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A common goal in comparative effectiveness research is to estimate treat-
ment effects on prespecified subpopulations of patients. Though widely used in
medical research, causal inference methods for such subgroup analysis (SGA)
remain underdeveloped, particularly in observational studies. In this article, we
develop a suite of analytical methods and visualization tools for causal SGA.
First, we introduce the estimand of subgroup weighted average treatment effect
and provide the corresponding propensity score weighting estimator. We show
that balancing covariates within a subgroup bounds the bias of the estimator
of subgroup causal effects. Second, we propose to use the overlap weighting
(OW) method to achieve exact balance within subgroups. We further propose
a method that combines OW and LASSO, to balance the bias-variance trade-
off in SGA. Finally, we design a new diagnostic graph—the Connect-S plot—for
visualizing the subgroup covariate balance. Extensive simulation studies are
presented to compare the proposed method with several existing methods. We
apply the proposed methods to the patient-centered results for uterine fibroids
(COMPARE-UF) registry data to evaluate alternative management options for
uterine fibroids for relief of symptoms and quality of life.
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1 INTRODUCTION

Comparative effectiveness research (CER) aims to estimate the causal effect of a treatment(s) in comparison to alter-
natives, unconfounded by differences between characteristics of subjects. CER has traditionally focused on the average
treatment effect (ATE) for the overall population. However, different subpopulations of patients may respond to the same
treatment differently,1,2 and in recent years the CER literature has increasingly shifted attention to heterogeneous treat-
ment effects (HTE).3-7 In particular, recent research employs machine learning methods to directly model the outcome
function and consequently identify the subpopulations with significant HTEs post analysis. Popular examples include the
Bayesian additive regression trees (BART),3,8 Causal Forest,6 and Causal boosting.9 In this article, we focus on a different
type of HTE analysis, widely used in medical research: the causal subgroup analysis (SGA) which estimates treatment
effects in prespecified—usually defined using pretreatment covariates—subgroups of patients. There is an extensive litera-
ture on SGA methods in randomized controlled trials.10-14 However, causal inference methods for SGA with observational
data remain underdeveloped.15-17
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In the context of ATE, covariate balance has been shown to be crucial to unbiased estimation of causal effects.18,19

Propensity score methods20 are the most popular method for achieving covariate balance, but have seldom been discussed
in SGA.15,16 Compared with the aforementioned machine learning methods that directly model the outcomes, propensity
score methods are design-based in the sense that they avoid modeling the outcome, and the quality of the analysis can be
checked through balance diagnostics.21 In this article, we focus on the propensity score weighting approach.22-27 Dong
et al16 shows that the true propensity score balances the covariates in expectation between treatment groups in both
the overall population and any subgroup defined by covariates. However, the propensity scores are usually unknown in
observational studies and must be first estimated from the study sample, leading to estimated propensity scores that rarely
coincide with their true values. Moreover, good balance in the overall sample does not automatically translate in good
subgroup balance. In fact, our own experience suggests that severe covariate imbalance in subgroups is common in real
applications, which may consequently lead to bias in estimating the subgroup causal effects. Despite routinely reporting
effects in prespecified subgroups, medical studies rarely check subgroup balance, partially due to the lack of visualization
tools. Indeed, we conducted a literature review of all propensity-score-based comparative effectiveness analyses published
in the Journal of American Medical Association between January 1, 2017 and August 1, 2018. Of 16 relevant publications,
half reported SGA (2-22 subgroups per paper) but none reported any metrics of balance within subgroups.

The limited literature on propensity score methods in SGA suggests that the propensity score model should be itera-
tively updated to include covariate-subgroup interactions until subgroup balance is achieved.28,29 But this procedure has
not been implemented in practice, perhaps because it is cumbersome to manually check interactions. More importantly,
it may amplify the classic bias-variance tradeoff: increasing complexity of the propensity score model may help to reduce
bias but is also expected to increase variance. Therefore, an effective approach would automatically achieve covariate
balance in subgroups while preserving precision. Machine learning methods offer a potential solution for estimating the
propensity scores without prespecifying necessary interactions. For example, generalized boosted models (GBM) have
been advocated as a flexible, data-adaptive method,30 and random forest was superior to many other tree-based meth-
ods for propensity score estimation in extensive simulation studies.31 BART have been used to estimate the propensity
score model and outperformed GBM on some metrics of balance.32 However, it is unclear whether these methods achieve
adequate balance and precision in causal SGA. Moreover, when important subgroups are prespecified, a more effective
approach would incorporate prior knowledge about the subgroups.

In this article, we develop a suite of analytical and visualization tools for causal SGA. First, we introduce the esti-
mand of subgroup weighted average treatment effect (S-WATE) and provide the corresponding propensity score weighting
estimator (Section 2). Second, we propose a method that combines LASSO33,34 and overlap weighting (OW),26,35,36 and
balances the bias-variance tradeoff in causal SGA (Section 2.4). Specifically, we treat the prespecified subgroups as can-
didates for interactions with standard covariates in a logistic propensity score model and use LASSO to select important
interactions. We then capitalize on the exact balance property of OW with a logistic regression to achieve covariate balance
both overall and within subgroups, thus reducing bias and variance in causal SGA. Then, we show analytically that bal-
ancing covariates within a subgroup bounds the bias in estimating subgroup causal effects (Section 3). Finally, we device
a new diagnostic graph, which we call the Connect-S plot, for visualizing the subgroup covariate balance (Section 4). We
conduct extensive simulation studies to compare the proposed method with several alternative methods (Section 5), and
illustrate its application in a motivating example (Section 6).

Our methodology is motivated from an observational comparative effectiveness study based on the comparing options
for management: patient-centered results for uterine fibroids (COMPARE-UF) registry.37 Our goal is to evaluate alter-
native management options for uterine fibroids for relief of symptoms and quality of life. SGA was a primary aim to
determine whether certain types of patient subgroups should receive myomectomy vs hysterectomy procedures. Investi-
gators prespecified 35 subgroups of interest based on categories of 16 variables including race, age, and baseline symptom
severity. In addition, 20 covariates were considered as potential confounders, including certain demographics, disease
history, quality of life and symptoms. The total sample size is 1430, with 567 patients in the myomectomy group and
863 patients in the hysterectomy group. There are in total 700 subgroup-confounder combinations, which pose great
challenges to check and ensure balance for causal analyses.

2 ESTIMANDS AND ESTIMATION IN CAUSAL SGA

2.1 Notation

Consider a sample of N individuals, where N1 units belong to the treatment group, denoted by Z = 1, and N0 to the
control group, denoted by Z = 0. We maintain the stable unit treatment value assumption (SUTVA),38 which includes
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two subassumptions: there is (i) no different versions of the treatment (also known as consistency39), and (ii) no
interference between units. Under SUTVA, each unit i has two potential outcomes Y i(1) and Y i(0) corresponding to
the two possible treatment levels, of which only the one corresponding to the actual treatment assigned is observed,
Y i =ZiY i(1)+ (1−Zi)Y i(0). We also observe a vector of P pretreatment covariates, Xi = (Xi1, … ,XiP)T .

We denote the subgroups of interest by indicator variables Si = (Si1, … , SiR)T , where Sir = 1 if the ith unit is a member
of the rth(r = 1, 2, … , R) subgroup and 0 otherwise (eg, Black race, male gender, and younger age). Usually, Sir = fr(Xi)
for some function f r that defines categories based on Xi. The R groups are not required to be mutually exclusive, and a
unit i can belong to multiple subgroups. In fact, we are particularly interested in one-at-a-time SGA where the groups
compared are defined as Sir = 0 and Sir = 1 for each r, while averaging over the levels of {Si1, … , SiR} ⧵ {Sir}. Nonetheless,
to simplify notation in Section 2.2, we assume mutually exclusive subgroups so that

∑R
r=1 Sir = 1 hereafter.

The propensity score is e(Xi,Si) = Pr(Zi = 1|Xi,Si). When the components of Si are functions of Xi, the dependence of
the propensity score on the subgroup indicators could be dropped. However, the subgrouping variables Si may not all be
a function of Xi. Furthermore, subgroups are most often defined based on physicians’ and patients’ prior knowledge with
respect to which covariates are important for selecting treatment or with respect to the outcome. For this reason the true
propensity score may be subgroup-specific in that relationships between Xi and Zi depend on Si. For this reason, both the
typical covariates Xi and the subgrouping variables Si are explicitly denoted.

2.2 The estimand: Subgroup weighted average treatment effect

Traditional causal inference methods focus on the ATE, Ef [Y (1) − Y (0)], where the expectation is over the popula-
tion with probability density f (x, s) for the covariates and subgroups. Corresponding SGA would evaluate the subgroup
average treatment effect (S-ATE), 𝜏r = Ef [Y (1) − Y (0)|Sr = 1]. Recently there has been increasing focus on weighted
average treatment effects which represent average causal effects over a different, potentially more clinically relevant
populations.26,27,40-42 We extend the weighted average treatment effect to the context of SGA.

Let g(x, s) denote the covariate/subgroup density of the clinically relevant target population. The ratio h(x, s) =
g(x, s)∕f (x, s) is called a tilting function,43 which reweights the distribution of the observed sample to represent the tar-
get population. Denote the conditional expectation of the potential outcome in subgroup r with treatment z by 𝜇rz(x) =
Ef {Y (z)|X = x, Sr = 1} for z= 0, 1. Then, we can represent the S-WATE over the target population by:

𝜏r,h = Eg[Y (1) − Y (0)|Sr = 1] = E{h(X,S)(𝜇r1(X) − 𝜇r0(X))|Sr = 1}
E{h(X,S)|Sr = 1}

. (1)

In practice, we specify the target population by prespecifying the tilting function h(x, s). Different choices of the func-
tion h lead to different estimands of interest. For example, for h(x, s) = 1 the S-WATE collapses to the S-ATE: 𝜏r,h ≡ 𝜏r.
Another special case arises under homogeneity when 𝜇r1(x) − 𝜇r0(x) is constant for all x and 𝜏r,h ≡ 𝜏r for all h. Several
common tilting functions will be discussed subsequently within the context of SGA.

To identify the S-WATE from observational data, we make two standard assumptions:20 (i) Unconfoundedness:
Z {Y (1),Y (0)}|{X,S}, which implies that the treatment assignment is randomized given the observed covariates,
and (ii) Overlap (or positivity): 0 < e(Xi,Si) < 1, which requires that each unit has a nonzero probability of being
assigned to either treatment condition. Then, we can estimate the S-WATE in subgroup r, 𝜏r,h, using the Hájek
estimator

𝜏r,h =
∑N

i=1 ZiSirwi1Yi∑N
i=1 ZiSirwi1

−
∑N

i=1(1 − Zi)Sirwi0Yi∑N
i=1(1 − Zi)Sirwi0

, (2)

where the weights w are the balancing weights corresponding to the specific tilting function h(x, s) (equivalently the
target population g(x, s)):26

⎧⎪⎨⎪⎩
wi1 = h(Xi,Si)

e(Xi,Si)
for Zi = 1,

wi0 = h(Xi,Si)
1−e(Xi,Si)

for Zi = 0.
(3)
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The most widely used balancing weights are the inverse probability weights (IPW),23 (w1 = 1∕e(x, s),w0 = 1∕(1 −
e(x, s)), corresponding to h(x, s) = 1. The target population of IPW is the combination of treated and control patients that
are represented by the study sample, and the subgroup-specific estimand is the S-ATE. The balancing weights which
will play a key role in this article (Sections 2.3 and 2.4) are the overlap weights (OW), (w1 = 1 − e(x, s),w0 = e(x, s)),
corresponding to h(x, s) = e(x, s)(1 − e(x, s)).26 Balancing weights are defined on the entire sample and are applicable to
subgroups where the value of Si is fixed and defines the subgroup of interest. We show in Web Appendix 1.1 that 𝜏r,h is
consistent for 𝜏r,h.

In practice, the true propensity score, e(Xi,Si), is usually not known and is estimated from the data. Then, the weights
wi in (2) are replaced with ŵi based on the estimated propensity score ê(Xi,Si). While balancing the true propensity
score would balance the covariates in all covariate-defined subgroups in expectation, the estimated weights ŵi based on
an estimated propensity score often fail to achieve covariate balance, particularly within subgroups.16 As we show in
Section 3, covariate balance in the subgroups is crucial for unbiased estimation of the S-WATE. Therefore, it is beneficial
to choose weights that guarantee balance.

2.3 Exact subgroup balance via OW

We propose to use OW to achieve exact balance on the subgroup-specific covariate means. As noted above, the overlap
weight of each unit is the probability of being assigned to the opposite group: w1 = 1 − e(x, s) and w0 = e(x, s), arising
from tilting function h(x, s) = e(x, s)(1 − e(x, s)). This tilting function is maximized for individuals with propensity scores
close to 0.5, that is, those who are equally likely to be treated or not, and minimized for individuals with propensity scores
close to 0 or 1, that is, those who are nearly always treated or never treated. Consequently, the target population of OW
emphasizes covariate profiles with the most overlap between treatment groups and the subgroup-specific estimand is
the subgroup average treatment effect of the overlap population (S-ATO). Though statistically defined, this represents a
target population of intrinsic substantive interest.26,35,36 Specifically, the overlap population mimics the characteristics
of a pragmatic randomized trial that is highly inclusive, excluding no study participants from the available sample, but
emphasizing the comparison of patients at clinical equipoise. The resulting target population can be empirically described
through a weighted baseline characteristics table. When the S-ATO is clinically relevant, its corresponding weighting
estimator has attractive properties regarding balance and variance.

First, OW have a unique finite-sample property of exact balance. Specifically, outside the context of SGA, Li et al26

show that when the propensity score is estimated by a logistic regression, OW lead to exact balance on the weighted
covariate means. We extend this property to subgroups as follows.

Proposition 1. If the postulated propensity score model is logistic regression with subgroup-covariate interactions, that is,
ê(Xi,Si) = logit−1(�̂�0 + XT

i �̂�x + ST
i �̂�s + (Xi ⋅ Si)T�̂�xs), where �̂� = (�̂�0, �̂�

T
x , �̂�

T
s , �̂�

T
xs)T is the maximum likelihood (ML) estima-

tor and (Xi ⋅ Si) denotes all pairwise interactions between Xi and Si, then the OW lead to exact mean balance in the subgroups
and overall:

N∑
i=1

ZiSirXipŵi1 −
N∑

i=1
(1 − Zi)SirXipŵi0 = 0, for all r = 1, 2, … ,R, and p = 1, 2, … ,P.

Again the weights need to be normalized such that
∑N

i ZiSirŵi1 =
∑N

i (1 − Zi)Sirŵi0 = 1 (Web Appendix 1.5).

Proposition 1 implies that when a logistic model for propensity scores is augmented to include (Xi ⋅ Si) and paired
with OW, exact balance is achieved both overall and within subgroups. In addition, the approach can be motivated by
focusing on correct specification of the propensity score model in the scientific context. When subgroups are defined
a priori it is usually based on clinical knowledge of which patient characteristics are most likely to alter the treatment
effect. Thus, treatment decisions in the observational data may already be different in these subgroups, corresponding to
covariate-subgroup interactions in the true propensity score model. This motivates the inclusion of prespecified subgroups
as candidates for interactions with standard covariates in the propensity score model. However, as the propensity score
model approaches saturation, the estimated propensity scores will converge to 0 and 1, thus causing variance inflation
(VI) in the treatment effect estimates.

VI with increasing PS model complexity is partially mitigated by OW. OWs are naturally bounded between 0
and 1, thus can avoid the issues of extreme weights and large variability that can occur when h(x, s) = 1.26 In fact,
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the overlap tilting function h(x, s) = e(x, s)(1 − e(x, s)) gives the smallest large-sample variance of the weighted esti-
mator 𝜏r,h over all possible h under homoscedasticity (Web Appendix 1.1). For SGA, the optimal efficiency helps
to mitigate the potential VI arising from a more complex propensity score model. Nonetheless, when the num-
ber of covariates and/or subgroups is large, variable selection in the propensity score model is necessary. Therefore,
we propose a new method for causal SGA to accommodate considerations on both variable selection and covariate
balance.

2.4 Combining OW with Post-LASSO for causal SGA: The OW-pLASSO algorithm

We propose the OW-pLASSO algorithm for causal SGA, which combines two main components. The first component
uses the Post-LASSO approach34,44 to select covariate-subgroup interactions and estimate the propensity scores. In causal
settings regularization inadvertently biases treatment effect estimates by overshrinking regression coefficients.45 Hence,
we adopt the Post-LASSO approach instead of the original LASSO.33 The second component uses OW to achieve covariate
balance in the subgroups.

The OW-pLASSO algorithm consists of the following steps:

S1. Fit a logistic propensity score model with all prespecified covariates and subgroup variables along with pairwise
covariate-subgroup interactions, that is, design matrix (Xi,Si,Xi ⋅ Si), and perform LASSO to select covariate-subgroup
interactions (without penalizing the main effects in the model).

S2. Estimate the propensity scores by refitting the logistic regression with all main effects and selected covariate-subgroup
interactions from S1.

S3. Calculate the OW based on the propensity scores estimated from S2, and check subgroup balance using the Connect-S
plot (Section 4) before and after weighting.

S4. Estimate the causal effects for all prespecified subgroups using Estimator (2) with the OW from S3.

From extensive simulation studies (Section 5), we find the OW-pLASSO algorithm outperforms combinations of IPW
and other popular machine learning models for propensity scores in estimating the S-WATE estimands. One of the key
reasons of OW-pLASSO’s advantage is that it achieves within-subgroup exact mean balance, which is crucial for bias
reduction, as we show analytically in the following section.

To estimate the variance of the (overall and subgroup) treatment effects, we suggest two methods: (i) the robust sand-
wich estimator, as recently described for IPW;46 this approach is known to be slightly conservative as it does not take
into account the uncertainty in estimating the propensity scores, but has been shown to work well in practice. (ii) Boot-
strapping: estimate propensity scores in the original sample using Post-LASSO and treat the estimated propensity scores
as fixed when estimating the causal effects in each bootstrap sample. Note that in the bootstrap method, we caution
against the practice of refitting the propensity score using Post-LASSO in each bootstrap sample, because the bootstrap
is inconsistent for LASSO estimators.47 Since uncertainty for LASSO estimators is hard to quantify, none of the variance
estimation approaches we consider aims to incorporate the variability of propensity score estimates. However, ignoring
the uncertainty of the propensity score is justifiable in causal inference studies25 as the propensity score is often viewed
as part of the “design” phase of a study.48 Our simulation studies in Web Appendix 2.3 validate these variance estimation
methods coupled with the proposed OW-pLASSO algorithm.

3 BOUNDING BIAS FOR SUBGROUP CAUSAL EFFECTS

When focusing on additive models, Zubizarreta19 showed that the weighting estimator for the population mean is unbi-
ased when the covariate means are balanced. We extend this work to SGA by showing that balance of covariates within
a subgroup leads to minimal bias of the estimator 𝜏r,h. In Proposition 2, we show this result when the treatment effect
is homogeneous within a subgroup (𝜏r,h = 𝜏r), and in Proposition 3 we extend it to allow for within-subgroup effect
heterogeneity. In both cases, treatment effects are allowed to vary between subgroup levels.

Proposition 2. Suppose that the outcome surface satisfies an additive model, for example, Yi(z) =
∑R

r=1 𝛽rSir+∑R
r=1

∑P
p=1 𝛽rpSirXip +

∑R
r=1 𝜏rSirz+ 𝜀i(z), with E[𝜀i(z)|Xi,Si] = 0. For any weight wi that is normalized within subgroups (ie,
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∑N
i=1 ZiSirwi1 =

∑N
i=1(1 − Zi)Sirwi0 = 1), if mean balance holds in the rth subgroup, expressed as

||||||
N∑

i=1
ZiSirwi1Xip −

N∑
i=1

(1 − Zi)Sirwi0Xip

||||||
< 𝛿, for all p = 1, 2, … ,P, (4)

then the bias for the rth subgroup is bounded, |E[𝜏r,h − 𝜏r]| < 𝛿
∑P

p=1 |𝛽rp| (Web Appendix 1.2).
Therefore, any weighting scheme for which 𝛿 ≈ 0 will eliminate bias for SGA when the outcome satisfies an additive

model. Proposition 2 illustrates that mean balance in the overall sample, |||∑N
i=1 Ziwi1Xip −

∑N
i=1(1 − Zi)wi0Xip

||| < 𝛿, is not
sufficient, and balance is required within the subgroup. Even in the special case where the true response surface is additive
in the covariates and the treatment effect is constant (𝛽rp = 𝛽p, and 𝜏r = 𝜏), the subgroup-specific Condition (4) is still
necessary to ensure minimal bias of 𝜏r,h.

Proposition 3. Suppose the additive model is relaxed to allow treatment effect heterogeneity by covariates Xi within sub-
groups: Yi(z) =

∑R
r=1 𝛽rSir+

∑R
r=1

∑P
p=1 𝛽rpSirXip+

∑R
r=1 𝜏rSirz+

∑P
p=1 𝛾rpSirXipz+ 𝜀i(z), with E[𝜀i(z)|Xi,Si] = 0. If Condition

(4) holds and additionally,

||||||
N∑

i=1
ZiSirwiXip −

∑N
i=1h(Xi,Si)SirXip∑N

i=1h(Xi,Si)Sir

||||||
< 𝛿2, for all p = 1, 2, … ,P, (5)

then the bias for the rth subgroup is bounded, |E[𝜏r,h − 𝜏r,h]| < 𝛿
∑P

p=1 |𝛽rp| + 𝛿2
∑P

p=1 |𝛾rp| (Web Appendix 1.3).

Condition (5) requires the weighted sample covariate mean of treated patients within the subgroup to be close to the
subgroup target population covariate mean. This condition can be verified when h is a predefined function, but not when
h(Xi,Si) depends on an unknown propensity score e(Xi,Si). However, this term is expected to be small unless the model
for the propensity score is severely misspecified. In Web Appendix 1.4, we show that an alternative, verifiable condition:||||
∑N

i=1 ZiSirwiXip −
∑N

i=1 ĥ(Xi,Si)SirXip∑N
i=1 ĥ(Xi,Si)Sir

|||| < 𝛿2, is sufficient if we are willing to estimate a slightly different estimand, namely, the

subgroup-sample weighted average treatment effect, 𝜏r,ĥ =
∑

iĥ(Xi,Si)[𝜇r1(Xi,Si)−𝜇r0(Xi,Si)]Sir∑
iĥ(Xi,Si)Sir

. Therefore, verifiable mean balance
conditions are sufficient for 𝜏r,h to have a causal interpretation, but the propensity score model must be approximately
correct in order for the weighted population to correspond to the target population and estimate 𝜏r,h. Similarly to Condition
(4), Condition (5) can be checked by the Connect-S plot (Section 4).

It is instructive to consider the special case were h(Xi,Si) = 1 and the target population is the sampled population.
In this case, h is known and Condition (5) can be empirically verified. However, it will not necessarily be satisfied for
weights based on an estimated propensity score. To the best of our knowledge, Condition (4) is typically checked but
Condition (5) is not. Under HTEs this second condition is needed. This reveals a potential risk of using weights that
balance covariates without defining a tilting function and target estimand (S-WATE).18,19,26,27 The implicit estimand is the
S-ATE with h(Xi,Si) = 1. While these methods are designed to satisfy Condition (4), Condition (5) does not play a role in
the construction of the weights and may be violated.

The assumption of linearity in the covariates can be relaxed and the nonlinear case is addressed in Web Appendix 1.6
(Proposition 4). We find that mean balance remains an important condition for unbiasedness, but various higher order
moments are potentially important, depending on the true model. Whether it would be practically feasible to prespecify
and interpret the corresponding, higher order balance checks, particularly in finite samples, requires future investigation.
We do not undertake that here, but instead focus on correct estimation of the propensity score model, coupled with mean
balance which is sufficient in linear models (above) and necessary in nonlinear models.

4 VISUALIZING SUBGROUP BALANCE: THE CONNECT-S PLOT

In practice, it is often difficult to assess whether existing propensity score methods achieve the balance conditions defined
in Section (3). For example, in the motivating application of COMPARE-UF, there are 700 combinations of subgroups
and covariates for which to check Condition (4). In this section, we introduce a new graph for visualizing subgroup
balance—the Connect-S plot. We first introduce two important metrics that will be presented in the plot.
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The first statistic is the absolute standardized mean difference (ASMD),49 which is widely used for measuring covari-
ate balance. The ASMD is the difference in weighted means, defined in Condition (4), further scaled by the pooled,
unweighted standard deviation. That is

ASMDr,p =
∑N

i=1 ZiSirwi1Xip −
∑N

i=1(1 − Zi)Sirwi0Xip

sr,p
(6)

where sr,p is the unweighted, pooled standard deviation for the rth subgroup and the pth covariate (See Web Appendix 1.5
for details). Scaling by sr,p facilitates a practical interpretation of the weighted mean difference, relative to the standard
deviation of the variable Xp. Various rules of thumb suggest that the ASMDr,p should be less than 0.10 or 0.20 (ie, an
acceptable 𝛿 is <0.10 to 0.20).49

The second metric concerns variance. In the context of SGA, the propensity score model is typically complex, including
many interaction terms. Therefore, a particularly important consideration in propensity score weighting is the VI due to
model complexity. Li et al26 suggested to use the following statistic akin to the “design effect” approximation of Kish50 in
survey literature to approximate the VI:

VI = (1∕N1 + 1∕N0)−1
∑

z=0,1

∑Nz
i=1 w2

iz(∑Nz
i=1 wiz

)2 , (7)

where Nz is the sample size of treatment group z. For the unadjusted estimator, wiz = 1 for all units and VI = 1. Increasing
values of VI imply increasingly worse efficiency for alternative weighting algorithms. It is straightforward to define the
subgroup-specific version of the VI statistic.

The Connect-S plot for S subgroups resembles the rectangular grid of a Connect4 game: each row represents a sub-
group variable (eg, a race group), and the name and subgroup sample size is displayed at the beginning and the end of
each row, respectively; each column represents a confounder that we want to balance (eg, age). Therefore, each dot cor-
responds to a specific subgroup S and confounder X , and the shade of the dot is coded based on the ASMD of confounder
X in subgroup S, with darker color meaning more severe imbalance. The end of each row also presents subgroup-specific
approximate VI.

Panel (a) of Figure 1 presents the Connect-S plot for COMPARE-UF after adjustment by IPW where the propensity
score for myomectomy vs hysterectomy is estimated by main effects logistic regression. The bottom row of this panel
shows that this method does a good job of balancing the confounders, overall. However, it does a poor job of achieving
balance within subgroups. For example, subgroups based on age, symptom severity, EQ5D quality of life score, and uterine
volume have many ASMDs greater than 0.10 and often greater than 0.20. These are not generally acceptable and motivate
alternative methodology. A potential solution would be to use a more flexible model for the propensity score that does
not assume main effects. Panel (b) of Figure 1 shows that balance in COMPARE-UF is not improved by estimating the
propensity score with GBM and results were similar for random forest and BART methods (Web Appendix 2.4).

5 SIMULATIONS

We compare the proposed OW-pLASSO method with a number of popular machine learning propensity score methods
via simulations under different levels of confounding, sparsity, and heterogeneity in causal SGA.

5.1 Simulation design

Data generating process. In alignment with the COMPARE-UF study we generate N = 3000 patients, with P∈ {18, 48}
independent covariates Xi, half of which drawn from a standard normal distribution N(0, 1), and the other half from
Bernoulli(0.3). Two subgroup variables Si = (Si1, Si2) are independently drawn from Bernoulli(0.25). The treatment
indicator Zi is generated from Bernoulli(e(Xi,Si)), with the true propensity score model:

logit(e(Xi,Si)) = 𝛼r + ST
i 𝜶s + XT

i 𝜶x + (Xi ⋅ Si)T𝜶xs, (8)

with coefficients 𝜶 = (𝛼r,𝜶
T
s ,𝜶

T
x ,𝜶

T
xs)T .



YANG et al. 4301

F I G U R E 1 The Connect-S
plot of the subgroup ASMD and
approximate variance inflation in
COMPARE-UF after applying
balancing weights for adjustment
by a) Logistic-Main IPW,
propensity score estimated by main
effects logistic regression with IPW;
b) GBM IPW, propensity score
estimated by GBM with IPW; c)
OW-pLASSO, propensity score
estimated by Post-LASSO with OW.
Select subgroups are displayed in
rows and all confounders are
displayed in columns

We set the coefficients in model (8) as follows: 𝛼r = −2, 𝜶T
s = (1, 1). Out of the P coefficients in 𝜶x, 𝜓 portion of them

have nonzero coefficients (ie, true confounders in our simulation). The coefficients for the continuous and binary con-
founders take equally distanced values between (0.25𝛾, 0.5𝛾), separately, and the rest are zeros. Last, we set 𝜶xs = −𝜶x𝜅.
To create a range of realistic scenarios in SGA we vary the three hyperparameters (𝜓, 𝛾, 𝜅) in the true propensity score
model: (1) 𝜓 ∈ {0.25, 0.75} controls the proportion of covariates Xi that are true confounders; (2) 𝛾 ∈ {1, 1.25, 1.5} con-
trols the scale of the regression coefficients for Xi, and (3) 𝜅 ∈ {0.25, 0.5, 0.75} scales the regression coefficients for (Xi ⋅ Si).
For example, for P = 18, 𝛾 = 1, 𝜓 = 0.25, and 𝜅 = 0.5, the above setting specifies 𝜶T

x = (0.25, 0.5, 07, 0.25, 0.5, 07),𝜶T
xs =

(−0.125,−0.25, 07,−0.125,−0.25, 07), where 0k is a k-vector of zeros. The above simulation settings mimic a common
SGA situation in clinical studies. Specifically, when S1 = 1, S2 = 1, the two subgroup variables represent high risk condi-
tions associated with the outcome (eg, risk score) and increase the likelihood of being treated. In the presence of these
high risk conditions, other patient characteristics Xi play a lesser role in driving treatment decisions; this is reflected
by the fact that magnitude of 𝜶x in the propensity model is smaller than 𝜶s. In Web Appendix 2.1, we show that
these specifications lead to treated and control units with various amounts of overlap for the true propensity score
distributions.
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Next, a continuous outcome Y i (eg, risk score) is generated from a linear regression model:

Yi = 𝛽0 + XT
i 𝜷x + ST

i 𝜷s + 𝛽zZi + (Si ⋅ Zi)T𝜷sz + 𝜀i, (9)

where (Si ⋅ Zi) is a vector of all possible interactions between subgroup variables and treatment assignment, and 𝜀i is
independently sampled from N(0, 1). We fix the model parameter 𝛽0 = 0, 𝜷x = 𝜶x, 𝜷T

s = (0.8, 0.8), 𝛽z = −1, and vary 𝜷T
sz =

(𝛽1z, 𝛽2z)T ∈ {(0, 0), (0.5, 0.5)}. When 𝜷T
sz = (0, 0), the treatment effect is homogeneous, and 𝜏r = 𝛽z = −1 for all subgroups.

When 𝜷T
sz = (0.5, 0.5), the underlying treatment effect is heterogeneous within subgroups and between different subgroup

levels. For example, when P = 18, 𝜓 = 0.25, 𝛾 = 1, 𝜅 = 0.75, the true causal effect 𝜏h = −0.67 for ATO, and −0.75 for ATE;
𝜏{S1=0,h} = 𝜏{S2=0,h} = −0.83 for S-ATO, and −0.87 for S-ATE; 𝜏{S1=1,h} = 𝜏{S2=1,h} = −0.35 for S-ATO, and −0.37 for S-ATE.

Postulated propensity score models. To estimate the propensity scores, we compare Post-LASSO with several popular
alternatives in the literature: (1) True model: Logistic regression fitted via ML with the correctly specified propensity score
(8), representing the oracle reference; (2) Logistic-Main: logistic regression with only main effects of the predictors (Xi,Si)
fitted via ML, representing the standard practice; (3) LASSO: LASSO33 with the design matrix (Xi,Si,Xi ⋅ Si), implemented
by the R package glmnet without penalizing the main effects, and 10-fold cross-validation for hyperparameter tuning;51

(4) Post-LASSO: Logistic regression model fitted via ML with the covariate-subgroup interactions selected from the pre-
ceding LASSO;34 (5) RF-Main: Random Forest (RF)6,52 with the design matrix (Xi,Si), implemented by R package ranger
with default hyperparameters and 1000 trees;53 (6) RF-All: RF with the augmented design matrix (Xi,Si,Xi ⋅ Si); Among
the examined scenarios, we observe no difference between the RF-All and RF-Main PS model, suggesting that RF perfor-
mance depends little on the provided design matrix. For simplicity, we omit results on RF-All; (7) GBM: GBM30,54 with the
design matrix (Xi,Si), implemented by R package twang with 5000 trees, interaction depth equals to 2, and other default
hyperparameters;55 (8) BART: Bayesian additive regression trees8 with the design matrix (Xi,Si), using the R function
pbart in package BART with default hyperparameters.56

Each of the preceding propensity score models is paired with (a) IPW and (b) OW. All the simulation analyses are
conducted under R version 3.4.4. In total, there are 72 scenarios examined by the factorial design, with 100 replicate
datasets generated per scenario.

Performance metrics. The performance of different approaches is compared overall (averaged over subgroups) and
within four subgroups defined by Si1 = 0, Si1 = 1, Si2 = 0, Si2 = 1. First, we check balance of covariates by the ASMD of
each covariate, averaged across the 100 simulated datasets, and calculate the maximum ASMD value across all covariates.
Second, we consider the relative bias and root mean squared error (RMSE) to study the precision and stability of various
estimators.

5.2 Simulation results

Covariate balance (AMSD), bias, and RMSE of the various estimators based on different postulated propensity score
models and weighting schemes in the simulations are shown in Web Figure 2, Figures 2, and 3, respectively.

Balance. From Web Figure 2, OW estimators achieve better covariate balance than IPW estimators across all propensity
score models. The true propensity score model and OW achieves perfect balance for the confounders in all subgroups. This
is expected given OW’s exact balance property for any included covariate-subgroup interactions (proposition 1). Within
the same weighting scheme, the LASSO and Post-LASSO model perform similarly, resulting in smaller ASMDs than the
other methods. The Logistic-Main leads to satisfactory balance in the overall sample and the baseline subgroups (ie, S1 = 0
and S2 = 0), but fails to balance the covariates in the S1 = 1 and S2 = 1 subgroups, particularly when paired with IPW.
The RF models result in inferior balance performance (measured using ASMDs), occasionally leading to severe subgroup
imbalances. BART and GBM perform similarly, which lie between the Logistic-Main and the LASSO models.

Bias. From Figure 2, we can see that OW results in lower bias than IPW, for each propensity score modeling approach,
both the overall and the subgroup effects. Between the different propensity score models, the pattern follows closely
the degree of covariate imbalance. We find that OW-pLASSO returns the smallest bias within each subgroup and over-
all. LASSO is slightly inferior to Post-LASSO, likely due to the shrinkage-induced bias. The common practice of using
Logistic-Main IPW overestimates treatment effect in the baseline subgroups and greatly underestimates treatment effect
in the S1 = 1 and S2 = 1 subgroups. If the same estimated propensity scores are paired with OW, the resulting estimates are
much closer to the truth, and the bias for subgroups S1 = 1 and S2 = 1 is reduced to half. BART and GBM perform slightly
better than the Logistic-Main and RF model. Web Figure 3 and 4 provide more details of subgroup bias across a range of
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F I G U R E 2 Bias in estimating the overall WATE and the four subgroup S-WATE across different postulated propensity models and
weighting schemes. Each dot represents one of the 72 simulation scenarios

F I G U R E 3 Root mean squared error in estimating the overall WATE and the four subgroup S-WATE across different propensity
models and weighting schemes. Values greater than 10 are truncated at 10. Each dot represents one of the 72 simulation scenarios

settings. Specifically, we find that the Logistic-Main IPW is much more sensitive to the simulation parameter specifica-
tion compared with the OW-pLASSO. For example, it leads to substantial bias in estimating S-ATE under scenarios with
more confounders and stronger confounding effects (ie, larger P and 𝜓 , larger 𝛾 and 𝜅 values).

RMSE. From Figure 3 we can see that, with the same propensity score model, the RMSE is generally higher for IPW
than for OW. This is expected, due to (i) the improved balance and (ii) the minimum variance property of OW. Neither
the Logistic-Main nor the RF models capture the interactions in the true PS model and consequently result in large
biases and variances of subgroup effects. This suggests that the RF models under our chosen hyperparameter settings
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are inadequate in learning the interactions (when given main effects only) or performing variable selection (when given
the fully expanded design matrix including subgroup interactions), leading to inaccurate and noisy treatment estimates.
By contrast, LASSO coupled with OW provides low bias and high efficiency. Post-LASSO further improves upon LASSO
across all the simulation settings we explored. Similarly to the previous observations, magnitude of the RMSE from BART
and GBM is between that from the LASSO and Logistic-Main model. Web Figure 5 and 6 demonstrate the RMSE of
OW-pLASSO is invariant to regression coefficients, while larger P and 𝜓 , larger 𝛾 and 𝜅 values greatly increase the RMSE
of the IPW main effect model.

To summarize, OW estimators achieve better covariate balance, smaller relative bias and RMSE than IPW estimators
across various propensity score models. The proposed method (OW-pLASSO) leads to low bias and high efficiency in
estimating subgroup causal effects, suggesting LASSO successfully selects the important subgroup-covariate interactions
across simulation scenarios. By contrast, the standard Logistic-Main as well as alternative machine learning models for
the propensity scores lead to large bias and RMSE in estimating the subgroup causal effects, particularly under moderate
and strong confounding.

6 APPLICATION TO COMPARE-UF

We now apply the proposed method to our motivating study of myomectomy vs hysterectomy in the 35 prespecified sub-
groups of COMPARE-UF. In Figure 1C, the balance based on ASMD is substantially improved by OW-pLASSO, though
still not perfect. This improvement in balance does not come at the expense of variance. Both overall and within sub-
groups, the VI metric is lower with OW-pLASSO than the standard main effects logistic regression (panel A). To save space
in the comparison of methods we only show six subgroups. Additional results for all subgroups were similar and are avail-
able in Web Appendix 2.4. The only subgroup for which good balance was not achieved is age less than 35, though it was
improved compared with the other methods. The challenge in balancing this subgroup is not surprising given the limited
sample size and extreme imbalances that were initially present. We recommend that comparative statements about this
subgroup are made very cautiously.

Figure 4 displays estimated treatment effects for the primary quality of life endpoint, UFS-QOL score 1 year after
the procedures with 95% confidence intervals based on the robust sandwich variance estimator.46 The proposed method,

F I G U R E 4 Estimates and 95%
confidence intervals for treatment
comparison of Myomectomy to
Hysterectomy. Weighted means are
reported and then contrasted
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F I G U R E 5 Propensity score distributions by treatment after weighting, by Logistic-Main IPW

OW-pLASSO is compared with the standard Logistic-Main IPW. In some subgroups, including many of those not
shown, the results of OW-pLASSO confirm those of Logistic-Main IPW. However, some potentially important signals
arise. OW-pLASSO reveals different treatment effects in the subgroups defined by baseline symptom severity. Individ-
uals with mild symptom severity (<30) at baseline have similar outcomes with hysterectomy or myomectomy, whereas
subgroups with higher initial symptoms (30-69, >70) receive a larger improvement in overall quality of life with hys-
terectomy. This is expected clinically, as hysterectomy entirely eliminates symptoms whereas symptoms can recur with
myomectomy. Those with the greatest initial symptoms would have the most to gain. The results of Logistic-Main
IPW did not detect this difference. This is consistent with Figure 1 where covariate imbalances after weighting by
Logistic-Main IPW were corrected by OW-pLASSO. A similar pattern was observed for the subgroups based on uterine
volume. OW-pLASSO indicated that women with lower uterine volume had significantly larger benefits from hys-
terectomy. This result is not immediately intuitive, but may be related to the fact that women with lower uterine
volume also had higher pain and self-consciousness score at baseline and therefore more to gain from a complete
solution. This finding was obscured by Logistic-Main IPW because large imbalances in the baseline covariates favored
myomectomy.

The COMPARE-UF data exemplify an additional advantage of OW-pLASSO, in the creation of a clinically relevant
target population that emphasizes patients who are reasonably comparable, for all subgroups (S-ATO). To illustrate the
shift in target population we display the propensity score distributions by subgroups after weighting. Figure 5 illustrates
two features of Logistic-Main IPW: (1) IPW has not made the hysterectomy and myomectomy groups similar; (2) The
cohort is dominated by individuals at the extremes, with propensity values near 0 or 1. By contrast, the distributions in
Figure 6 (resulting from OW-pLASSO) are mostly overlapping for hysterectomy vs myomectomy and emphasize people
with propensity scores away from 0 and 1. While Logistic-Main IPW could be improved by iterative corrections, such as
range trimming, or adapting the propensity score model, these steps would be cumbersome in COMPARE-UF to imple-
ment manually across 35 subgroups. Instead, OW-pLASSO automatically finds a population at clinical equipoise, for
whom comparative data are most essential, across all subgroups. The resulting overlap cohort is displayed through a
weighted baseline characteristics table in Web Appendix 2.4.



4306 YANG et al.

F I G U R E 6 Propensity score distributions by treatment after weighting, by OW-pLASSO

7 DISCUSSION

As researchers look for real world evidence of comparative effectiveness in increasingly diverse and heterogeneous popu-
lations, it is crucial to advance appropriate methods for causal SGA with observational data. In this article, we developed
a suite of propensity score weighting methods and visualization tools for such a goal. We showed that it is essential
to balance covariates within a subgroup, which bounds the estimation bias of subgroup causal effects. We further pro-
posed a method that aims to balance the bias-variance trade-off in causal SGA. Our method combines Post-LASSO for
selecting the propensity score model and OW for achieving exact balance and efficiency within each subgroup. We con-
ducted extensive simulations to examine the operating characteristics of the proposed method. We found that pairing
Post-LASSO with OW performed superior to several other commonly used methods in terms of balance, precision and
stability. Our method provides one set of weights that can be used for both population average and subgroup-specific
treatment effect estimation. The coupling of substantive knowledge about prespecified subgroups, to generate candi-
date interactions, as well as machine learning for variable selection, may not only improve SGA but also the validity
of the propensity score model for population average comparisons. As we move beyond SGA, using the knowledge of
prespecified subgroups to build the propensity score model may reduce bias in a range of propensity-score-based HTE
methods.

We emphasized SGA with prespecified subgroups in observational studies, while alternative methods and settings
for HTE are rapidly developing. For example, Luedtke and van der Laan57 showed that studying the additive treatment
effect in SGA is similar to solving an optimization question when estimating the mean outcome. Recent research further
recommends to select optimal subgroups based on the outcome mean difference between the effects and move away from
one-covariate-at-a-time type of SGA.58 Similar to their idea, our method simultaneous uses all important covariates to
make decisions.

The proposed methods maintain the causal inference principle of separating study design from analysis of out-
comes. These methods allow an analyst to thoroughly investigate the model adequacy and balance without risk of being
influenced by observing various treatment effects. Recent developments in causal inference are moving to incorporate
information on the outcome in the propensity score estimation.59 When the candidate list of covariates is large, and inves-
tigators are not able to prioritize covariates, using the outcome data may be helpful. Future research could adapt the
proposed method to incorporate outcome information.
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We also designed a new diagnostic graph—the Connect-S plot—that allows visualizing subgroup balance for a large
number of subgroups and covariates simultaneously. We hope the Connect-S plot and the associated programming code
would facilitate more routine check of subgroup balance in CER.

The R and SAS code with implementation details used in this article are provide at: https://github.com/siyunyang/
OW_SGA.
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