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Abstract

Allostery is considered important in regulating protein’s activity. Drug development depends 

on the understanding of allosteric mechanisms, especially the identification of allosteric sites, 

which is a prerequisite in drug discovery and design. Many computational methods have been 

developed for allosteric site prediction using pocket features and protein dynamics. Here, we 

present an ensemble learning method, consisting of eXtreme gradient boosting (XGBoost) and 

graph convolutional neural network (GCNN), to predict allosteric sites. Our model can learn 

physical properties and topology without any prior information, and shows good performance 

under multiple indicators. Prediction results showed that 84.9% of allosteric pockets in the 

test set appeared in the top 3 positions. The PASSer: Protein Allosteric Sites Server (https://

passer.smu.edu), along with a command line interface (CLI, https://github.com/smutaogroup/

passerCLI) provide insights for further analysis in drug discovery.

1 Introduction

Allostery is the process in which proteins transmit the perturbation caused by the effect 

of binding at one site to a distal functional site.1 The allosteric process is fundamental 

in the regulation of activity. Compared with non-allosteric drugs, allosteric drugs have 

many advantages: they are conserved and highly specific;2 they can either activate or 

inhibit proteins; they can be used in conjunction with orthosteric (non-allosteric) drugs. 

Although allosteric drugs are important in the pharmaceutical industry,3 they are still 

poorly understood. 4 Most allosteric mechanisms remain elusive because of the difficulty 

of identifying potential allosteric sites.5

Many allosteric site prediction methods have been developed based on molecular dynamics 

(MD) simulations,6 normal mode analysis,7 two-state Gō models8 and machine learning 

(ML) models.9-11 Among the existing methods, AllositePro,12 AlloPred,13 SPACER14 and 
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PARS15 are available as web servers or open-source packages. These previous studies have 

shown that it is promising to identify allosteric sites by combining static pocket features 

with protein dynamics. In these studies, static features are calculated by site descriptors 

describing physical properties of protein pockets, while the protein dynamics are extracted 

by MD simulation or perturbation.

Machine learning methods have been shown to be superior in the classification of protein 

pockets. For example, Allosite11 and AlloPred13 used support vector machine (SVM)16 

with optimized features. Chen et al.17 used random forest (RF)18 to construct a three

way predictive model. With the development of ML, more advanced models have been 

developed and can contribute to the allosteric site classification. eXtreme gradient boosting 

(XGBoost)19 is one of the most powerful machine learning techniques in classification. 

It is an implementation of the gradient boosting algorithm with regularized terms to 

reduce overfitting. Compared with SVM and RF, XGBoost achieved superior predictive 

performance in the protein-protein interactions20 and hot spots.21

Though physical properties are largely contained in many methods, topological information 

is largely ignored and is considered important in classifying pockets. In order to explore 

the geometry features, an atomic graph is constructed for each pocket. Atoms are treated 

as nodes and the pairwise bond distances are calculated as edges.9 Graph convolutional 

neural networks (GCNNs),22 a popular concept in deep learning, have been applied in 

biological-related predictions, ranging from chemical reactions,23 molecular properties,24 to 

drug-target interactions.25

In this study, protein pockets are predicted using an ensemble learning method, which 

combines the results of XGBoost and GCNN. This model can learn both physical properties 

and topology information of allosteric pockets and has been proven to be superior to the 

single XGBoost and GCNN models. Various performance indicators validated the success of 

this ensemble learning method compared with previous methods.

2 Methods

2.1 Protein Database

The data used in the current work was collected from the Allosteric Database (ASD).26 

There are a total of 1946 entries information of allosteric sites with different proteins and 

modulators. To ensure data quality, 90 proteins were selected using previous rules:11 protein 

structures with either resolution below 3Å or missing residues in the allosteric sites were 

removed; redundant proteins in the rest of the data that have more than 30% sequence 

identity were filtered out. The names and IDs of the 90 proteins extracted from the PDB 

Bank27,28 are listed in Table S1.

2.2 Site Descriptors

FPocket algorithm29 is used to detect pockets from the surface of the selected proteins. A 

pocket is labeled as either 1 (positive) if it contains at least one residue identified as binding 

to allosteric modulators or 0 (negative) if it does not contain such residues. Therefore, a 

single protein structure may have more than one positive label. A total of 2246 pockets were 
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detected with 119 pockets being labeled as allosteric sites. There are 19 features calculated 

by the FPocket as shown in Table S2.

2.3 Pearson Correlation Coefficient

Pearson correlation coefficient (PCC) measures the linear correlation of two variables. Given 

a pair of variables X and Y as {(x1, y1), …, (xn, yn)}, PCC (rX,Y) is calculated as

rX, Y =
∑i = 1

n (xi − x̄)(yi − ȳ)
∑i = 1

n (xi − x̄)2 ∑i = 1
n (yi − ȳ)2 (1)

where n is the sample size and x̄, ȳ are sample means. PCC has a value between −1 and 

+1. Positive value represents a positive correlation, and negative value represents a negative 

correlation. The absolute value indicates the degree of correlation. The larger the absolute 

value, the stronger the correlation.

2.4 eXtreme Gradient Boosting

Extreme gradient boosting is an ensemble learning method that combines several decision 

trees in sequence.

Let D = {(xi, yi)(∣D∣ = n, xi ϵ Rm, yi ϵ Rn)} represents a dataset with m features and n labels. 

The j-th decision tree in XGBoost predicts a sample (xi, yi) by:

gj(xi) = wq(xi) (2)

where wq is the leaf weights of this decision tree. The final prediction of XGBoost is given 

by the summation of predictions from each decision tree:

yi = ∑
j = 1

M
gj(xi) (3)

where M is the total number of decision trees. To overcome overfitting introduced by 

decision trees, the objective function in XGBoost is composed of a loss function l and a 

regularization term Ω:

obj(θ) = ∑
i = 1

N
l(yi, yi) + ∑

j = 1

M
Ω(fi) (4)

where Ω(f) = γT + λ
2 ∑l = 1

T ωl
2 with T represents the number of leaves and γ, λ are 

regularization parameters.

During training, XGBoost iteratively adds new decision trees. The prediction of the t-th 

iteration is expressed as:

yi
(t) = yi

(t − 1) + gt(xi) (5)
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Correspondingly, the objective function of the t-th iteration is:

obj(t) = ∑
i = 1

N
l(yi, yi

(t − 1) + gt(xi)) + Ω(fi) (6)

XGBoost introduces both first derivative and second derivative of the loss function. By 

applying Taylor expansion on the objective function at second order, the objective function 

of the t-th iteration can be expressed as:

obj(t) ≃ ∑
i = 1

N
[l(yi, yi

(t − 1)) + ∂y(t − 1)l(yi, y(t − 1))ft(xi)

+ 1
2 ∂y(t − 1)

2 l(yi, y(t − 1))ft
2(xi)] + Ω(fi)

(7)

XGBoost can predict the labels of sample data with corresponding probabilities. For one 

pocket, XGBoost outputs the probability of this pocket being an allosteric pocket. This 

pocket is labeled as positive (allosteric) if the predicted probability is over 50% or negative 

otherwise.

There are only 5.3% of positive labels in this binary classification job, which means that 

the input data is highly imbalanced. To focus more on the limited positive labels, XGBoost 

uses “scale_pos_weight”, a parameter for controlling the balance of positive and negative 

weights. A typical value of this weight equals to the number of negative samples versus the 

number of positive samples.

In the current study, the maximum tree depth for base learners and the weights for positive 

labels were fine-tuned while keeping other parameters as default values. The XGBoost 

algorithm is implemented using Scikit-learn package30 version 0.23.2.

2.5 Graph Convolutional Neural Network

Graph convolutional neural network in this work follows this formula:22

H(l + 1) = ReLU(D− 1
2AD− 1

2H(l)W (l)) (8)

where H(l) and H(l+1) represents the lth and l + 1th layer, respectively. H(l) ∈ ℝN × D, where 

N is the number of nodes and D is the number of features. Rectified linear unit (ReLU(x) 

= max(0,x)) is used as the activation function. W(l) denotes the weight matrix in the lth 

layer. D and A represent degree matrix and adjacent matrix, respectively, with Dii = ∑jAij. 

Renormalization (indicated by ~ symbol) is applied for the undirected graph G where each 

node is added with a self-connection. Therefore, Ã = A + IN where IN is the identity matrix.

A graph readout is calculated through the average of node features for each graph.

Tian et al. Page 4

Mach Learn Sci Technol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℎg = 1
∣ V ∣ ∑

v ∈ V
ℎv (9)

where hg is the readout result of graph g and hv is the node feature in node v. V represents 

the nodes in graph g.

An example of 1-layer GCNN model is shown in Figure 1. A graph is first fed into a 

convolution layer. The in-degree and out-degree of a node refer to the number of edges 

coming into and going out from that node, respectively. In-degree of each node was 

calculated as the node feature. Graph feature is calculated as the average of node features 

in the readout layer with ReLU activation function. The output was further fed into a linear 

classification layer g, which predicts the probability of being an allosteric pocket. Previous 

research31 has shown the limitations of 1-layer GCNN. In the current study, atomic graphs 

of each protein pocket are constructed and fed into a 2-layer GCNN model. This model 

consists of two graph convolution layers, each with 256 dimensions of a hidden node feature 

vector, followed by a readout layer and a linear classification layer. The node degree is used 

as the initial node feature. The in-degree is the same as the out-degree in an undirected 

atomic graph. Graph representation is calculated as the average of node representations. The 

linear classification layer outputs the probabilities of pockets being allosteric sites.

To overcome the potential limitation in training GCNN with an imbalanced dataset, the ratio 

between negative labels and positive labels was fine-tuned. Specifically, in each protein, 

allosteric pockets (positive samples) were fully used while non-allosteric pockets (negative 

samples) were partially used. Each negative sample was randomly selected, and the total 

number of non-allosteric pockets equals the number of allosteric pockets times the ratio 

value.

In constructing atomic graphs, the threshold of bond distance was also fine-tuned. Each 

atom was considered as a node in the atomic graph and the pairwise distances between 

atoms were calculated. If the distance is below a specified threshold, an edge is constructed 

connecting the two related nodes. Thus, the distance threshold controls the degree of local 

connectivity.

The GCNN model is implemented using Deep graph library (DGL) package32 version 0.4.3.

2.6 Performance Indicators

For binary classification, the results can be classified as Table 1. Various indicators were 

used to quantify model performance: precision (TP / (TP + FP)) measures how well the 

model can predict real positive labels; accuracy ((TP + TN) / (TP + FP + FN + TN)) 

measures the overall classification accuracy; recall (or sensitivity, TP / (TP + FN)) and 

specificity (TN / (TN + FP)) together measure the ability to classify TP and TN; F1 score 

(2 * precision * recall / (precision + recall)) is the weighted average of precision and recall. 

The higher the values of these indicators, the better the model’s performance.

A receiver operating characteristic (ROC) curve was applied as another indicator to test 

model performance in binary classification. ROC curve is plotted as TP rate against 
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FP rate with different threshold settings. The area under curve (AUC) is calculated for 

quantification. The upper limit for AUC value is 1.0. A dummy model should have an AUC 

value of 0.5.

The ranking information based on the predicted probabilities of protein pockets was also 

considered as an important indicator. Specifically, for each allosteric pocket, the ranking 

(predicted probability of being an allosteric site in descending order) was recorded and 

categorized as the first, second, third or other positions. The ranking result indicates how 

likely the allosteric pockets can appear in the top positions among all detected pockets in the 

same protein. A model with good performance should rank an allosteric pocket in the top 

positions.

3 Results

3.1 Feature Exploration

The distribution of 19 features is shown in Figure S1. While some exhibited long-tail 

distributions such as features 1 (Score) and 2 (Druggability score), data normalization is 

unnecessary since XGBoost does not require normal distribution. Instead, XGBoost, like 

other tree-based models, only focuses on the order, and whether features are normalized 

or not does not affect the prediction results. Violin plots are shown in Figure S2 to better 

distinguish the feature distribution of allosteric sites and non-allosteric sites.

The correlation matrix between these features is shown in Figure S3. Several features 

exhibited high correlations. For example, features 3 (Number of alpha spheres), 4 (Total 

SASA), 5 (Polar SASA), 6 (Apolar SASA), and 7 (Volume) are highly correlated with 

each other. Features 17 (Alpha sphere density) and 18 (Center of mass) are also strongly 

correlated with these five features.

For each feature value in a pocket, the inner ranking refers to the ranking position of 

this feature among values of other pockets in the same protein. Similar to the definition 

of inner ranking, the overall ranking refers to the ranking position of this feature value 

among values of other pockets in the overall dataset. Both sets of ranking features were 

normalized. The correlations between the original features and these two ranking feature sets 

were calculated and shown in Figure S3. The high negative values indicate strongly negative 

correlations between the original features and the ranking features. While feature rankings 

were calculated and applied as additional features in a previous study,13 in the current 

dataset, the high correlation indicated that the ranking features provided little additional 

information and thus were discarded.

3.2 Prediction performance of XGBoost

XGBoost model can overcome the limitation of data imbalance by controlling the weight 

difference between negative labels and positive labels. This parameter was fine-tuned along 

with the maximum depth of trees. The results are plotted in Figure 2. Two sets of parameters 

reached high F1 scores, and both were selected in the final model. The final XGBoost model 

is composed of two models, each with one set of parameters. The results in any given pocket 

are the averaged results predicted by these two models.
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The results of the fine-tuned XGBoost model are listed in Table 2. Compared with the 

reference results, XGBoost model exhibited higher accuracy, precision, specificity, and ROC 

AUC values with comparable results in recall and F1 scores. Therefore, XGBoost model 

performs well in allosteric site prediction.

3.3 Prediction performance of GCNN

Unlike XGBoost, GCNN models suffer from imbalanced dataset. To address this problem, 

the ratio between negative labels and positive labels was evaluated first. The results are 

plotted in Figure 3A. A ratio of 2 (number of negative labels : number of positive labels =2 : 

1) was selected. The distance threshold was further fine-tuned, and the results are plotted in 

Figure 3B. 10Å was selected as the distance cutoff when constructing atomic graphs.

The results of the fine-tuned GCNN model with 10 independent runs are listed in Table 2. 

Compared with XGBoost, GCNNs are less effective in classifying allosteric sites. However, 

it is expected that combining XGBoost and GCNN will result in better performance than 

either model.

3.4 Prediction performance of model ensembling

The ensemble learning model is composed of both XGBoost model and GCNN model. 

For a given pocket, physical properties are calculated and fed into the XGBoost model; a 

representative atomic graph is fed into the GCNN model. The final result is calculated as 

the averaged probability of these two models. This final model contains both the physical 

properties and topological features of protein pockets. The combined results are listed in 

Table 2. Compared with the XGBoost model, model ensembling leads to a 6.00% increase 

in recall, a 0.82% decrease in precision, and a 2.89% increase in F1 score. The AUC ROC 

value also had a 1.89% increase.

For each protein, the identified pockets are ranked based on the predicted probabilities. 

Overall, 60.7% of allosteric pockets are predicted as the first position, while 81.6% among 

the top 2 and 84.9% among the top 3. In other words, if a pocket is an allosteric pocket, 

there is a probability of 84.9% that it can be predicted in the top 3 among all detected 

pockets in the same protein. The prediction results, together with values reported in other 

studies, are listed in Table 3. It should be noted that the types and amounts of proteins in the 

test set are different from each other.

3.5 Novel Allosteric Sites Prediction

To test this ensemble learning method, two proteins not in the dataset (Table S1) were 

used. The predicted allosteric pockets of these two proteins are illustrated in Figure 4. 

These two proteins represent two different types of allosteric proteins. The second PDZ 

domain (PDZ2) is a dynamics-driven protein in human PTP1E protein which undergoes 

allosteric process upon binding with peptides.33 The light-oxygen-voltage (LOV) domain of 

Phaeodactylum tricornutum Aureochrome 1a (AuLOV) is a conformational-driven allosteric 

protein.34 AuLOV is a monomer in the dark state and undergoes dimerization upon blue 

light perturbation.35 In both cases, our prediction model ranks the allosteric sites as the top 

1 with probabilities of 45.14% and 89.46%, respectively. This indicates that this model is 
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capable of predicting both dynamics-driven and conformational-driven allosteric proteins. 

Apparently, the probability for the dynamics-driven allosteric protein is much smaller than 

the one of the conformational-driven allosteric protein, which is not unexpected.

3.6 Web and CLI Usage

A web server based on the allosteric prediction method developed in this study 

is implemented using a Python web framework, Django. JSmol36 is a JavaScript 

implementation of the Jmol package and is embedded in the web page for protein and pocket 

visualization. Web pages are rendered using Bootstrap. This server is named as Protein 

Allosteric Sites Server (PASSer). A workflow of PASSer is outlined in Figure 5.

An example of input and output of PASSer is displayed in Figure 6. Users can submit a PDB 

ID if available or upload a custom PDB file as shown in Figure 6A. By default, all chains 

in the protein are analyzed. Prediction results are displayed as two parts: top 3 pockets with 

the highest probability rendered with the protein structure (Figure 6B) and their probabilities 

(Figure 6C). For each pocket, the corresponding residues can be retrieved by clicking the 

“Show Residues” texts. Protein structure is visualized using JSmol. Each pocket is either 

displayed upon clicking its “Load pocket” icon or hidden by clicking its “Hide pocket” or 

overall “Reset” icons.

A command line interface (CLI) is provided to facilitate potential developments. Similar 

with the web usage, this CLI can take either a PDB ID or a local PDB file for predictions.

4 Discussion

The quality of the dataset used for training is critical. Classification models often fail in 

prediction performance, and lack the generalization with poorly-collected datasets, such as 

insufficient training data or high similarity between structures. ASD is an online database 

that provides allosteric proteins and sites with high resolution, bringing opportunities for 

allosteric site prediction. There are other databases, such as ASBench37 and sc-PDB,38 

which can also be used to improve data quality and model performance.

In order to predict allosteric sites, proper pockets need to be identified on the surface 

of proteins. Several open-source pocket detection software has been developed. Previous 

results29 have shown that, the geometry-based algorithm FPocket is superior compared with 

other methods, such as PASS39 and LIGSITEcsc,40 and can cover known allosteric sites. In 

addition, FPocket is under active development and can be integrated with other methods to 

build a complete pipeline for site prediction.

Several computational methods have been developed for allosteric site prediction over 

the past few years. Due to the fast development of machine learning methods, many 

models integrate ML methods, such as support vector machine and random forest, for 

accurate predictions.11,17 One critical issue is that, many ML models fail when dealing 

with imbalanced datasets:41 in the allosteric site database, negative samples account for a 

majority of the dataset with a limited proportion of positive samples. Undersampling is 

one way to rebalance the dataset. For example, Allosite discarded some negative labels 
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and used a ratio of 1:4 between positive and negative labels. However, undersampling 

leads to insufficient usage of the overall dataset. XGBoost as a gradient boosting method 

overcomes this data imbalance by controlling the relative weights between classes so that the 

dataset can be fully used. Various performance indicators, as listed in Table 2, validated the 

effectiveness of XGBoost for the identification of allosteric sites.

It is worth noting that some features are highly correlated, as shown in Figure S3. This 

collinearity should be addressed in regression models, which reduces the model precision 

and thus weakens prediction results. In contrast, XGBoost is free from this problem. When 

several features are found to be highly correlated to each other, XGBoost will choose one 

of these features. Therefore, collinearity does not affect the prediction results. Nevertheless, 

collinearity influences model interpretation, such as feature importance, which should be 

considered with caution.

Physical properties have been widely used to describe the characteristics of pockets. These 

features are normally calculated using static protein structures. To probe the dynamical 

behavior of pockets, normal mode analysis and MD simulations are normally conducted. 7,42 

Results from these methods have shown that models can achieve satisfactory performance 

through the combination of both static features and protein dynamics. However, pocket 

geometry is often ignored, which could play an important role in prediction. Therefore, 

a graph convolutional neural network is applied to retain the topological information. 

Specifically, pockets are represented as undirected graphs at atomic level, and GCNN is 

designed to learn the local connectivity among atoms. While a previous study9 included 

energy-weighted covalent and weak bonds in the prediction of allosteric sites, it should 

be noted here that: (1) it is assumed that the physical properties are implicitly retained in 

the site descriptors and GCNN only studies the node degree; (2) GCNN does not require 

any a prior information about the location of active sites. The ensemble learning method, 

consisting of GCNN and XGBoost, exhibited higher performance compared with single 

models.

5 Conclusion

The proposed ensemble learning method involves XGBoost and GCNN, which can learn 

both the physical properties and topology of protein pockets. The results are comparable 

with previous studies and have a higher percentage of ranking allosteric sites at top 

positions. The web server provides a user-friendly interface. Protein structures and top 

pockets are visualized in an interactive window on the result page. This ensemble learning 

method, embedded in the PASSer and CLI, can help exploration on protein allostery and 

drug development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Architecture of 1-layer GCNN model. 1-layer GCNN is composed of a graph convolution 

layer, a readout layer and a linear classification layer. Rectified linear unit is used as the 

activation function. An atomic graph is constructed for a given pocket and GCNN predicts 

the probability of this pocket being an allosteric site.

Tian et al. Page 13

Mach Learn Sci Technol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Fine-tuned results of weight and depth parameters in XGBoost model. Two sets of 

parameters, depth 5 weight 40 and depth 8 weight 40, exhibited exceptional high F1 score 

and were selected for further prediction.
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Figure 3. 
Fine-tuned results of ratio and distance threshold parameters in GCNN model. (A) The ratio 

between number of negative labels and number of positive labels was fine-tuned. Ratio of 

2 is considered reaching a balance between recall and precision. (B) The atomic distance 

threshold was fine-tuned from 7 to 11 Å. There is no significant increase in F1 score after 

10Å, which is selected as the distance cutoff. For each parameter value, GCNN was run 10 

times independently.
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Figure 4. 
Prediction results of two examples not included in the training set: (A) Dynamics-driven 

PDZ2 protein in bound states (PDB ID 3LNY); (B) The LOV domain of conformational

driven Phaeodactylum tricornutum Aureochrome 1a in dark state (PDB ID: 5DKK). Red 

regions are the most probable pockets in the predicted results with probabilities of (A) 

45.14% and (B) 89.46% and are also the true allosteric sites.
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Figure 5. 
Web server workflow. User can upload either a PDB ID or a PDB file in the web server. 

FPocket is used to detect pockets. For each pocket, physical properties are calculated and 

predicted using a pretrained XGBoost model; while an atomic graph is constructed and fed 

into a pretrained GCNN model. The final probability is given by averaging results from both 

models.
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Figure 6. 
PASSer web server pages. (A) Users can either submit a PDB ID or a PDB file in the home 

page. (B) Predicted top 3 pockets are summarized in a table with corresponding probabilities 

and pocket residues. (C) Protein structures and pocket sites are displayed in an interactive 

window.
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Table 1.

Binary classification results. Confusion matrix can visualize and evaluate the performance of classification 

models. Rows represent the instances in predicted classes while columns represent the instances in real 

classes. True positive and true negative refer to the results where the model correctly predicts the positive and 

negative classes, respectively. Similarly, false positive and false negative refer to the results where the model 

incorrectly predicts the positive and negative classes, respectively.

Real Positive Real Negative

Predicted Positive True Positive (TP) False Negative (FN)

Predicted Negative False Positive (FP) True Negative (TN)
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Table 2.

Evaluation and performance comparison of different models. The average values and standard errors of 

6 indicators are calculated in 10 independent runs. The ensemble learning method can achieve better 

performance compared to single XGBoost and GCNN models.

Accuracy Recall Precision Specificity F1 score ROC AUC

XGBoost 0.969 ± 0.002
a

0.799 ± 0.023 0.732 ± 0.030 0.982 ± 0.003 0.764 ± 0.016 0.897 ± 0.016

GCNN 0.923 ± 0.006 0.604 ± 0.023 0.427 ± 0.046 0.943 ± 0.007 0.500 ± 0.031 0.832 ± 0.015

Model ensembling 0.974 ± 0.010 0.847 ± 0.095 0.726 ± 0.085 0.980 ± 0.013 0.782 ± 0.072 0.914 ± 0.018

Allosite11 0.962 0.852 0.688 0.970 0.761 0.911

a
Standard error (SE) = Standard deviation (SD) / sample size.
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Table 3.

Probabilities of predicting allosteric sites in the top 3 positions. Ensemble learning method can rank an 

allosteric site in the top 3 positions with a probability of 84.9%, which is higher than previous results.

Top 1 Top 2 Top 3

PARS15 44% 62% 73%

AlloPred13 57.5% 70.0%
NA

a

Ensemble learning 60.7% 81.6% 84.9%

a
Not available in the reported results.
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