, in particular, any monotone system has

a. no negative feedback loops, and

b. no incoherent feed-forward loops.

However, some systems may not be monotone even if (a) and (b) hold; see Fig. 7 for an

example.

Lemma 2 leads in a natural manner to the following sign consistency (SC) problem to

determine how monotone a system is [11,37].

Problem name: Sign Consistency (SC).

Instance: a directed graph G = (V,E) with an edge labeling function w : E ↦ {−1,1}.

Valid Solution: vertex labelling function L : V → {−1,1}.

Goal:maximize |F | where F = {(u,v) w(u,v) = L(u)L(v)} is a set of “consistent”

edges.

Similar to our redundancy measure, we define the degree of monotonicity of a network to be
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M = F
E , (6)

where F is the set of consistent edges in an optimal solution. The |E| term in the denominator

of the above definition translates to a min-max normalization of the measure, and ensures

that 0 < M < 1. Note that the higher the value of M is the more monotone the network is (cf.

[11,37]).

A. Computing M

In [11] a semidefinite-programming (SDP) based approximation algorithm is described for

SC that has a worst-case theoretical guarantee of returning at least about 88% of the

maximum number of edges. The algorithm was implemented in MATLAB (the MATLAB

codes are publicly available at [38]). Other algorithmic implementations of the SC problems

are described in [37,39].

B. Computing correlation between M and ℞new

After obtaining the ordered pair of six values M1, ℞new1 , …, M6, ℞new6  of M and ℞new for

the first six networks in Table I, we computed the standard Pearson product moment

correlation coefficient r =
∑i = 1

6 ℞newi − ℞new Mi − M

∑i = 1
6 ℞newi − ℞new

2∑ Mi − M 2
, where ℞new =

∑i = 1
6 ℞newi

6  and

M =
∑i = 1

6 Mi
6  are the average redundancy and monotonicity values, respectively. The

possible values of r always lie in the range [−1,1], and values −1 and 1 signify strongest

negative and positive correlations, respectively. A p value for this correlation was calculated

by a T test with two-tailed distribution and unequal variance to show the probability of

getting a correlation as large as the observed value by random chance when the true

correlation is zero.

VI. NETWORK DATA

We selected a total of 11 networks, seven biological ones and four social ones. We selected

these networks with the following criteria in mind:

1. The biological networks were selected with an eye toward covering a diverse set

of species on the evolutionary scale and toward covering networks of diverse

natures (e.g., metabolic, transcriptional); a species tree of the biological

organisms for our networks is shown in Fig. 8.

2. The social networks were selected covering interactions in different social

environments.

3. The networks span a wide range on size (number of edges ranging from 135 to

24 316) and density (average degree ranging from 1.3 to 13.4) to demonstrate

that our new redundancy measure can be computed efficiently for a large class of

networks.
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Table I provides more details and sources for these networks.

VII. RESULTS AND DISCUSSIONS

In Table II we show the tabulation of redundancy and, when appropriate, also monotonicity

values for our networks. Because of their large sizes, p values for the redundancy measure

could not be estimated very reliably for networks (9) and (10) since they require runs on

many random networks, each of which would take upward of a week; thus we do not report

p values for these networks. The extremely low p values in Table II indicate that the real

networks’ redundancy values cannot be generated by a distribution that fits the redundancies

of the equivalent random graphs.

If one prefers, a normalization of the redundancy values of the networks for which randomly

generated networks are available can be performed as follows. For each of the nine

networks, we first computed the standardized redundancy value for each of the 100 random

networks to eliminate sampling bias (for a sample x1,x2, … ,xm with average μ and standard

deviation σ, the standardized value of xi is given by 
xi − μ

σ ). Then, we calculated the

standardized range (difference between maximum and minimum) of these 100 standardized

redundancy values. Finally, we normalized original redundancy value by dividing them by

this standardized range. The resulting normalized values are shown in Table III (for

comparison purposes, the normalized redundancy values are scaled so that their summation

is exactly the same as the summation of original redundancy values). As can be seen, the

ranks of both original and normalized values are almost the same [in the order (5), (1), (3),

(11), (2), (4), (7), (6), (8) and (5), (1), (3), (11), (4), (2), (7), (6), (8), respectively] and the

relative magnitudes of the values are similar whether one uses the normalized or original

values, and thus all of our conclusions are valid in either case. Thus, in the rest of the paper,

we use the original redundancy values with the understanding that all of our conclusions are

valid for the normalized values as well.

In spite of our somewhat limited set of experiments, our results do point to some interesting

hypotheses, which we summarize below.

A. ℞new can be computed quickly for large networks and is statistically significant

As our simulations show, the new redundancy measure can be computed quickly for

networks up to thousands of nodes; for example, typically NET-SYNTHESIS takes from a

few seconds up to a minute for networks having up to 1000 nodes or edges. This is a

desirable property of any redundancy measure so that it can be used by future researchers as

biological and social networks grow in number and size. Moreover, the extremely low p
values suggest statistical significance of the new measure.

B. Redundancy variations in biological networks

We focus our attention to the variations of the redundancy values for the five transcriptional/

signaling biological networks in our data set and make the following observations.
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a. Transcriptional versus signaling networks.—Networks (1), (3), and (6) are

transcriptional networks with all having similar low redundancies (0.062, 0.068, and 0.06).

On the other hand, network (2) is a signaling network and network (4) is also predominantly
signaling, though it includes four transcriptional edges; these two mammalian signal

transduction networks have similar midrange redundancies, namely 0.434 and 0.438,

respectively. We hypothesize that in general transcriptional networks are less redundant than

signaling networks. A straightforward supporting evidence for this is the higher average

degree of signaling networks as compared to the transcriptional ones. Transcriptional

networks have indeed been reported to have a feed-forward structure with few feedback

loops and relatively low cross-talk [55], whereas [42] reports a large strongly connected

component for their studied signaling networks (which makes it possible to reach almost any

node from any input node).

b. Role of currency metabolites in redundancy of metabolite networks.—Our

data source for the C. elegans metabolic network includes two types of nodes, the

metabolites and reaction nodes, and the edges are directed either from those metabolites that

are the reactants of a reaction to the reaction node, or from the reaction node to the products

of the reaction. In this representation, redundant edges appear if both (one of) the reactant(s)

and (one of) the product(s) of a reaction appear as reactants of a different reaction, or

conversely, both (one of) the reactant(s) and (one of) the product(s) of a reaction appear as

products of a different reaction. Because a reaction cannot go forward if one of its reactants

is not present, the redundant edges are not biologically redundant and cannot be eliminated.

Our result of a surprisingly high redundancy value for the metabolic network nevertheless

indicates a high abundance of a pattern, which warrants further investigation.

One possibility we considered is that one of the reactions is essentially a dimerization of a

compound and its slightly modified variant. However, we found no strong support for this

case. Another possibility is that metabolites that participate in a large number of reactions

will have a higher chance to be the reactant or product of such “redundant” edges. There is a

biological basis for this possibility in the existence of currency metabolites. Currency

metabolites (sometimes also referred to as carrier or current metabolites) are plentiful in

normally functioning cells and occur in widely different exchange processes. For example,

ATP can be seen as the energy currency of the cell. Because of their wide participation in

diverse reactions, currency metabolites tend to be the highest degree nodes of metabolic

networks. There is some discussion in the literature on how large the group of currency

metabolites is, but the consensus list includes H20, ATP, ADP, NAD and its variants, NH4+,

and PO43− (phosphate) [56,57].

Our data source for the C. elegans metabolic network indicates the identity of the 10 highest

in-degree nodes (as a group) and the 10 highest out-degree nodes (as a group). Out of the 13

distinct nodes in the aggregate of these two groups, 11 belong in the consensus list of

currency metabolites, leaving out co-enzyme A and L glutamate. We found that when we

rank the nodes of the network by the number of redundant edges (as found by NET-

SYNTHESIS) incident upon them and consider the top 17 nodes in this rank order, they

include all the 13 highest degree nodes in the original networks. Thus we can conclude that
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the topological redundancy of the C. elegans metabolic network is largely due to its

inclusion of currency metabolites.

C. Redundancy of social versus biological networks

The results in Table II seem to suggest that social networks are more redundant than

biological networks. In fact, the two most redundant networks in the table are the two social

networks (8) and (9) which have redundancies about twice that of any biological networks

considered, and the remaining two social networks have redundancies comparable to the

highest redundancy of the biological networks. We hypothesize that in general this is the

case. This hypothesis is perhaps not very surprising in the context of past research as

explained below.

The research work of Navlakha and Kingsford [58] suggests that biological networks may

grow and evolve quite differently than social networks. In particular, they show that models

for biological networks may perform poorly for social networks and vice versa. It is

conceivable that different models may give rise to different magnitudes of redundancy.

Some previous research works (see e.g., [59–61]) ascertain that social networks tend to

exhibit assortativity (i.e., highly connected nodes tend to be connected with other high

degree nodes), whereas biological networks typically show dissortativity (i.e., high degree

nodes tend to attach to low degree nodes). It is not difficult to see that such properties may

lead to the difference in redundancies for the two types of networks; For example, in Fig. 9

an edge between two nodes of high degree results in removal of a large number of edges. To

check the general hypothesis of assortativity for our specific networks, we computed the

assortativity coefficient for a network as defined in [60]. This coefficient is calculated in the

following manner. First, we ignore the direction of edges obtaining an undirected graph G =

(V,E) from the given directed graph. Then, the assortativity coefficient r is computed by the

following formula:

r =
1
E ∑ u, υ ∈ E dudυ − 1

2 E ∑ u, υ ∈ E du + dυ
2

1
2 E ∑ u, υ ∈ E du 2 + dυ

2 − 1
2 E ∑ u, υ ∈ E du + dυ

2,

where du denotes the degree of a node u. It is known that −1 ⩽ r ⩽ 1, and more negative

(respectively, more positive) values of r indicating more disassortativity (respectively, more

assortativity) of the given network. As Table IV shows, all biological networks are

disassortative, whereas all but one social network are assortative.

Finally, social networks that are related to human behavior are often expected to exhibit a

high degree of transitivity [62–64]. For example, the classical work of Leinhardt [64] asserts

that the structure of interpersonal relations in children’s groups will progress in consistent

fashion from less to more transitive organization as the children become older. Transitivity in

this type of behavioral context translates to coherent type 1 feed-forward loops (i.e., feed-

forward loops of the form A → B, B → C, and A → C), each of which contains a redundant

edge, and thus higher transitivity immediately implies higher redundancy in our context. To
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check how far this general hypothesis holds for our specific networks, we calculated the

transitivity coefficient for our networks. The transitivity coefficient τ of a directed network

[65] is given by 
μ3

μ2 + μ3
 where μ2 and μ3 are the number of ordered triplets of vertices that

have two and three edges among them, respectively. We used an obvious algorithm to

calculate this value; τ could not be calculated within reasonable time for the social network

(10) in Table I because of its large number of nodes and edges. As shown in Table IV, all the

biological networks have small transitivity coefficients, and among the social networks,

network (8) has a value of τ that is significantly more than any of the biological networks.

D. Redundancy, minimality, and orienting PPI networks

Protein interaction networks represent physical interactions among proteins. While many

protein interactions have an orientation, the current maps of protein-protein interaction (PPI)

networks are often unoriented (undirected) in part due to the limitations of the current

experimental technologies such as [66]. Thus, there is an obvious interest in trying to orient

these networks by, say, combining causal information at the cellular level. Unfortunately,

most versions of the orientation problem is theoretically NP hard [67,68], and thus heuristics

for such orientations may either not lead to all pathways of interest or lead to extra spurious

pathways that are not supported [50,68].

Our calculation of redundancy values and minimal networks provides a way to gain insight

into a predicted orientation of a PPI network and to determine whether the predicted

oriented network has a level of redundancy similar to those in known biological networks.

Obviously, the lower the value of ℞new is, the more compact is the construction of the

oriented network. However, one must also ensure that the minimal network also contains the

right kind of pathways, (e.g., paths in the “gold standard”). To this effect, we describe the

results of this approach via the NET-SYNTHESIS software on an oriented PPI network from

[50].

We first briefly review the method by which the oriented PPI network used by us was

generated. The starting point for the network consisted of all physical interactions among

yeast proteins from version 2.0.51 of BIOGRID [69]. Edge weights were assigned based on

the type and quantity of experimental support for each interaction, and low-weight edges

were removed from the network. The network was oriented so as to maximize the weighted

number of length-bounded paths between predetermined sources and targets, which were

taken from yeast MAPK signaling pathways. The final set of 2435 edges included all

oriented edges that belonged to any path with five or fewer edges between a source and

target and edge weights were dropped for subsequent analysis. The sources, targets, PPI

filtering, and orientation algorithm are described more fully in [50].

Now we discuss the paths in the nonredundant network (after reduction via NET-

SYNTHESIS) that are present in the gold standard. Several of the short source-target paths

in this network correspond to known yeast MAPK signaling pathways, specifically the

pheromone response and filamentous growth pathways [70]. Figure 10 depicts the union of

all linear paths in the nonredundant network that have multiple consecutive edges that match

a gold standard path. The paths that matched a gold standard path are highly similar, and the
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common gold standard edges in these hits are Ste7 → Fus3, Fus3 →, Dig1, and Dig1 →
Ste12.

E. Correlation between redundancy and network dynamics

The Pearson correlation coefficient between M and ℞new is about −0.8 with a p value of

0.0066. Thus, monotonicity is negatively correlated to redundancy (i.e., higher values of

redundancy are expected to lead to lower values of monotonicity and vice versa).

As explained before, monotonicity is known to be negatively correlated to negative feedback

loops [11,71]. Negative feedback loops also tend to increase the redundancy of signal

transduction networks; see Fig. 11 for an illustration. Indeed, strongly connected

components with at least one negative feedback loop were called multiple parity components

in [21] and played a significant role in redundancy calculations.

Furthermore, recent results of Kwon and Cho [72] on the correlation between topological

properties and robustness of networks are also consistent with the negative correlation that

we obtained. The authors of that paper considered a weighted network model in which the

state of each node is a real number in the range {−1,1} and the positive and negative weights

of the connections represent the strengths of the excitory or inhibitory connections,

respectively. A negative (respectively, positive) feedback loop is then defined to be a simple

cycle with an odd (respectively, even) number of negative weights in the cycle, and the

degree of robustness of a network is then defined by selecting a group of nodes randomly,

perturbing the values of their states, and measuring the extent of change of states of various

nodes in the network by computing the ratio of state values converging to a same final state

to which the original initial state converged (biologically, this concept of robustness means

the extent of maintaining the original stable state against given perturbations). Based on

extensive simulation results, the authors concluded that networks with fewer negative

feedback loops are likely to be more robust in their sense. More robustness with respect to

perturbations suggests less influence of one node on another, and consequently fewer

alternate pathways of the same nature from a node to another, indicating less redundancy

values, whereas fewer negative feedback loops correspond to a higher degree of

monotonicity. Thus, their observation is, at least on an intuitive level, consistent with our

finding.

F. Significance of a minimal network

It is certainly an interesting question to ask if a topologically minimal network has similar

dynamical or functional properties as the original network. Note that the question does not

make sense for the four (static) social networks [networks (8), (9), (10), and (11) in Table I],

since the individual nodes in these networks usually do not have well-defined functions or

dynamics, and one of their most interesting properties, namely connectivity, is preserved in

the minimal network. The redundancy issue of the metabolic network [network (6) of Table

I] is explained separately in detail in Sec. VII B. There is no associated dynamics with the

oriented PPI network [network (7) of Table I]. Thus, this question only applies for the first

five biological networks [networks (1), (2), (3), (4), and (5)] in Table I. A dynamic

description/model of these networks would characterize dynamic behaviors, such as stability
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and response to external inputs. When the network has designated outputs or read-outs, such

as gene expression rates in transcriptional networks, it may be of interest to characterize the

behavior of these outputs as a function of the inputs.

A topologically minimal network has the same input-output connectivity (reachability) as

the original and thus the excitory or inhibitory influence between each input-output pair is

preserved. It is minimal in the “information theoretic” sense in that any network with the

same output behavior must be of at least this size. A correlation of the redundancy measure

with the monotonicity of dynamics is explored in Sec. VII E. Will a topologically minimal

network also have the same output behavior as the original one for the same input? In

general, there is no such guarantee since the dynamics depend on what type of functions

(“gate”) are used to combine incoming connections to nodes and the “time delay” in the

signal propagation, both of which are omitted in the graph-theoretic representation of

regulatory and signal-transduction networks such as (1)–(5) in Table I. For example,

consider the two networks shown in Fig. 12 in which network (b) has a redundant

connection A → C. The functions of these two circuits could be different, however,

depending on the “gate” function used to combine the inputs B → C and A → C in network

(b). Due to the shared A → B → C connectivity in the two networks, in both cases node C
will be activated if A is continuously supplied. However, while network (a) merely

implements a delay between C and A, the coherent type-1 feed-forward loop indicated in (b)

is what [73] calls a “sign-sensitive delay element” that filters spikes in signals (low-pass

filter) provided that an “AND” gate combines the inputs to node C; one example of such a

circuit is that of the Arabinose system in E. coli [74]. In summary, deleting edges may result

in functionalities that are not exactly the same.

However, despite the fact that a minimal network may not preserve all dynamic properties of

the original one, a significant application of finding minimal networks lies precisely in

allowing one to identify redundant connections (edges). In this manner, one may focus on

investigating the functionalities of these redundant edges (e.g., identifying the manner in

which their effect is cumulated with those of the other regulators of their target nodes could

be a key step toward understanding the behavior of the entire network).

Thus, the tools developed here are of general interest as they not only provide a quantified

measure of overall redundancy of the network, but also allow their identification of

redundancies and hence help direct future research toward the understanding of the

functional significance of the added links.

VIII. AVAILABILITY OF DATA AND SOFTWARE

Most of the data for the original network as well as those for the random networks used in

the calculation of p values for ℞new are available from our Web site [75]. The NET-

SYNTHESIS software for calculating redundancies is available from our Web site [16].

MATLAB codes for computing monotonicity values are available from our Web site [38].
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IX. CONCLUSIONS

In this paper we have defined a new combinatorial measure of redundancy of biological and

social networks, and have illustrated its efficient computation on several small and large

networks. We also noted some interesting hypotheses that one could draw from these results

such as:

1. Transcriptional networks are likely to be less redundant than signaling networks.

2. The topological redundancy of the C. elegans metabolic network is largely due to

its inclusion of currency metabolites.

3. Social networks are prone to be more redundant than biological networks.

4. Our calculation of redundancy values and minimal networks provides a way to

gain insight into a predicted orientation of a protein-protein-interaction (PPI)

network and determine whether the predicted oriented network has a level of

redundancy similar to those in known biological networks.

5. Our topology-based redundancy measure for biological signaling networks is

statistically correlated with some measure of the dynamics of the network,

namely higher redundancy is correlated to lower monotonicity and vice versa.

We believe that our fast and accurate computation of redundancy measure will help future

researchers to further fine tune the measure and test it on a large-scale basis. An interesting

question that has been partially addressed in the past literature but deserves further

investigation is to determine the reasons of redundancy of various kinds of biological

networks.
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FIG. 1.
The network topology model for biological networks. The parity of the pathway B → C →
A ⊣ D is 1 × (−1) × (−1) = 1.
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FIG. 2.
Choosing one wrong edge may cost too much in BTR.
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FIG. 3.
Two n-node graphs with same degree sequence but with different values of *new, shown for

n = 8. The top graph has no redundant edges, thus for it *new = 0. The dashed edges for the

bottom graph can be removed, giving *new = 3
11 .
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FIG. 4.
A high-level view of the algorithmic approach in NET-SYNTHESIS to perform BTR.

Albert et al. Page 25

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2021 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 5.
(a) The Drosophila segment polarity network for a single cell, redrawn from [22]. (b) A

network of four cells. The redundant edges in each cell are colored light gray. The dark gray

edges form an alternate pathway of same parity for the edge WG 1 → wg 1.
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FIG. 6.
Network for the system in Eq. (5).
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FIG. 7.
A nonmonotone system with no negative feedback loops and no incoherent feed-forward

loops.
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FIG. 8.
An unweighted species tree of the organisms for our biological networks, constructed using

the Taxonomy Browser resources of NCBI [40]. The tree is not drawn to scale.
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FIG. 9.
Adding the edge colored light gray may increase the redundancy of the social network

drastically (removed edges shown as dotted).
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FIG. 10.
(Color online) Paths in the nonredundant oriented PPI network that match known yeast

signaling pathways. Solid edges are present in the gold standard and dashed edges represent

novel predictions.
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FIG. 11.
The network shown has no negative feedback loops and no redundant edges. However, if we

replace the gray activation edge υ3 → υ2 to an inhibition edge υ3 ⊣ υ2, a negative feedback

loop is created and this makes all the remaining inhibitory edges in the network redundant

(e.g., the edge υ1 ⊣ υ4 is redundant because of the path υ1 → υ2 → υ3 ⊣ υ2 → υ4).
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FIG. 12.
Equivalence of dynamics depends on node functions.
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