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1. Introduction

We would like to thank the editor for making this a discussion paper. We are honoured that these
three groups of researchers agreed to be discussants. Reading their discussions has been an enjoyable and
thought-provoking journey for us. We organize our rejoinder by topic, as some topics have been discussed
by multiple discussants.

2. Dependence of the causal excursion effect on treatment protocol

In general, the causal excursion effect in (2) of the main manuscript depends on the randomization
probability of past treatment assignments (Āt−1), which we refer to as the treatment protocol. This feature
distinguishes the excursion effect from most other causal effects in time-varying treatment settings, such
as causal effects in marginal structural models or structural nested mean models.

©c 2021 Biometrika Trust



552 T. Qian et al.

Guo et al. (2021) and Zhang & Laber (2021) provided numerical examples to illustrate this feature of the
excursion effect. Guo et al. (2021, Equation 6) considered as one example the following data-generating
process:

Y2(a1, a2) ∼ Ber{exp(−a2 + 2a1 · a2)/4},

where the prior treatment, A1, interacts with the present treatment, A2, to affect Y2. They showed that the
magnitude and sign of the causal excursion effect of A2 on Y2, which marginalizes over A1, depends on the
randomization probability of A1. In the second example they considered, there is a three-way interaction
between A1, X2 and A2 on Y2, and they showed that the effect modification by X2 of the causal excursion
effect of A2 can vary depending on the randomization probability of A1. Zhang & Laber (2021) provided two
examples where the current treatment interacts with a prior treatment as well as a time-varying covariate,
and showed the dependence of the excursion effect on the randomization probability of prior treatments.
Zhang & Laber (2021) wrote ‘a large negative causal excursion effect does not mean a treatment is harmful;
rather it may mean that the protocol drove patients into states for which treatment appeared harmful.’ We
very much agree. Indeed, the comparison between two excursions starting at time t is likely to greatly differ
by the treatment protocol up to time t; an example is to consider (i) a treatment protocol that is feasible
to implement in practice, and (ii) a treatment protocol that is infeasible or excessively onerous. Below we
argue that this consequence makes sense in a continual learning setting such as in mobile health.

First, note that this consequence of marginalization occurs in all marginal models; models that don’t
condition on all relevant covariates. In Equation (6) of Guo et al. (2021) A1 plays the role of a covariate
in the analysis of the effect of A2 on Y2. Another related setting is the primary analysis for a factor in a
factorial design, where the other factors are averaged over. If there is interaction between factors, then the
primary analysis result for one factor will depend on the distribution of the other factors.

As discussed in § 8 of the main manuscript, we view the dependence of the causal excursion effect
on the randomization probability of past treatments, the treatment protocol, as a desirable feature. In our
mind, the causal excursion effect makes most sense in a continual learning setting. Because the technology
is evolving rapidly, mobile health intervention development/optimization requires repeated updating and
improvement. We advocate that the treatment protocol at any given time, including when implemented in
a micro-randomized trial, be sufficiently realistic that it can be implemented in practice. We mean realistic
in the sense that considerations of burden and domain knowledge on effectiveness have been taken into
account. Thus, at each stage researchers are interested in answering the question: how would one further
improve the current treatment protocol? Causal excursion effects provide an approximation to a gradient
in addressing this question; see § 3 below.

Nonetheless, the examples provided by Guo et al. (2021) and Zhang & Laber (2021) clearly illustrate
the dependence of the causal excursion effect on the treatment protocol, and highlight the importance of
interpreting the causal excursion effect in the context of the treatment protocol. We agree with the discus-
sants that additional analyses, such as effect moderation of the causal excursion effect by prior treatments
and time-varying covariates, are often useful to understand the dependence of the causal excursion effect
on the treatment protocol. We consider them as secondary and exploratory analyses, which have been rou-
tinely carried out in micro-randomized trial analyses. For example, in HeartSteps V1 (Klasnja et al., 2018),
a micro-randomized trial for developing push notifications to encourage regular physical activity among
sedentary adults, after the primary analysis to assess the marginal excursion effect of the push notification,
the researchers conducted a variety of secondary analyses, which included the effect modification by past
treatments and past covariates, and how the marginal excursion effect changes over time. They found that
the magnitude of the effect changes from positive to not different from 0 around mid-study, suggesting that
burden and habituation due to past treatments affects the causal excursion effect. Additional qualitative
studies, e.g., via exit interviews, suggested that the decreasing, with time, magnitude of the excursion effect
might be due to habituation.

Zhang & Laber (2021) discussed two exploratory analysis approaches to assess the degree of dependence
of causal excursion effect on treatment protocol. One approach is to use a partially observable Markov
decision process to capture the non-Markov dynamics of patient histories, including past treatments, which



Rejoinder 553

can be understood as constructing features that summarize the past effect modifiers. The other approach is
to vary the randomization probabilities, or other features of the design, and assess how the causal excursion
effect varies accordingly. These are interesting future research topics.

3. Using the causal excursion effect to modify the protocol

Guo et al. (2021) pointed out that due to the dependence of the causal excursion effect on the treatment
protocol, modifying the treatment protocol based on the excursion effect can be a challenging task. This is
because as the treatment protocol is modified, the causal excursion effect would change accordingly. We
very much agree. Below we lay out our current understanding and thoughts on this topic.

Using the treatment regime notation mentioned by Guo et al. (2021) in their § 1, let Yt, �(G) be the
potential outcome of Yt, � under a regime G. Let Gb be the regime, i.e., the treatment protocol, in the micro-
randomized trial. Consider a new candidate regime, Gc. A natural comparison between the two regimes is
the log relative risk,

γt(Gc, Gb) = log
E{Yt, �(Gc)}
E{Yt, �(Gb)} . (1)

For clarity, we only consider the marginal comparison and do not condition on any effect modifiers St .
Inverse probability weighting can be used to estimate the numerator in (1) using data collected under Gb;
note that to ensure the weights are stable, Gc cannot be too different from Gb. One realistic situation is
where Gc represents a small deviation from the treatment protocol Gb. For example, γt(Gc, Gb) represents
an approximation to the derivative

lim
ε→0+

1

ε

(
log E

[
Yt, �

{
(1 − ε)Gb + εGc

}] − log E{Yt, �(Gb)}
)
, (2)

where (1 − ε)Gb + εGc is a mixture of the two regimes. Equation (2) represents the relative change in
the log expected potential proximal outcome when the regime changes in the direction of Gc. The sign of
γt(Gc, Gb) as well as how it varies over time, plus expert input and qualitative user studies, inform how to
alter the current treatment protocol. A caveat is that these are high-dimensional optimization problems and
the gradient at any point in a particular direction may be misleading, e.g., it may lead to a saddle point or
a local optimum.

Using the above notation, the causal excursion effect defined in the main manuscript can be written as
γt(Gc, G′

c), where Gc is the regime that is the same as the treatment protocol Gb up to t − 1, then it assigns
the future � treatments deterministically as (1, 0̄), and G′

c is the regime that is the same as the treatment
protocol Gb up to t − 1, then it assigns the future � treatments deterministically as (0, 0̄). As a result,
γt(Gc, G′

c) can be viewed as an approximation to

lim
ε→0+

1

ε

(
log E

[
Yt, �{(1 − ε)Gb + εGc}

] − log E
[
Yt, �{(1 − ε)Gb + εG′

c}
])

,

i.e., the difference in the relative change in the log expected proximal outcome when the regime changes in
the direction of Gc versus when the regime changes in the direction of G′

c. One recent work that leverages the
above idea is Liao et al. (2020), where the authors used effect modification analyses of micro-randomized
trial data to form a warm-start policy for a reinforcement learning algorithm in a subsequent study.

4. Other points raised by discussants

4.1. Causal excursion effects with different �

In the main manuscript, the causal excursion effect is defined for a specific �, the time window over
which the proximal outcome is measured, and � is typically predetermined based on domain knowledge.



554 T. Qian et al.

For example, in Sense2Stop (Sarker et al., 2017; Dempsey et al., 2020), a micro-randomized trial for
developing stress reduction interventions for people who recently quit smoking, the decision point is per
minute and � is 120 minutes. The particular choice of � was based on the research team’s prior knowledge
of the time duration for the intervention effect.

Kim et al. (2021) in their § 3 propose to model the excursion effect for each � separately for a collection
of �s. Such analysis might be used to inform the duration for an intervention to take effect as well as the
duration over which the intervention’s effect lasts. We agree that this is a fruitful option for exploratory
analysis. However, the warning in (Guo et al., 2021, § 2.2) on history-adjusted marginal structural models
indicates that great care must taken to avoid producing model incoherence. We look forward to seeing the
work of Kim et al. (2021) in this direction.

4.2. Extension to observational data; efficiency improvement

Both Guo et al. (2021) and Kim et al. (2021) discussed extending the estimating equation (10) of the main
manuscript to observational study settings. The estimator β̂ solving estimating equation (10) is consistent
for the parameter in the marginal excursion effect, β in equation (9), if the propensity score pt(Ht) can
be consistently estimated. However, as Guo et al. (2021) and Kim et al. (2021) pointed out, when pt(Ht)

is incorrectly modelled, β̂ will generally not be consistent even if exp{g(Ht)
Tα} is a correct model for

the mean potential outcome under no-future-treatment excursion, E{Yt, �(Āt−1, 0, 0̄) | Ht , It = 1, At = 0}.
This is due to the fact that the causal excursion effect βM (St) = ST

t β is a marginal model; the fully
conditional, on Ht , causal effect is not necessarily ST

t β. Therefore, even when exp{g(Ht)
Tα} is a correct

model for E{Yt, �(Āt−1, 0, 0̄) | Ht , It = 1, At = 0}, the term Yt, � − exp{g(Ht)
Tα + AtST

t β} in the estimating
equation (10) does not generally have conditional expectation zero given Ht . Guo et al. (2021) proposed
to subtract the projection of

∏t+�−1
j=t+1 1(Aj = 0)/1 − pj(Hj) onto the scores for treatment to both obtain a

doubly robust version and to improve efficiency. Fortunately, for the micro-randomized trials one knows
the randomization probability, and the one-sided robustness, consistency under misspecified exp{g(Ht)

Tα},
is adequate there. We thank the discussants for pointing this out, and we leave the detailed derivation of a
doubly robust version of the estimator for the causal excursion effect for future work.

Of course, the semiparametric locally efficient estimator for the fully conditional, on Ht , effect with
� = 1, which was derived in § 4 of the main manuscript based on the results in Robins (1994), has the
double robustness property in the sense that it is consistent if either the propensity score model is correct
or exp{g(Ht)

Tα} is a correct model for E{Yt, 1(Āt−1, 0) | Ht , It = 1, At = 0}. We look forward to the future
work of Kim et al. in extending this method to Poisson distributed outcomes.

4.3. Connection and difference between the causal excursion effect and structural models

As we mentioned in § 2.2 of the main manuscript, the causal excursion effect differs from the causal
effects considered in marginal structural models and structural nested mean models, and the marginalization
aspect of the causal excursion effect is related to the history-restricted version of marginal structural models.
Guo et al. (2021), in their Figs. 1–3, rather nicely illustrate the connection and difference between the
causal excursion effect and the structural nested mean models and a variety of marginal structural models,
including the classic, history-restricted and history-adjusted marginal structural models. We appreciate
Guo et al. (2021) making the differences between these effects so clear.

4.4. Identifiability for other types of excursions

In the definition of the causal excursion effect, we considered the two excursions (Āt−1, 1, 0̄�−1) and
(Āt−1, 0, 0̄�−1). Guo et al. (2021), in their § 1, pointed out that these two are the only static regimes that are
identified without further assumptions. Other statistic regimes will have am = 1 for some m > t, and the
average potential outcome under such regimes is generally not identifiable without additional assumptions
because of the violation of positivity assumption when Im = 0 with positive probability. We agree with
their statement, and appreciate the clarification.

In the Sense2Stop micro-randomized trial that motivated us to consider causal excursion effects with
general �, other static regimes were not of scientific interest. If a micro-randomized trial is well designed,
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regimes such as those that violate the positivity assumption should have been a priori decided to be
uninteresting for scientific or ethical reasons. Absent further assumptions, the regimes that are identified
by the micro-randomized trial must assign no treatment at time t whenever It = 0. Note that It can be
affected by prior treatments. A rather interesting question is the following. Suppose under the treatment
protocol of the micro-randomized trial the probability of It = 1 is low, and suppose the interest is in
estimation of the effect of a new regime that is expected to influence It so much that It will be 1 with high
probability. While this new regime might not violate the positivity assumption, it is likely that the estimator
of the effect of this new regime will be quite variable. This can be an area in which it is critical to follow
the recommendation of Guo et al. (2021) to extend our current estimator to a doubly robust estimator with
improved efficiency.
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