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Abstract

Volatile organic compounds (VOCs) are produced by soil-borne microorganisms and

play crucial roles in fungal interactions with plants and phytopathogens. Although

VOCs have been characterized in Trichoderma spp., the mechanisms against phyto-

pathogens strongly differ according to the strain and pathosystem. This study aimed

at characterizing VOCs produced by three Trichoderma strains used as biofungicides

and to investigate their effects against grapevine downy mildew (caused by

Plasmopara viticola). A VOC-mediated reduction of downy mildew severity was found

in leaf disks treated with Trichoderma asperellum T34 (T34), T. harzianum T39 (T39),

and T. atroviride SC1 (SC1) and 31 compounds were detected by head space-solid

phase microextraction gas chromatography–mass spectrometry. Among the

Trichoderma VOCs annotated, α-farnesene, cadinene, 1,3-octadiene, 2-pentylfuran,

and 6-pentyl-2H-pyran-2-one reduced downy mildew severity on grapevine leaf

disks. In particular, 6-pentyl-2H-pyran-2-one and 2-pentylfuran increased the accu-

mulation of callose and enhanced the modulation of defense-related genes after

P. viticola inoculation, indicating an induction of grapevine defense mechanisms.

Moreover, 6-pentyl-2H-pyran-2-one activated the hypersensitive response after

P. viticola inoculation, possibly to reinforce the grapevine defense reaction. These

results indicate that Trichoderma VOCs can induce grapevine resistance, and these

molecules could be further applied to control grapevine downy mildew.

1 | INTRODUCTION

Volatile organic compounds (VOCs) are small molecules with low

molecular mass (100–500 Da), high vapor pressure, low boiling point,

and a lipophilic character that readily evaporate and diffuse through

heterogeneous mixtures of solids, liquids, and gasses, such as the gas-

and water-filled pores of the soil (Effmert et al., 2012; Schmidt

et al., 2015). VOCs are produced by a large variety of organisms and

play crucial roles in the communication among individuals of the same

species and life forms of different kingdoms (Werner et al., 2016). In

particular, soil-borne microorganisms are prolific producers of VOCs,

which play important roles in plant growth and defense against biotic

or abiotic stress (Garbeva & Weisskopf, 2020; Li et al., 2016). Some

VOCs produced by soil-borne fungi can protect plants by direct
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growth inhibition of phytopathogens (Strobel et al., 2001) or by induc-

tion of plant resistance (Li et al., 2016; Werner et al., 2016). Plant

resistance can be induced by diverse beneficial microbes, including

plant growth-promoting rhizobacteria and soil-borne fungi (e.g.,

Trichoderma spp.), and it is generally associated with an enhanced

defense reaction after pathogen inoculation, such as the deposition of

callose-rich papillae at the sites of pathogen infection (Segarra

et al., 2009). This phenomenon, also known as priming effect, consists

of a cost-effective defense mechanism against pathogens, and its

targeted activation was proposed as a promising tool for crop protec-

tion (Conrath et al., 2015; Martínez-Medina et al., 2016).

Trichoderma spp. are among the most widespread soil microorgan-

isms and have been widely used as biocontrol agents against numerous

phytopathogens (Harman et al., 2004). Biocontrol mechanisms of

Trichoderma spp. are based on induction of plant resistance, production

of antimicrobial substances, lytic enzymes, and competition with other

microorganisms for nutrients and/or space (Lorito et al., 2010). More-

over, Trichoderma spp. are known to produce VOCs (Crutcher

et al., 2013; Guo et al., 2020; Hung et al., 2013; Wheatley et al., 1997)

that play crucial roles in the inter-kingdom communications and in the

biocontrol mechanisms (Guo et al., 2019; Malmierca et al., 2015; Zhang

et al., 2014). For example, VOCs produced by T. asperellum T1 induced

lettuce resistance against leaf spot fungal pathogens (Corynespora

cassiicola and Curvularia aeria) and increased the activity of the cell-wall

degrading enzymes (Wonglom et al., 2020). Likewise, VOCs produced

by T. asperellum T34 and T. harzianum T78 primed Arabidopsis thaliana

and tomato plants for enhanced expression of jasmonic acid (JA)-

dependent defense reactions against Botrytis cinerea (Martínez-Medina

et al., 2017). In particular, 6-pentyl-2H-pyran-2-one was produced by

T. atroviride P1 and reduced the disease severity on tomato and canola

seedlings inoculated with B. cinerea and Leptosphaeria maculans, respec-

tively (Vinale et al., 2008). The same compound was found in

T. asperellum IsmT5 and induced resistance against B. cinerea and

Alternaria brassicicola in A. thaliana (Kottb et al., 2015). Moreover, VOCs

of T. virens strains (Tv29.8, Tv10.4, and Δppt1-1 mutant) included a

large number of terpenes (e.g., β-caryophyllene, β-elemene,

germacrene D, τ-cadinene, α-amorphene, δ-cadinene, and τ-selinene)

and they induced A. thaliana resistance against B. cinerea (Contreras-

Cornejo et al., 2014). Some Trichoderma VOCs also showed direct

inhibitory effects against phytopathogens (Scarselletti & Faull, 1994;

Wonglom et al., 2020; Zhang et al., 2014). For example, 6-pentyl-2H-

pyran-2-one (also known as 6-pentyl-α-pyrone produced by

T. harzianum IMI 288012, T. harzianum T23 and T. atroviride IMI

206040) inhibited the growth of Fusarium moniliforme (El-Hasan

et al., 2007) and Rhizoctonia solani (Cruz-Magalh~aes et al., 2019;

Scarselletti & Faull, 1994), suggesting broad-spectrum activities and

multiple modes of action of Trichoderma VOCs against phytopathogens.

Likewise, VOCs produced by T. harzianum T-E5 inhibited F. oxysporum

growth, including lignocerane, nerolidol, and verticillol as the most

abundant compounds (Zhang et al., 2014), suggesting that Trichoderma

VOCs have great potential for controlling phytopathogens.

Three Trichoderma strains are well documented for their ability to

control a broad spectrum of phytopathogens and are used as

biofungicides, such as T. asperellum T34 (T34), T. atroviride SC1 (SC1),

T. harzianum T39 (T39) (Cotxarrera et al., 2002; Elad et al., 1997; Per-

tot et al., 2008). In particular, T34 is known for the induction of sys-

temic resistance in cucumber against Pseudomonas syringae

pv. lachrymans (Segarra et al., 2007) and in A. thaliana against

Hyaloperonospora arabidopsidis (Segarra et al., 2009) and B. cinerea

(Martínez-Medina et al., 2017). SC1 antagonized a broad range of

grapevine (Vitis vinifera) root (e.g., Armillaria mellea) and shoot

(e.g., Phaeomoniella chlamydospora and Phaeoacremonium aleophilum)

pathogens (Longa et al., 2008; Pellegrini et al., 2014; Pertot

et al., 2016), while T39 induced systemic resistance against

Plasmopara viticola by the modulation of defense-related genes and

resistance processes (Banani et al., 2014; Perazzolli et al., 2011; Per-

azzolli et al., 2012). T39-induced resistance was characterized by an

enhanced accumulation of callose and reactive oxygen species (ROS)

after P. viticola infection (Palmieri et al., 2012), and ROS are consid-

ered as key signals for hypersensitive response (HR) activation

(Kortekamp & Zyprian, 2003). Plasmopara viticola is one of the most

important phytopathogenic oomycetes (Kamoun et al., 2015) and the

causal agent of grapevine downy mildew (Gessler et al., 2011).

Plasmopara viticola is normally controlled by frequent applications of

chemical fungicides (Buonassisi et al., 2017; Gessler et al., 2011), but

more sustainable control strategies are needed because of negative

impact of pesticides on human health and the environment, emerging

pesticide resistance and stricter rules on levels of pesticide residues in

agricultural products (Spring et al., 2018). Several studies have

highlighted the importance of Trichoderma spp. as an alternative to

chemical fungicides against grapevine pathogens (Zanotto &

Morroni, 2016), but no information is available on the possible bio-

control mechanism mediated by Trichoderma VOCs against downy

mildew. The aim of this study was to identify and annotate VOCs

produced by T34, T39, and SC1 using head space-solid phase micro-

extraction gas chromatography–mass spectrometry (HS-SPME/GC-

MS) analysis and to investigate their effects against P. viticola. The

final goal was to better understand the contribution of Trichoderma

VOCs to limit downy mildew infection and to provide more informa-

tion on the VOC-mediated effects of Trichoderma spp. against

phytopathogens.

2 | MATERIALS AND METHODS

2.1 | Biological material and growth conditions

Vitis vinifera cultivar Pinot Noir (downy mildew-susceptible) and

V. riparia (downy mildew-resistant) plants were grown in 2.5 L-pots

under greenhouse conditions at 25 ± 1�C with a photoperiod of 16 h

light and relative humidity (RH) of 70 ± 10% as previously described

(Perazzolli et al., 2012).

A P. viticola population was collected from an untreated vineyard

in the Trentino region (northern Italy) and maintained by subsequent

inoculations on Pinot Noir plants under greenhouse conditions, as

described by Perazzolli et al. (2012). To obtain the P. viticola inoculum,
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plants with disease symptoms were incubated overnight in the dark at

95 ± 5% RH, and P. viticola sporangia were collected by washing the

abaxial leaf surfaces, bearing sporulating lesions, with cold distilled

water. The inoculum concentration was then adjusted to 2.5 × 105

sporangia ml−1 with a hemocytometer under a light microscope

(LMD7000, Leica Microsystems).

The Trichoderma strains, T34 (Cotxarrera et al., 2002), T39 (Elad

et al., 1997), and SC1 (Pertot et al., 2008), were grown on potato dex-

trose agar (PDA; Oxoid) for seven days in the dark at 25 ± 1�C. Con-

idia were scraped gently from the colony surface of each strain with a

sterile loop and collected in a sterile 2 ml-tube containing 1 ml of cold

(4�C) sterile distilled water. The concentration of the conidial suspen-

sion was adjusted to 1 × 107 conidia ml−1 for the assessment of direct

effects against downy on grapevine plants and to 1 × 104 conidia

ml−1 for the headspace (HS) VOC analysis, assessment of VOC-

mediated effects and callose deposition assay, by counting with a

hemocytometer under the light microscope (LMD7000 microscope,

Leica Microsystems) (Banani et al., 2014).

2.2 | Assessment of direct effects of Trichoderma
strains against downy mildew on grapevine plants

Leaves of downy mildew-susceptible plants grown under green-

house conditions (25 ± 1�C with a photoperiod of 16 h light and

70 ± 10% RH) were sprayed with the conidial suspension of the

respective Trichoderma strain (1 × 107 conidia ml−1) or treated with

water (Control). The abaxial and adaxial surfaces of all leaves were

treated three times (1, 2, and 3 days before pathogen inoculation)

using a compressed air hand sprayer (20–30 ml for each plant) in

order to maximize the Trichoderma effects against P. viticola

(Perazzolli et al., 2008). One day after the last treatment, all leaves of

each plant were inoculated with the P. viticola suspension (2.5 × 105

sporangia ml−1) using a compressed-air hand sprayer as previously

described (Perazzolli et al., 2012), and plants were incubated over-

night in the dark at 25 ± 1�C with 95 ± 5% RH to allow P. viticola

infection (Perazzolli et al., 2012). Inoculated plants were maintained

under greenhouse conditions (25 ± 1�C with a photoperiod of 16 h

light and 70 ± 10% RH) to allow pathogen development (Perazzolli

et al., 2012). Six days post inoculation (6 dpi), plants were incubated

overnight in the dark at 25 ± 1�C with 95 ± 5% RH to promote

downy mildew sporulation (Perazzolli et al., 2012), and the disease

severity of each leaf was assessed visually as the percentage of

abaxial leaf area covered by P. viticola sporulation, according to the

standard guidelines of the European and Mediterranean Plant Pro-

tection Organization (EPPO, 2001). The disease severity of each rep-

licate (plant) was calculated as the average of the disease severity of

all leaves (Perazzolli et al., 2008). The disease reduction (efficacy)

was calculated for each replicate (plant) according to the following

formula: (disease severity of control plants—disease severity of

Trichoderma-treated plants)/disease severity of control plants × 100.

Five replicates (plants) were used for each treatment, and the experi-

ment was carried out twice.

2.3 | Head space analysis of volatile organic
compounds from Trichoderma spp.

For the HS VOC analysis, 5 ml PDA were poured into sterile 20 ml-HS

vials (Supelco, Merck), and they were left open in a slanted position

under a laminar flow for 2 h at room temperature to avoid condensa-

tion (Lazazzara et al., 2017). Each HS vial was inoculated with 20 μl

of the conidial suspension of the respective Trichoderma strain

(1 × 104 conidia ml−1) and left to dry under a laminar flow for 1 h at

room temperature (Trichoderma-inoculated). Each HS vial was closed

with a sterile cotton plug and the rubber strap for aerobic cultivation

of Trichoderma spp. without oxygen limitation (Stoppacher

et al., 2010), and it was incubated at 25 ± 1�C in the dark for 48 or

72 h, as described by Crutcher et al. (2013). The volume (20 μl) and

concentration (1 × 104 conidia ml−1) of the conidial suspension were

optimized in a preliminary trial in order to allow the complete coloni-

zation of the PDA surface of the HS vial by the Trichoderma mycelium

in 48 h at 25 ± 1�C (data not shown). The time point of 48 h was

selected since the VOC production of Trichoderma spp. was maximum

(Crutcher et al., 2013; Stoppacher et al., 2010). Two independent

experiments were carried out (named first and second experiment

hereafter), three and five biological replicates were analyzed for each

Trichoderma strain and time point in the first and second experiment,

respectively, due to space limitation in the auto-sampler of the first

experiment. For each experiment, three additional HS vials containing

non-inoculated PDA (Uninoculated) were used as controls in order to

exclude VOCs released from the culture medium in the absence of

Trichoderma spp. (Kluger et al., 2013).

VOCs produced by Trichoderma strains were measured using HS-

SPME/GC–MS analysis according to Crutcher et al. (2013). After 48 or

72 h cultivation, each HS vial was purged with synthetic air filtered

through a 0.2 μm-politetrafluoroetilene (PTFE) Midisat BV membrane fil-

ter (Sartorius) for 30 s, sealed with a sterilized 18 mm-screw metal cap

assembled with a 1.3 mm-silicone/PTFE septum (Supelco, Merck) and

incubated for 6 h at 25 ± 1�C to accumulate VOCs before analysis

(Crutcher et al., 2013, Stoppacher et al., 2010). Each HS vial was then

placed in an auto-sampler (MPS2XL, Gerstel) and equilibrated for 15 min

at 30�C. For VOC extraction, a polydimethylsiloxane/divinylbenzene

fiber (PDMS/DVB 65 μm; Supelco, Merck) was inserted into the HS vial

for 30 min at 30�C (Crutcher et al., 2013). The fiber was transferred to

the Agilent 6890 N gas chromatograph coupled to a quadrupole mass

spectrometer 5975B Mass Selective Detector (MSD; Agilent Technolo-

gies), and analytes were desorbed in splitless mode at 250�C for 2 min.

A non-polar HP-5MS column (30 m × 0.25 mm × 0.25 μm; Agilent

Technologies) was operated at a constant flow of helium (1 ml min−1).

The oven temperature consisted of 40�C (hold 2 min), 10�C min−1 to

200�C, 25�C min−1 to 260�C (hold 5 min) and the transfer line was set

at 270�C. Analytes were ionized at 70 eV in the ion source at 230�C

and detected in full scan (45–400 amu). Mixed alkane standard solutions

for retention index (RI) calibration was included in the sample list to

facilitate reliable compound annotation, and three SPME conditions

were applied to obtain good peak shapes: (1) 1 μl alkane standard solu-

tion from C5 to C10, with 0.01 min at 90�C for both equilibration and

1952 LAZAZZARA ET AL.
Physiologia Plantarum



extraction steps, (2) 10 μl alkane standard solution from C8 to C20, with

5 min equilibration and 45 min extraction both at 90�C and (3) 40 μl

alkane standard solution from C21 to C40, with 30 min equilibration and

60 min extraction both at 120�C (Kluger et al., 2013).

Raw data were acquired with an Agilent MSD ChemStation

(G1701EA E.02.00.493, Agilent Technologies), and the abundance of

each VOC was calculated as the integrated peak area, expressed as

counts per scan (cps), using the MetaboliteDetector software (version

3.020151231 Ra-Linux) (Hiller et al., 2009). The mass deconvolution

settings were as follows: peak threshold of 5, the minimum peak

height of 5, deconvolution width (scans) of 1 and the required number

of peaks set at 5. For compound annotation, deconvoluted mass spec-

tra were compared with the NIST14 database (National Institute of

Standards and Technology, http://www.nist.gov/) and with an in-

house library obtained with authentic reference standards (Crutcher

et al., 2013). Compound annotation was achieved imposing a relative

deviation of RI value lower than 2% from the reference value publi-

shed in the literature (http://www.nist.gov/) and according to the

highest mass spectrum similarity score, which was set higher than

70% after first successful annotation, in order to include low-

abundant substances or substances where the deconvolution process

did not lead to a complete elimination of interfering mass signals

(Weingart et al., 2012). Chromatograms of not annotated compounds

were searched for different types of terpenes using extracted ion cur-

rent (EIC) chromatograms at a mass/charge ratio (m/z) 136 for mono-

terpenes, m/z 202 and m/z 204 for sesquiterpenes, and m/z 272 for

diterpenes (Crutcher et al., 2013). The deconvoluted mass spectra

underneath these EIC peaks were inspected manually, and, in the case

of typical terpene mass spectrum, the corresponding mass spectra and

RI values were included in the data matrix and named as “unknown

sesquiterpene” or “unknown diterpene.” Deconvoluted mass spectra

different from that of terpenes were named “unknown compound”
according to their mass spectra and RI values. VOCs were included in

the data matrix only if their signal-to-noise ratio (S/N) was greater

than 10 (Bu et al., 2016) for at least one time point and Trichoderma

strain.

2.4 | Standard solutions and pure volatile organic
compounds

Alkane standard solutions from C8 to C20 (40 mg L−1 each in n-hex-

ane) and C21 to C40 (40 mg L−1 each in toluene) were purchased from

Sigma-Aldrich (Merck). A standard solution from C5 to C10 was pre-

pared using pure substances in a ratio resulting in narrow and sym-

metric peak shapes as described by Weingart et al. (2012). VOCs

were selected according to HS-SPME/GC–MS results and pure VOCs

were used in functional assays, such as 1,3-octadiene (98%) pur-

chased from ChemSampCo (Dallas, TX, USA); 2-pentylfuran (98%) and

6-pentyl-2H-pyran-2-one (96%) purchased from Sigma-Aldrich

(Merck); cadinene (85%, corresponding to a mixture of isomers, such

as ɣ-cadinene, ɣ-muurolene and δ-cadinene) purchased from BOC

Sciences (Shirley), and α-farnesene (corresponding to a mixture

isomers, such as (Z,E)-α-farnesene, (E,Z)-α-farnesene, (E,E)-

α-farnesene and (Z,Z)-α-farnesene) purchased from SAFC Supply

Solutions.

2.5 | Assessment of volatile-mediated effects of
Trichoderma strains and pure compounds against
grapevine downy mildew

Leaf disks (18 mm diameter) were obtained from the greenhouse-

grown grapevine plants (from the fourth to the sixth node of downy

mildew-susceptible plants) with a cork borer, and they were placed

onto two layers of wet sterilized filter paper in Petri dishes (90 mm

diameter; five disks for each dish), with the abaxial surface uppermost

as previously described (Lazazzara et al., 2018).

To analyze VOC-mediated effects of Trichoderma spp. on

P. viticola, 15 ml PDA was poured into Petri dishes (90 mm diameter),

inoculated with 20 μl of the conidial suspension of the respective

Trichoderma strain (1 × 104 conidia ml−1) and left to dry under a lami-

nar flow for 1 h at room temperature. As control, dishes containing

uninoculated PDA were used. The lid of each dish containing grape-

vine leaf disks was removed, and the dish was covered with the bot-

tom of a Trichoderma-inoculated or uninoculated dish (dish sandwich;

Figure S1A). The dish sandwich was sealed with Parafilm (Bemis) and

incubated at 25 ± 1�C in the dark for 48 h without physical contact

with leaf tissues. Each leaf disk was inoculated with five drops (5 μl

each) of a P. viticola suspension (2.5 × 105 sporangia ml−1; P. viticola-

inoculated), the dish sandwich was assembled with respective

Trichoderma-inoculated, or uninoculated, dish and sealed with Parafilm

(Bemis). Dish sandwiches were incubated in the dark at 25 ± 1�C

overnight, leaf disks were dried under a laminar hood, covered with a

dish lid and incubated for 6 days under greenhouse conditions.

In order to verify that leaf disks were not contaminated by

Trichoderma spp. conidia, control dish sandwiches were prepared.

Briefly, the lid of each dish containing 15 ml PDA was removed, and

the dish was covered with the bottom of a Trichoderma-inoculated

dish. The dish sandwich was sealed with Parafilm (Bemis) and incu-

bated at 25 ± 1�C for 72 h. Each Trichoderma-inoculated dish was rep-

laced with a dish lid and the absence of Trichoderma spp. growth on

PDA was verified 6 days after incubation at 25 ± 1�C under green-

house conditions.

Functional assays of pure VOCs against P. viticola were carried

out according to Lazazzara et al. (2018). Briefly, each pure VOC was

diluted 10-fold in dimethyl sulfoxide (DMSO; Sigma-Aldrich, Merck)

and serially diluted in distilled water to obtain the appropriate concen-

tration for each treatment. The respective pure VOC was applied to a

filter paper disk (Whatman, Merck) fixed on the lid (without physical

contact with the leaf tissues) of a dish containing grapevine leaf disks

(Figure S1B). Each VOC was applied at a concentration of 2.5, 5, 10,

15, 20, or 50 mg L−1 in air volume (VOC-treated leaf disks), assuming

the complete VOC evaporation from the filter paper, and DMSO was

applied as control (0 mg L−1 in air volume of VOCs; Control leaf disks).

Moreover, two blends of the two most efficient VOCs (2-pentylfuran
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and 6-pentyl-2H-pyran-2-one) were tested at a concentration of 5 or

10 mg L−1 in air volume for each compound. Dishes were sealed with

Parafilm (Bemis) and incubated in the dark at 25 ± 1�C under green-

house conditions for 24 h. Each leaf disk was inoculated with five

drops (5 μl each) of a P. viticola suspension (2.5 × 105 sporangia ml−1;

P. viticola-inoculated) or with five drops (5 μl each) of distilled water

(mock-inoculated), the respective pure VOC, or VOC blend, was

applied again to the filter paper disk in the appropriate concentration.

Dishes were sealed with Parafilm (Bemis) and incubated in the dark at

25 ± 1�C overnight. Leaf disks were dried under a laminar hood and

dishes were incubated for 6 days under greenhouse conditions.

The downy mildew disease severity was assessed on each leaf

disk at 6 dpi as a percentage of the leaf disk surface covered by sporu-

lation (EPPO, 2001), calculated as the sum of the five inoculum drops:

0%, no sporulation; 10%, scarce sporulation; 20%, dense sporulation

(Lazazzara et al., 2018). The presence of phytotoxic effect was

assessed visually by checking for discolouration, chlorosis, and whit-

ening of leaf disks (EPPO, 2014). The disease severity of each repli-

cate (dishes with five disks each) was calculated as an average of the

disease severity of five leaf disks (Lazazzara et al., 2018), five repli-

cates were analyzed for each treatment and the experiment

(i.e., VOC-mediated Trichoderma effects and functional assay of pure

VOCs) was carried out twice.

2.6 | Visualization of callose deposition and
Plasmopara viticola structures by aniline blue staining

VOC-treated and control leaf disks were collected before inoculation

(0 dpi) and at 1, 2, and 6 dpi with P. viticola. Samples were stained

with aniline blue as reported by Lazazzara et al. (2018) to visualize

P. viticola structures and callose deposition (Palmieri et al., 2012).

Briefly, leaf disks were incubated in 1 M KOH at 95�C for 15 min and

stained with 0.05% aniline blue (Sigma-Aldrich, Merck) in 0.067 M

K2HPO4 at pH 8 for 15 min. Leaf disks were observed under a

LMD7000 microscope (Leica Microsystem) using an A4 filter

(BP 360–400 nm excitation, 400 nm dichroic mirror, and 470–400 nm

emission). As control of callose deposition (Palmieri et al., 2012), leaf

disks were sprayed with T39 conidia (1 × 104 conidia ml−1) and inocu-

lated with P. viticola (2.5 × 105 sporangia ml−1) as described above.

Five leaf disks were analyzed for each treatment and time point and

the experiment was carried out twice.

2.7 | Visualization of grapevine hypersensitive
response by lactophenol-trypan blue staining

VOC-treated and control leaf disks were collected before inoculation

(0 dpi) and at 1 and 6 dpi with P. viticola. Samples were stained with

lactophenol-trypan blue as reported by Roetschi et al. (2001) to visu-

alize P. viticola structures and dead plant cells of HR (Keogh

et al., 1980). VOC-treated and control leaf disks were mock-

inoculated with water as an additional control, in order to verify the

absence of cell death. For the staining, leaf disks were incubated in

lactophenol-trypan blue at 100�C for 2 min and washed with

2.5 g ml−1 chloral hydrate for 24 h. Leaf disks were transferred to

microscope slides and observed using a light microscope (LMD7000

microscope, Leica Microsystem). As control of the HR activation (Brilli

et al., 2018), leaf disk of the downy mildew-resistant grapevine

(V. riparia) were inoculated with P. viticola (2.5 × 105 sporangia ml−1)

as described above. Five leaf disks were analyzed for each treatment

and time point and the experiment was carried out twice.

2.8 | RNA extraction and gene expression analysis

Plasmopara viticola-inoculated and mock-inoculated leaf disks (25 mm

diameter) were collected at 6 dpi from VOC-treated and control sam-

ples. This time point was chosen to maximize the grapevine defense

reaction (Malacarne et al., 2011; Vrhovsek et al., 2012), according to

the lactophenol-trypan blue staining results. Leaf disks were reduced

to 18 mm in diameter using a cork borer, in order to eliminate the out-

lying area where defense responses to injury can occur (Adrian

et al., 2017). Samples were immediately frozen in liquid nitrogen,

stored at −80�C and crushed using a mixer mill disruptor (MM200,

Retsch) at 25 Hz for 45 s with sterile steel jars and beads refrigerated

in liquid-N2. Total RNA was extracted from 100 mg of ground sample

using the Spectrum Plant total RNA kit (Sigma-Aldrich, Merck) with an

on-column DNase treatment with the RNase-Free DNase Set

(Qiagen). RNA was quantified by Qubit RNA Broad Range Assay Kit

(Thermo Fisher Scientific) and the first strand cDNA was synthesized

from 0.5 μg of total RNA using Superscript III (Invitrogen, Thermo

Fisher Scientific) and oligo-dT primer. Genes encoding pathogenesis-

related protein 2 (PR2), osmotin 1 (OSM1), osmotin 2 (OSM2), and chi-

tinase 3 (CHIT3) were used as markers of grapevine induced resistance

(Banani et al., 2014; Perazzolli et al., 2011, 2012) and the HR-related

gene (HSR) was selected as a marker of grapevine cell death (Lakkis

et al., 2019) (Table S1). Quantitative real-time PCR (qPCR) reactions

were carried out with Platinum SYBR Green qPCR SuperMix-UDG

(Invitrogen, Thermo Fisher Scientific) and specific primers (Table S1)

using the Light Cycler 480 (Roche Diagnostics) as previously

described (Perazzolli et al., 2012). Briefly, the PCR conditions were:

50�C for 2 min and 95�C for 2 min as initial steps, followed by

50 cycles at 95�C for 15 s and at 60�C for 1 min. Each sample was

examined in three technical replicates and dissociation curves were

analyzed to verify the specificity of each amplification reaction. The

Light Cycler 480 SV 1.5.0 software (Roche) was used to extract Ct-

values based on the second derivative calculation and the LinReg soft-

ware version 11.1 was used to calculate reaction efficiencies for each

primer pair (Ruijter et al., 2009). The relative expression level (fold-

change) of each gene was calculated according to the Pfaffl equation

(Pfaffl, 2001), using mock-inoculated control leaf disks as the calibra-

tor. The grapevine actin and VATP16 were used as housekeeping

genes for data normalization, because their expression was not

affected by P. viticola inoculation (Perazzolli et al., 2012; Polesani

et al., 2010). Three replicates (dishes with five leaf disks each) were
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analyzed for each treatment and the gene expression profiles were

confirmed in an independent experimental repetition.

2.9 | Statistical analysis

VOC data were processed using an in-house R-script (R version 3.1.0).

Each experimental repetition was analyzed separately, the Kruskal-

Wallis test (P ≤ 0.05) and a fold-change in VOC abundance higher

than 1.5 were set as criteria to identify VOCs with significant changes

in abundance among the three Trichoderma strains for each time point.

For each experiment, only VOCs which showed higher mean abun-

dance in Trichoderma-inoculated compared to uninoculated HS vials

for at least one strain and time point were considered, according to

the Kruskal-Wallis test (P ≤ 0.05) with a fold-change higher than 1.5.

Each experiment was carried out twice and disease severity data

were analyzed using the Statistica 13.3 software (TIBCO Software

Inc.). Each experimental repetition was analyzed separately and a

Kruskal-Wallis test was used to demonstrate equivalent results in the

two experiments (P > 0.05, non-significant differences between

experimental repetitions). Data from the two experimental repetitions

were pooled and a Kruskal-Wallis test was used to detect significant

differences among treatments (P ≤ 0.05). Fold change values of the

gene expression analysis were transformed using the equation

y = Log10 (fold change +1) (Casagrande et al., 2011) and the analysis

of variance (ANOVA) with the Fisher's test (P ≤ 0.05) was carried out to

detect significant differences among treatments after validation of

normal distribution (Kolmogorov–Smirnov test, P > 0.05) and variance

homogeneity (Levene's test, P > 0.05) of the data.

3 | RESULTS

3.1 | Effect and annotation of Trichoderma spp.
volatile organic compounds

Treatments with T34, SC1 or T39 conidia reduced downy mildew

severity on susceptible grapevine plants compared to control plants

(Figure 1A) with an efficacy of 72.1 ± 5.8%, 65.9 ± 9.2%, and

71.1 ± 4.4%, respectively (mean ± standard error values). Moreover, a

VOC-mediated reduction of downy mildew severity was found on leaf

disks treated with T34, SC1, or T39 colonies in a dish sandwich without

contact with the leaf tissues (Figure S1A), with an efficacy of

43.1 ± 4.9%, 46.2 ± 7.2%, and 31.6 ± 4.2%, respectively (Figure 1B). No

Trichoderma colonies developed on control dish sandwich assembled

with a dish containing sterilized PDA covered with the bottom of a

Trichoderma-inoculated dish (data not shown), confirming that no con-

idia dropped down and that only VOCs produced by Trichoderma spp.

were involved in the reduction of downy mildew severity on leaf disks.

In order to characterize VOCs produced by the three Trichoderma

strains, the HS-SPME/GC–MS analysis was carried out at 48 or 72 h after

incubation on PDA and a total of 26 and 21 VOCs were found in the first

and second experiment, respectively (Figure 2; Figure S1B; Tables S2 and

S3). Annotated Trichoderma VOCs include alkenes (e.g., 1,3-octadiene),

furanes (e.g., 2-pentylfuran and 2-n-heptylfuran), ketones (e.g., 3-octanone

and 2-undecanone), pyrones (lactones, e.g., 6-pentyl-2H-pyran-2-one), and

terpenes, such as monoterpenes (α-phellandrene, α-terpinene, limonene,

γ-terpinene, and β-phellandrene) and sesquiterpenes ([Z,E]-α-farnesene,

γ-cadinene, γ-muurolene, α-curcumene, α-zingiberene, trans-

β-farnesene, germacrene A, β-sesquiphellandrene, β-himachalene,

β-bisabolene, and δ-cadinene). Moreover, nine VOCs were

F IGURE 1 Effects of Trichoderma strains against downy mildew.
Direct effects of Trichoderma strains (A) were assessed on
greenhouse-grown grapevine plants, sprayed with water (control) and
with a conidial suspension of T. asperellum T34 (T34), T. atroviride SC1
(SC1) or T. harzianum T39 (T39). Volatile-mediated effects of
Trichoderma strains (B) were assessed on grapevine leaf disks, treated
with uninoculated potato dextrose agar (PDA) dishes (control) and
dishes with PDA-grown T34, SC1 or T39 colonies without contact

with leaf tissues. Downy mildew severity was assessed at 6 days post
inoculation. Five replicates were assessed for each treatment and
each experiment was carried out twice. The Kruskal-Wallis test
indicated no significant differences between the two experimental
repetitions (P > 0.05) and data from the two experiments were
pooled. The pooled mean and standard error values of 10 replicates
from the two experiments are presented for each treatment. Different
letters indicate significant differences among treatments according to
the Kruskal-Wallis test (P ≤ 0.05)
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annotated as three unknown sesquiterpenes (e.g., unknown ses-

quiterpene 1, 2, and 3), three unknown diterpenes (e.g., unknown

diterpene 1, 2, and 3), and three unknown compounds (unknown

compounds 1, 2, and 3), according to the mass spectrum and

measured RI (Table S4). VOC emission profiles were mainly consis-

tent in the two experiments and they differed according to the

Trichoderma strain and time point (Figures 2 and S2). In particular,

T39 produced a higher amount of VOCs compared to T34 and

F IGURE 2 Volatile organic compounds (VOCs) produced by Trichoderma strains. VOCs analysis was carried out using head space-solid phase
microextraction gas chromatography–mass spectrometry (HS-SPME/GC-MS) for T. asperellum T34 (T34), T. atroviride SC1 (SC1) and T. harzianum
T39 (T39) grown for 48 h or 72 h on potato dextrose agar (PDA) in two independent experiments (Exp. 1 and Exp. 2). Different letters and color
gradients indicate significant differences in VOC abundance among the Trichoderma strains for each experiment and time point, according to the
Kruskal-Wallis test (P ≤ 0.05) with a fold change higher than 1.5 (Tables S2 and S3). The letter ‘a’ was assigned to low VOC abundance (light
green cell) or VOC abundance below the limit of detection (white cell). Five metabolite groups were identified according to changes in abundance
among the three Trichoderma strains: Consistent changes in the two experiments at both time points (group 1) or at one time point (group 2);
different changes in the two experiments (group 3); detection in the first (group 4) or in the second (group 5) experiment
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SC1, with 24 and 21 VOCs found in the first and second experi-

ment, respectively. On the other hand, 15 and 9 compounds were

found in the case of T34, while 9 and 7 compounds were found in

the case of SC1 in the first and second experiment, respectively.

Moreover, T39 produced a higher amount of terpenes ([Z,E]-

α-farnesene, γ-cadinene, γ-muurolene, α-curcumene,

α-phellandrene, α-zingiberene, unknown diterpene 1, 2, and 3, and

unknown sesquiterpene 1 and 2) compared to T34 ([Z,E]-

α-farnesene, γ-muurolene, α-curcumene, α-zingiberene, and

unknown sesquiterpene 2) and SC1 (α-zingiberene and unknown

diterpene 3).

VOCs were divided into five metabolite groups according to

changes in abundance among the three Trichoderma strains (Figure 2;

Tables S2 and S3). The first metabolite group included three terpenes

([Z,E]-α-farnesene, γ-cadinene, and unknown diterpene 1),

1,3-octadiene, and 2-pentylfuran, whose changes in abundance were

consistent in both experiments and time points (Group 1). More specifi-

cally, the abundance of (Z,E)-α-farnesene was higher in T34 and T39

compared to SC1 at 48 h and in T39 compared to T34 and SC1 at 72 h

in both experiments. The abundance of γ-cadinene was higher in T39

compared to T34 and SC1 at both time points in both experiments.

Moreover, 1,3-octadiene was more abundant in T34 and T39 compared

to SC1 at 72 h, 2-pentylfuran and the unknown diterpene 1 were more

abundant in T39 compared to T34 and SC1 at 72 h and these three

VOCs were not found at 48 h in both experiments. The second metabo-

lite group comprised nine VOCs, whose changes in abundance among

the three Trichoderma strains were consistent in the two experiments at

one time point (Group 2). At 48 h, γ-muurolene was more abundant in

T34 and T39 compared to SC1 and the unknown sesquiterpene 2 was

more abundant in T39 compared to T34 and SC1 in both experiments.

At 72 h, the abundance of 6-pentyl-2H-pyran-2-one was higher in SC1

and T39 compared to T34, while that of α-curcumene, α- phellandrene,

α-zingiberene, unknown compound 1, unknown diterpene 2, and

uknown sesquiterpene 1 was higher in T39 compared to T34 and SC1

in both experiments. The abundance of two VOCs (trans-β-farnesene

and unknown diterpene 3) differed in the two experiments (Group 3).

Moreover, 10 VOCs (2-n-heptylfuran, 2-undecanone, 3-octanone,

α-terpinene, β-sesquiphellandrene, γ-terpinene, limonene,

germacrene A, unknown compounds 2 and 3) and five VOCs

(β-bisabolene, β-himachalene, β-phellandrene, δ-cadinene and unknown

sesquiterpene 3) were detected only in the first (Group 4) or second

(Group 5) experiment, respectively.

3.2 | Efficacy of pure volatile organic compounds
against downy mildew on grapevine leaf disks

Five VOCs were selected according to their consistent changes in abun-

dance among the three Trichoderma strains in the two experiments and

they were tested as a pure compound against P. viticola at different

concentrations in air volume (Figure S1B). More specifically, (Z,E)-

α-farnesene (α-farnesene mixture of isomers), 1,3-octadiene, and

2-pentylfuran were selected, since their changes in abundance were

consistent in both experiments and time points (Group 1). Moreover,

ɣ-cadinene and ɣ-muurolene were tested as a mixture of isomers

(namely cadinene) and 6-pentyl-2H-pyran-2-one was used as pure com-

pound, since their changes in abundance were consistent in the two

experiments at one time point. The pure VOCs were tested against

P. viticola and 2-pentylfuran reduced disease severity at dosages of

5, 10, and 15 mg L−1 in air volume with no visible phytotoxic effects

(Figure 3A). Likewise, 6-pentyl-2H-pyran-2-one reduced downy mildew

severity at dosages of 5 and 10 mg L−1 in air volume with no visible

phytotoxic effects (Figure 3B). However, leaf disks treated with

20 mg L−1 in air volume of 2-pentylfuran or with 15 and 20 mg L−1 in

air volume of 6-pentyl-2H-pyran-2-one showed phytotoxic effects.

Leaf disks treated with 1,3-octadiene, α-farnesene, and cadinene

at a concentration of 50 mg L−1 in air volume showed a reduction of

downy mildew severity with an efficacy of 21.5 ± 4.6% (Figure 4A),

21.6 ± 4.4% (Figure 4B) and 18.4 ± 5.9% (Figure 4C), respectively. At

a concentration of 20 mg L−1 in air volume, α-farnesene reduced

downy mildew severity, but 1,3-octadiene and cadinene did not and

these three VOCs were not further used in activity tests due to the

low efficacy with high application dosages.

Neither synergistic nor additive effects against downy mildew

severity were observed with a blend of the two most efficient VOCs

(2-pentylfuran and 6-pentyl-2H-pyran-2-one) at a concentration of

5 and 10 mg L−1 in air volume (Kruskal-Wallis test, P > 0.05). In partic-

ular, the reduction of downy mildew severity on leaf disks treated

with the blend of the two most efficient VOCs (77.2 ± 2.1%; at

10 mg L−1 in air volume for each compound) was comparable

(Kruskal-Wallis test P > 0.05) to that on leaf disks treated with

10 mg L−1 in air volume of pure 2-penthylfuran (36.2 ± 3.8%) or

6-pentyl-2H-pyran-2-one (82.1 ± 3.3%), therefore this blend was not

further used in activity tests.

3.3 | Effects of pure volatile organic compounds
on callose deposition and hypersensitive response in
grapevine leaf disks

Effects of the two most efficient VOCs were further characterized,

using the lowest concentration at which the highest efficacy without

visible phytotoxicity was observed (i.e., optimized concentration,

namely 10 mg L−1 in air volume for 2-pentylfuran and 6-pentyl-2H-

pyran-2-one). Aniline blue staining revealed no differences between

VOC-treated and control leaf disks before P. viticola inoculation

(0 dpi, Figure 5A–C), as well as in leaf disks sprayed with T39 conidia

(T39 conidia-treated; Figure 5D). At 1 dpi, the pathogen had already

penetrated the stomata of control leaf disks and substomatal vesicles

were visible (Figure 5E). On the other hand, strong turquoise fluores-

cence was observed in the stomata of leaf disks treated with

2-pentylfuran or 6-pentyl-2H-pyran-2-one at 1 dpi (Figure 5F,G), indi-

cating intense callose deposition at infection sites, as found in T39

conidia-treated leaf disks (Figure 5H). Thus, the number of zoospores

that had successfully entered the stomata at 1 dpi was reduced in leaf

disks treated with 2-pentylfuran or 6-pentyl-2H-pyran-2-one.
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Elongated and branched hyphae were visible in control leaf disks at

2 dpi (Figure 5I), while hyphae were occasionally visible in leaf disks

treated with 2-pentylfuran (Figure 5J) or 6-pentyl-2H-pyran-2-one

(Figure 5K). Callose deposition was visible in leaf disks treated with

2-pentylfuran (Figure 5J), 6-pentyl-2H-pyran-2-one (Figure 5K), and

T39 conidia at 2 dpi (Figure 5L). At 6 dpi, P. viticola mycelium had

already spread to the parenchyma and produced sporangiophores in

control leaf disks (Figure 5M,Q), while P. viticola sporulated areas were

reduced in leaf disks treated with 2-pentylfuran (Figure 5N,R),

6-pentyl-2H-pyran-2-one (Figure 5O,S), and T39 conidia (Figure 5P,T).

F IGURE 3 Effects of the most efficient pure volatile organic
compounds (VOCs) against downy mildew. Grapevine leaf disks were
treated with water (control), 2-pentylfuran (A) or 6-pentyl-2H-pyran-
2-one (B) at 2.5, 5, 10, 15 and 20 mg L−1 in air volume and downy
mildew severity was assessed at 6 days post inoculation. Five
replicates (dishes with five disks each) were assessed for each
treatment and the experiment was carried out twice. For each assay,
the Kruskal-Wallis test indicated no significant differences between
the two experimental repetitions (p > 0.05) and data from the two
experiments were pooled. The pooled mean and standard error values
of 10 replicates from the two experiments are presented for each
treatment. Different letters indicate significant differences among
treatments according to the Kruskal-Wallis test (P ≤ 0.05). Asterisks
indicate phytotoxic effects on leaf disks

F IGURE 4 Effects of the less efficient pure volatile organic
compounds (VOCs) against downy mildew. Grapevine leaf disks were
treated with water (control), 1,3-octadiene (A), α-farnesene (B) or cadinene
(C) at 5, 20 and 50 mg L−1 in air volume and downy mildew severity was
assessed at 6 days post-inoculation. Five replicates (dishes with five disks
each) were assessed for each treatment and the experiment was carried
out twice. For each assay, the Kruskal-Wallis test indicated no significant
differences between the two experimental repetitions (P > 0.05) and data
from the two experiments were pooled. The pooled mean and standard
error values of 10 replicates from the two experiments are presented for
each treatment. Different letters indicate significant differences among
treatments according to the Kruskal-Wallis test (P ≤ 0.05)
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Lactophenol-trypan blue staining revealed no pathogen structures

nor dead plant cells in control, VOC-treated and V. riparia leaf disks at

0 dpi (Figure 6A–D) and 1 dpi (Figure 6E–H). At 6 dpi, blue areas

corresponding to P. viticola mycelia confirmed the reduction of patho-

gen growth in 2-pentylfuran-treated (Figure 6J,N) compared to con-

trol (Figure 6I,M) leaf disks. Moreover, dark blue-stained dead cells

with no mycelial structures were found at P. viticola infection sites in

6-pentyl-2H-pyran-2-one-treated leaf disks at 6 dpi (Figure 6K,O),

indicating HR activation, as found in downy mildew-resistant

(V. riparia) leaf disks at 6 dpi (Figure 6L,P). Conversely, no HR response

was found in mock-inoculated leaf disks treated with 6-pentyl-2H-

pyran-2-one or 2-pentylfuran at 1 and 6 dpi (Figure S3).

F IGURE 5 Effects of pure volatile organic compounds (VOCs) on callose deposition and downy mildew development. Grapevine leaf disks
were treated with water (control) or with 10 mg L−1 in air volume of 2-pentylfuran or 6-pentyl-2H-pyran-2-one. Callose deposition and
Plasmopara viticola development were monitored before inoculation (0 dpi, A–D), at one (E–H), two (I–L) and six (M–T) days post inoculation (dpi)
using aniline blue staining. As control of callose deposition, leaf disks were sprayed with Trichoderma harzianum T39 conidia and inoculated with
P. viticola (Palmieri et al., 2012). The experiment was carried out twice and a representative leaf disk of 10 is shown for each treatment.
Abbreviations: Cal, callose; Sv, substomatal P. viticola vesicle; St, stomata guard cells
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3.4 | Effects of pure volatile organic compounds
on the modulation of defense-related genes in
grapevine leaf disks

Plasmopara viticola inoculation upregulated the expression of PR2,

OSM1, OSM2, CHIT3, and HSR at 6 dpi in control leaf disks

(Table 1). In mock-inoculated leaf disks, the expression levels

of the five defense-related genes were not affected by

2-pentylfuran, but they were induced by 6-pentyl-2H-pyran-

2-one. In P. viticola-inoculated leaf disks, the expression levels of

PR2, OSM2, and HSR were higher in 2-pentylfuran-treated

compared to control leaf disks, as a reinforced modulation of

defense-related genes after pathogen inoculation. Likewise, the

P. viticola-dependent upregulation of PR2, OSM1, OSM2, CHIT3,

and HSR was enhanced in 6-pentyl-2H-pyran-2-one-treated com-

pared to control leaf disks.

F IGURE 6 Effects of pure volatile organic compounds (VOCs) on grapevine hypersensitive response. Grapevine leaf disks were treated with

water (control) or with 10 mg L−1 in air volume of 2-pentylfuran or 6-pentyl-2H-pyran-2-one. Hypersensitive response and Plasmopara viticola
development were monitored before inoculation (0 dpi, A–D), at one (E–H) and six (I–P) days post inoculation (dpi) using lactophenol-trypan blue
staining. As positive control, leaf disks of the downy mildew-resistant grapevine (Vitis riparia) were inoculated with P. viticola (Brilli et al., 2018).
The experiment was carried out twice and a representative leaf disk of 10 is shown for each treatment. Infected areas with P. viticola
sporangiophores were visible in control (I and M) and 2-pentylfuran-treated (J and N) leaf disks at 6 dpi
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4 | DISCUSSION

Strains belonging to T. asperellum, T. atroviride, and T. harzianum are

known for their biocontrol activity against phytopathogens (Brunner

et al., 2005; Inglis & Kawchuk, 2002; Nagaraju et al., 2012; Perazzolli

et al., 2008; Segarra et al., 2009; Segarra et al., 2013) and grapevine

VOCs are known for their inhibitory activity against downy mildew

(Lazazzara et al., 2018), but no information is available on the VOC-

mediated effects of Trichoderma spp. against P. viticola. In this study,

T34, T39, and SC1 conidia reduced downy mildew severity on grape-

vine plants and VOCs produced by the T34, T39, and SC1 colonies

reduced downy mildew severity on grapevine leaf disks. Although

VOC emission profiles differed according to the Trichoderma strain

and time point, the VOC-mediated disease reduction was comparable

in T34-, T39-, and SC1-treated leaf disks, suggesting possible syner-

gistic interactions among VOCs (Strobel et al., 2001). In particular,

31 compounds were found in the HS-SPME/GC–MS analysis of the

three Trichoderma strains and they belong to the compound classes of

alkenes (e.g., 1,3-octadiene), furanes (e.g., 2-pentylfuran and 2-n-

heptylfuran), ketones (e.g., 3-octanone and 2-undecanone), pyrones

(lactones, e.g., 6-pentyl-2H-pyran-2-one), and terpenes, such as mono-

terpenes (e.g., α-phellandrene, α-terpinene, limonene, γ-terpinene and

β-phellandrene) and sesquiterpenes (e.g., [Z,E]-α-farnesene, γ-cadinene,

γ-muurolene, α-curcumene, α-zingiberene, trans-β-farnesene,

germacrene A, β-sesquiphellandrene, β-himachalene, β-bisabolene, and

δ-cadinene). In agreement with the previous literature (Contreras-

Cornejo et al., 2014; Crutcher et al., 2013; Guo et al., 2019; Nieto-

Jacobo et al., 2017; Sridharan et al., 2020; Stoppacher et al., 2010),

terpenes dominated the VOC emission profiles of the three

Trichoderma strains. In particular, T39 produced a higher amount of ter-

penes compared to T34 and SC1, such as (Z,E)-α-farnesene, γ-cadinene,

γ-muurolene, α-curcumene, α-phellandrene, α-zingiberene, unknown

diterpene 1, 2, and 3, and unknown sesquiterpene 1 and 2. Strain-

specific VOCs were found and the unknown diterpene 1, unknown

compound 1, and unknown sesquiterpene 1 were produced by T39

only, but further studies are required to fully elucidate the chemical

structure and potential roles of these compounds. Moreover, VOC

emission profiles of the three Trichoderma strains depended on the time

point of sampling, corroborating that VOC production changed

according to the incubation time and that it was possibly related to the

developmental stage of Trichoderma spp. (Crutcher et al., 2013; Guo

et al., 2020; Stoppacher et al., 2010). For example among VOCs with

consistent changes in abundance in both experiments and time points,

the abundance of (Z,E)-α-farnesene was higher in T34 and T39 com-

pared to SC1 at 48 h and in T39 compared to T34 and SC1 at 72 h,

while that of γ-cadinene was higher in T39 compared to T34 and

SC1 at both time points and that of 1,3-octadiene was higher in T34

and T39 compared to SC1 at 72 h.

Functional assays reported in this study demonstrated that five

VOCs (α-farnesene, cadinene, 1,3-octadiene, 2-pentylfuran, and

6-pentyl-2H-pyran-2-one) reduced downy mildew severity on leaf

disks when applied in air volume without physical contact with the

leaf tissues. In particular, two VOCs (6-pentyl-2H-pyran-2-one and

2-pentylfuran) strongly inhibited downy mildew severity with no syn-

ergistic or additive effects when used in a blend. Among them,

6-pentyl-2H-pyran-2-one was more abundant in T39 and SC1 com-

pared to T34 samples at 72 h and it was previously identified as a

characteristic VOC of numerous Trichoderma spp. (Fadel et al., 2015;

Leylaie & Zafari, 2018; Mutawila et al., 2016; Stoppacher et al., 2010).

Moreover, 2-pentylfuran was more abundant in T39 compared to T34

and SC1 samples at 72 h and it was previously found also in several

Trichoderma spp. (Crutcher et al., 2013; Estrada-Rivera et al., 2019;

González-Pérez et al., 2018; Lee et al., 2016; Nieto-Jacobo

et al., 2017; Stoppacher et al., 2010).

Different modes of action against phytopathogens have been

attributed to VOCs, such as induction of plant resistance and direct

inhibition of pathogen growth by absorption on cuticular waxes

(Camacho-Coronel et al., 2020; Quintana-Rodriguez et al., 2015).

TABLE 1 Gene expression analysis of defense-related genes in grapevine leaf disks treated with volatile organic compounds and inoculated
with Plasmopara viticola

Gene name Abbreviation
Treatmenta

Control 2-pentylfuran 6-pentyl-2H-pyran-2-one

Mock P. viticola Mock P. viticola Mock P. viticola

Pathogenesis-related protein 2 PR2 1.1 ± 0.4a 6.7 ± 0.9b 0.9 ± 0.0a 10.6 ± 1.0c 5.2 ± 0.4b 14.4 ± 0.8d

Osmotin 1 OSM1 1.0 ± 0.2a 49.3 ± 9.8b 7.7 ± 1.4a 93.1 ± 39.2c 73.5 ± 13.7b 199.0 ± 2.3d

Osmotin 2 OSM2 1.0 ± 0.2a 5.9 ± 0.9b 0.8 ± 0.1a 7.7 ± 2.4b 13.2 ± 1.0c 40.6 ± 3.1d

Chitinase 3 CHIT3 1.0 ± 0.1a 3.1 ± 0.4b 1.0 ± 0.2a 5.2 ± 0.6c 9.2 ± 1.4d 12.5 ± 0.6e

HR-related gene HSR 1.4 ± 0.7a 400.4 ± 134.7c 1.4 ± 0.3a 340.4 ± 96.4c 55.0 ± 7.7b 1185.5 ± 84.4d

aGrapevine leaf disks (Vitis vinifera) were treated with water (Control) or with 10 mg L−1 in air volume of 2-pentylfuran or 6-pentyl-2H-pyran-2-one, on a

filter paper disk without contact with leaf tissues. Disks were inoculated with Plasmopara viticola or water (Mock) and the respective pure VOC was

applied again to the filter paper disk. Leaf disks were collected 6 days post-inoculation and the relative expression levels (fold change) were calculated

respect to mock-inoculated control leaf disks using actin as constitutive gene for normalization (Perazzolli et al., 2012) and comparable results were

obtained with VATP16 gene. Mean and standard error values of three replicates (dishes with five leaf disks each) are presented for each treatment. For

each gene, different letters indicate significant differences according to Fisher's test (P ≤ 0.05). Expression profiles were validated by an independent

repetition of the experiment.
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T34 and T39 are well known inducers of systemic resistance in differ-

ent plant species (Martínez-Medina et al., 2017; Perazzolli

et al., 2008; Segarra et al., 2007; Segarra et al., 2009). In particular,

T39 has been demonstrated to induce grapevine resistance against

P. viticola by enhanced callose deposition and modulation of defense-

related genes (Banani et al., 2014; Palmieri et al., 2012; Perazzolli

et al., 2008, 2011; Perazzolli et al., 2012). In this study, the callose

deposition was found at infection sites of leaf disks treated with

2-pentylfuran or 6-pentyl-2H-pyran-2-one, indicating that these

Trichoderma VOCs induced grapevine resistance against P. viticola.

The deposition of callose at the sites of pathogen infection is a key

defense process against downy mildew (Gindro et al., 2003) that can

be enhanced in susceptible grapevine genotypes by chemical resis-

tance inducers, such as β-aminobutiric acid (Hamiduzzaman

et al., 2005), benzothiadiazole-7-carbothioic acid S-methyl ester

(Palmieri et al., 2012) and sulfated laminarin PS3 (Trouvelot

et al., 2008). Furthermore, we found that 6-pentyl-2H-pyran-2-one

activated the HR at P. viticola infection sites, indicating the VOC-

mediated reinforcement of characteristic grapevine defense processes

commonly activated in downy mildew-resistant genotypes (Brilli

et al., 2018; Gindro et al., 2003). In particular, both callose deposition

and HR response were found only after P. viticola inoculation in leaf

disks treated with 6-pentyl-2H-pyran-2-one, suggesting a priming

state activation for enhanced defense reaction upon pathogen infec-

tion. Likewise, the P. viticola-dependent upregulation of defense-

related genes was enhanced by 2-pentylfuran (PR2, OSM2, and HSR

genes) and 6-pentyl-2H-pyran-2-one (PR2, OSM1, OSM2, CHIT3, and

HSR genes) treatment, as previously found in T39 conidia-treated

grapevine plants (Banani et al., 2014; Perazzolli et al., 2011, 2012).

Previous studies showed that VOCs produced by T34 and

T. harzianum T78 enhanced the JA-dependent defenses of A. thaliana

and tomato against B. cinerea (Martínez-Medina et al., 2017). The abil-

ity of Trichoderma VOCs to induce plant resistance is known to be

related to the upregulation of defense-related genes, such as PR-1 in

6-pentyl-2H-pyran-2-one-treated Brassica napus (Vinale et al., 2008),

the activation of defense-related enzyme, such as chitinase and

β-1,3-glucanase of lettuce treated with T. asperellum T1 VOCs

(Wonglom et al., 2020), and the accumulation of defense molecules,

such as JA and ROS in A. thaliana treated with T. virens Tv29.8 VOCs

(Contreras-Cornejo et al., 2014). In this study, 6-pentyl-2H-pyran-

2-one induced the expression of grapevine defense genes in mock-

inoculated leaf disks (PR2, OSM1, OSM2, CHIT3 and HSR genes),

suggesting the partial activation of some defense processes also in

the absence of the pathogen. This Trichoderma VOC is known to

induce resistance against B. cinerea and Alternaria brassicicola in

A. thaliana (Kottb et al., 2015), against Erysiphe necator in V. vinifera

(Pascale et al., 2017), against B. cinerea in tomato seedlings and

against L. maculans in canola seedlings (Vinale et al., 2008), suggesting

a broad spectrum activity against phytopathogens.

Since chemical profiles and functional properties of microbial

VOCs differed according to the growth media (González-Pérez

et al., 2018; Lazazzara et al., 2017), further studies under natural con-

ditions are required, in order to better evaluate the possible migration

of VOCs produced by Trichoderma spp. to grapevine tissues and the

reduction of downy mildew severity by plant resistance induction.

Effects against P. viticola can be tested only in the presence of host

tissues, due to the obligate biotrophic lifestyle of this pathogen. Thus,

possible direct inhibitory effects of Trichoderma VOCs against

P. viticola can also occur on leaf tissues. It was previously reported

that some VOCs can be absorbed by the leaf cuticle and can persist

on the leaf surface (Himanen et al., 2010), exerting direct inhibitory

effects against fungal pathogens (Camacho-Coronel et al., 2020,

Quintana-Rodriguez et al., 2015). For example, farnesene can be

absorbed by plant cuticular wax layers and persist on plant leaves

and to inhibit Colletotrichum lindemuthianum (Camacho-Coronel

et al., 2020, Quintana-Rodriguez et al., 2015). Moreover, 6-pentyl-

2H-pyran-2-one is a well-known compound with antifungal activity

against F. moniliforme (El-Hasan et al., 2007), R. solani (Cruz-Magalh~aes

et al., 2019; Scarselletti & Faull, 1994) and Sclerotinia sclerotiorum

(Cruz-Magalh~aes et al., 2019) and it could potentially inhibit P. viticola,

as well. The antifungal activity of 6-pentyl-2H-pyran-2-one has been

proposed to be associated to its hydrophobic nature and the possible

mechanical impediment to water absorption by the fungal cells due to

the formation of a hydrorepellent film on the cell wall (Scarselletti &

Faull, 1994). The same mechanism can be hypothesized against

P. viticola and it might partially explain the phytotoxic effects

observed at high dosages on tomato or oilseed rape seedlings (Vinale

et al., 2008) and on grapevine leaf disks, indicating the importance

of dose optimization and mode of action investigation for this

compound. Likewise, the antifungal effects of 2-pentylfuran were

previously reported against Monilinia fructicola (Liu et al., 2018),

S. sclerotiorum, and F. oxysporum (Wu et al., 2015), but further studies

are required to clarify the mode of action of this compound and the

less efficient VOCs (i.e., 1,3-octadiene, α-farnesene, and cadinene)

against downy mildew.

5 | CONCLUSIONS

VOCs emission profiles differed in the three Trichoderma strains

tested and T39 produced higher amounts of terpenes compared to

T34 and SC1, indicating genetic determinants of VOC production at

strain level. Five Trichoderma VOCs (α-farnesene, cadinene,

1,3-octadiene, 2-pentylfuran, and 6-pentyl-2H-pyran-2-one) reduced

downy mildew severity on grapevine leaf disks. In particular, 6-pentyl-

2H-pyran-2-one and 2-pentylfuran enhanced the accumulation of cal-

lose and reinforced the upregulation of defense-related genes after

P. viticola inoculation, indicating the induction of grapevine resistance.

Moreover, 6-pentyl-2H-pyran-2-one upregulated the expression of

defense-related genes in mock-inoculated leaf disks and activated HR

after P. viticola inoculation, as possible reinforcement of the grapevine

defense mechanisms against this pathogen. Thus, airborne signals pro-

duced by beneficial soil-borne Trichoderma spp. can be perceived by

plant tissues as possible mediators of fungus-plant communications

and as inducers of plant resistance. Although further transcriptomic

and functional studies are required to shed light on the mode of

1962 LAZAZZARA ET AL.
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action of Trichoderma VOCs in the induction of grapevine defense

mechanisms against downy mildew, Trichoderma VOCs could open

new opportunities to develop biofungicides from natural origin.
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