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Our current understanding of synergistic muscle control is based on the analysis of muscle activities. Modules (synergies) in
muscle coordination are extracted from electromyographic (EMG) signal envelopes. Each envelope indirectly reflects the neu-
ral drive received by a muscle; therefore, it carries information on the overall activity of the innervating motor neurons.
However, it is not known whether the output of spinal motor neurons, whose number is orders of magnitude greater than
the muscles they innervate, is organized in a low-dimensional fashion when performing complex tasks. Here, we hypothesized
that motor neuron activities exhibit a synergistic organization in complex tasks and therefore that the common input to
motor neurons results in a large dimensionality reduction in motor neuron outputs. To test this hypothesis, we factorized
the output spike trains of motor neurons innervating 14 intrinsic and extrinsic hand muscles and analyzed the dimensionality
of control when healthy individuals exerted isometric forces using seven grip types. We identified four motor neuron syner-
gies, accounting for >70% of the variance of the activity of 54.1 = 12.9 motor neurons, and we identified four functionally
similar muscle synergies. However, motor neuron synergies better discriminated individual finger forces than muscle syner-
gies and were more consistent with the expected role of muscles actuating each finger. Moreover, in a few cases, motor neu-
rons innervating the same muscle were active in separate synergies. Our findings suggest a highly divergent net neural inputs
to spinal motor neurons from spinal and supraspinal structures, contributing to the dimensionality reduction captured by
muscle synergies.
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control
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We addressed whether the output of spinal motor neurons innervating multiple hand muscles could be accounted for by a
modular organization, i.e., synergies, previously described to account for the coordination of multiple muscles. We found that
motor neuron synergies presented similar dimensionality (implying a >10-fold reduction in dimensionality) and structure as
muscle synergies. Nonetheless, the synergistic behavior of subsets of motor neurons within a muscle was also observed. These
results advance our understanding of how neuromuscular control arises from mapping descending inputs to muscle activation
signals. We provide, for the first time, insights into the organization of neural inputs to spinal motor neurons which, to date,
has been inferred through analysis of muscle synergies. /
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microstimulation of the spinal cord in frogs (Saltiel et al., 2001)
and in non-human primates (Takei et al, 2017). In humans,
muscle synergies have been identified in a variety of multijoint
tasks, such as during early locomotion in newborn infants
(Dominici et al,, 2011), standing (Torres-Oviedo and Ting, 2007),
walking (Ivanenko et al., 2004; Chvatal and Ting, 2013), reaching
(d’Avella et al., 2006), and during hand gestures and manipulation
(Weiss and Flanders, 2004; Ajiboye and Weir, 2009).

Muscle synergies have been traditionally quantified in
humans by dimensionality-reduction techniques applied to
EMG amplitudes (envelopes) from multiple muscles (Tresch et
al,, 2006). The EMG amplitude indirectly reflects the overall ac-
tivity of the motor neurons innervating the muscle. Therefore,
by averaging the activity of all innervating motor neurons, the
EMG envelopes recorded from multiple muscles constrain the
dimensionality of control of a muscle to a maximum of one.
However, the number of spinal motor neurons is orders of mag-
nitude greater than the number of muscles. Therefore, correla-
tion in EMG amplitudes across muscles might not necessarily
capture the correlation of activity among motor neurons inner-
vating those muscles (Del Vecchio et al., 2019). It is also possible
that subsets of motor neurons within the same motor pool may
not share the same neural inputs. However, the dimensionality
of control of populations of motor neurons innervating multiple
muscles in complex tasks is currently unknown.

Neural activity of motor neuron pools innervating one or
more muscles can be observed using invasive and non-invasive
recording techniques (Winges et al., 2008; Muceli et al.,, 2015;
Farina et al,, 2016; Negro et al., 2016b). Previous studies that
have analyzed motor neuron spiking activity from individual
muscles have shown that motor neurons in a motor pool receive
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Experimental setup and grip types. A, Subjects exerted sinusoidal isometric forces using seven grip types: all digits
(GRASP), thumb in opposition to the index and middle fingers (IND-MID), index and little fingers (IND-LIT), and thumb in oppo-
sition to each finger in isolation (INDEX, MIDDLE, RING, and LITTLE, respectively). B, Hand posture grasping the sensorized grip
device used for the experiment. C, Electrode placement for HD-sEMG recordings using six 13 x 5-electrode grids (total of 384
channels). Two larger grids (8-mm IED) were placed over the extensor and flexor extrinsic muscles of the hand. The grid on
the dorsal side of the forearm was positioned to detect EMG signals from the ECU, the EDC, and the ECR muscles. The grid on
the volar side of the forearm was positioned to detect EMG signals from the FCU, the flexor FDS and the FCR muscles. The four
smaller grids (4-mm IED) were placed over the FDI, the other three dorsal interossei (II-IV DI), the ADM muscles, and the three
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a relatively large amount of common
synaptic input (Negro and Farina, 2011;
Negro et al., 2016a). The input shared
across pools of motor neurons innervat-
ing different muscles has been rarely
assessed and only for pairs of muscles in
simple tasks (Laine et al., 2015; De Luca
and Erim, 2002). Common input across
two pools of motor neurons has been
observed (Laine et al., 2015; De Luca
and Erim, 2002; Del Vecchio et al,
2019) but not across tasks and not in
relation to the dimensionality of con-
trol across several motor neuron
pools. These previous observations
led us to hypothesize that motor neu-
ron activities should show a synergis-
tic organization in multijoint tasks.
Consequently, we expected that the
common input to motor neurons, for
which there is preliminary evidence
in single tasks and muscles, should
result in a large dimensionality reduc-
tion in motor neuron outputs. If true,
the dimensionality of motor neuron
control across multiple task condi-
tions would be equal or lower than
the number of pools of motor neu-
rons. Here, we tested this hypothesis
by quantifying the synergistic organi-
zation of motor neuron output by fac-
torization. Specifically, we decoded
the activity of motor neurons inner-
vating several hand muscles while human participants
exerted isometric forces with different grip types. We then
identified the components explaining the variance of the
motor neuron outputs, which we will refer to as motor neu-
ron synergies. To gain further insight into the functional role
of motor neuron synergies, we compared them with syner-
gies extracted from EMG amplitudes, i.e., muscle synergies.
Moreover, we compared the dimensionality of motor neuron
output to that of muscle control, identified from EMG
amplitudes.

RING

Materials and Methods

Subjects

Seven men (age: 27.0 = 2.2 years; weight: 79.0 = 8.3 kg; height: 180.1 =
5.0 cm) participated in the experiments after signing an informed con-
sent form in accordance with the Declaration of Helsinki and approved
by the Imperial College London Research Ethics Committee (approval
18IC4685).

Experimental protocol

Subjects sat with the wrist kept in a neutral position, the forearm semi-
pronated, and the elbow flexed (~90°). They were asked to exert isomet-
ric fingertip forces to perform seven grip types (Fig. 1A) by making con-
tact with (1) all digits (GRASP), or the thumb in opposition to (2) the
index and middle fingers (IND-MID); (3) the index and little fingers
(IND-LIT), and (4-7) each finger in isolation (INDEX, MIDDLE, RING,
and LITTLE). The maximum voluntary contraction (MVC) force was
measured for each grip and used as reference to determine the submaxi-
mal target force in subsequent trials. Following the MVCs, the subjects
were instructed to match sinusoidal force traces. For each grip type
(trial), the task consisted of a 30-s sinusoidal contraction at 15 % 5%
MVC at 1-Hz frequency, which was preceded and followed by a 5-s
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Supraspinal input

Spinal Cord
PreM-Ins (EXC/INH)

Motor neuron synergies
NMF of motor neuron discharges from each muscle

Muscle synergies
NMF of interference EMG signals from each muscle

Experimental approaches for estimating motor neuron and muscle synergies. A, Extraction of motor neuron discharges from HD-SEMG used for computing motor neuron synergies.

Muscle synergies were computed using the interference EMG signals (in figure represented for three muscles, respectively, red, blue, and violet). Motor neuron synergy weights represent the
contribution of motor neurons into each synergy. Muscle synergy weights represent the contribution of individual muscles. B, The diagram shows how individual excitatory (EXC) and inhibitory
(INH) PreM-INs synapse onto multiple motor neurons (MNs) innervating different muscles. Motor neuron pools are denoted by different colors. The computation of motor neuron synergies esti-
mates how the discharges of concurrently active motor neurons can be grouped based on the spatial and temporal spiking patterns (dashed line box). In contrast, muscle synergies are com-
puted based on the spatial and temporal coordination of interference EMG activity patterns (dotted line box).

ramp contraction to reach the target force (15% MVC) and return to
rest. A rest of 2 min was given between trials.

Experimental setup

The subjects exerted isometric forces for each grip type while the fore-
arm rested on a 3D-printed mold to prevent changes in arm posture as
well as in elbow and wrist joint angles. A 3D-printed sensorized device
with two plastic handles was used to record grip force. A coaxial force/
torque sensor (ATI Industrial Automation) was mounted on each han-
dle (Fig. 1B) to record, respectively, the force exerted by the thumb and
the force exerted by the combination of the finger(s) in opposition with
the thumb, depending on the grip type. Force signals were digitized by a
12-bit A/D converter (ADC) board (sampling frequency: 2048 Hz; PCI-
6225, National Instruments).

We recorded EMG signals from 14 muscles controlling the wrist and
digits using high-density surface EMG electrode grids (HD-sEMG; Fig.
1C). Two 64-channel grids (with electrodes arranged in a 13 x 5 configu-
ration and one electrode missing at the corner) with 8-mm interelec-
trode distance (IED) were placed over the extrinsic extensor muscles of
the hand, i.e., extensor carpi ulnaris (ECU), extensor digitorum commu-
nis (EDC) and extensor carpi radialis (ECR), and over the extrinsic
flexor muscles, i.e., flexor carpi ulnaris (FCU), flexor digitorum superfi-
cialis (FDS), and flexor carpi radialis (FCR). Four additional 64-channel
grids (with the same electrode configuration but IED of 4 mm) were
placed over the first dorsal interosseus (FDI), three other dorsal interos-
sei (II-IV DI), the abductor digiti minimi (ADM) and the three muscles
of the thenar eminence: opponens pollicis (OPP), abductor pollicis bre-
vis (APB), and flexor pollicis brevis (FPB). Since four of these six grids
covered more than one muscle, we used a muscle assignment procedure
to identify the correspondence between identified motor neurons and
muscles (see below, Motor neuron synergy anatomic maps).

EMG signals from the six electrode grids were recorded in monopolar
derivation by a 400-channels amplifier (Quattrocento, OT Bioelettronica).
Signals were amplified with a gain of 150, bandpass filtered between 10
and 900 Hz, sampled at 2048 Hz, and A/D converted to 16 bits. A refer-
ence electrode was placed at the wrist. EMG and force data were recorded
with the same computer and synchronized offline by means of a trigger
signal sent from the force ADC board to the EMG amplifier. A custom-
made application developed in MATLAB (The MathWorks) was used to

inspect the signals, display the target force on a monitor in front of the
subjects, and provide them with visual feedback of the force exerted dur-
ing the task.

Processing

The primary goal of the present study was to quantify the spatial and
temporal organization of the output of motor neurons innervating ex-
trinsic and intrinsic hand muscles. We pursued this objective by first
decomposing EMG signals recorded through HD-sEMG grids (Fig. 1C)
into motor neuron discharges. This procedure was followed by the appli-
cation of non-negative matrix factorization (NMF; see below, Synergy
extraction by NMF) to the series of motor neuron discharges.
Application of NMF to motor neuron discharge patterns across grip
types allowed to compute motor neuron synergies (Fig. 2A). The same
NMEF procedure was also applied to interference EMG signals to extract
muscle synergies (Fig. 2A4). To assess a correspondence between motor
neuron synergies and muscle synergies, we need to answer the question
whether motor neurons innervating the same muscle might have alter-
native synergistic behaviors, i.e., if multiple groups of motor neurons
innervating the same muscle are alternatively activated in different
motor neuron synergies.

The difference in the information provided by NMF applied to
extract motor neuron synergies relative to muscle synergies is shown in
Figure 2B. The synergistic organization of motor neuron activity (motor
neuron synergies) is hypothesized to depend on the extent to which
direct and indirect corticospinal inputs might spatially and temporally
constrain their output to multiple muscles. For the case of indirect corti-
cospinal inputs, i.e., inputs mediated by premotor interneurons (PreM-
INs), each motor neuron can receive inputs from several PreM-INs. The
final output of this spatiotemporal spinal constraint can be directly
observed with motor neuron synergies. In contrast, extraction of muscle
synergies considers the spatial and temporal organization of interference
EMG from individual muscles. The rationale and advantages of extract-
ing motor neuron synergies relative to muscle synergies are described
below (see below, EMG signal decomposition).

For each grip type and both types of myoelectric features factorized
by NMF (motor neuron discharges and interference EMG), we selected
the central 10-s portion of the sinusoidal force production for further
analysis and excluded the first and the last 10-s portion of the trial
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EMG signal processing, decomposition and dimensionality reduction. For each grip type (top), the central 10 s of EMG recordings was concatenated to obtain 70-s long EMG signals

(10's per grip type). These concatenated monopolar signals were either differentiated (selection of one bipolar channel per muscle; see Fig. 44) and rectified or decomposed with the CKC algo-
rithm into motor neuron spike trains. Both rectification and CKC are nonlinear operations. Additionally, CKC reduces the dimensionality of the original signals. The results of these two nonlinear
operations were low-pass filtered to generate smooth myoelectric signals with a bandwidth of 2.5 Hz. The two smoothed signals were factorized using NMF to extract muscle synergies (where
one channel is related to a muscle) and motor neuron synergies, respectively. NMF is a linear dimensionality reduction operation.

because of the transition from the ramp to the sinusoidal force produc-
tion, and from the latter to zero force. EMG data from each grip type
was bandpass filtered so that there was no difference in offset among dif-
ferent recordings and the transitory part for the filtering was removed to
avoid signal discontinuities. Then, these recordings were concatenated
to provide a 70-s long signal (10 s for each grip type; Fig. 3A) consisting
of 384 EMG channels. EMG signals were digitally filtered between 20
and 500 Hz with a fourth-order Butterworth filter to remove baseline
drifts and high frequency noise. Preprocessed EMG data underwent a se-
ries of nonlinear and linear operations that differed for the computation
of motor neuron synergies or muscle synergies (Fig. 3). For the compu-
tation of muscle synergies, we extracted 14 bipolar channels from
monopolar HD-sEMG channels, one for each muscle (explained in
detail below, Synergy extraction by NMF), to reduce cross talk. Then, we
applied rectification (converting negative to positive values) of interfer-
ence EMG signals (Fig. 3B).

EMG signal decomposition

To enable computation of motor neuron synergies, we applied convolu-
tion kernel compensation (CKC) motor unit decomposition (Fig. 3B; see
below, Synergy extraction by NMF) to obtain the correspondent neural
command received by each motor unit from the respective innervating
motor neuron. The HD-sEMG signals were decomposed separately for
each grid into the constituent motor unit activities by the CKC algorithm
(Holobar and Zazula, 2007) to obtain the firing output of the respective
motor neurons. To assess the accuracy of motor unit identification from
HD-sEMG, we adopted the pulse-to-noise ratio (PNR; Holobar et al.,
2014) as a signal-based metrics. The motor unit innervation pulse trains
(Holobar and Zazula, 2007) extracted by the algorithm were manually
inspected by experts. This inspection led to rejecting all the motor units
with PNR lower than 25dB, corresponding to a confidence interval of
0-70%, discarding the false-positive peaks over the physiological firing
rate (35-40Hz), and including false-negative undetected peaks (Del
Vecchio et al,, 2020). To identify the same motor neuron across different
grip types, motor neurons were tracked across all grip types by

decomposing the concatenated EMG signals from all tasks for each sub-
ject. By doing so, the decomposition algorithm identified the activity of
the same motor unit (thus, the same motor neuron) when it fired in one
or more grip types. To evaluate the capacity of the decomposition algo-
rithm to identify the same motor units across different grip types despite
the variability in the level of muscle contraction, an analysis based on
spike-triggered averaging (STA) was conducted. For each subject, we
performed a STA for each motor unit and for each grip type to estimate
the motor unit action potential waveforms. We then computed the 2D
cross-correlation between these estimated action potential waveforms
(Martinez-Valdes et al., 2017) both for the same motor unit (across dif-
ferent grip types) and for different motor units (for each grip type sepa-
rately). The aim of this analysis was to prove the stability of the
estimated action potential waveforms across different tasks and the fact
that motor unit action potentials assigned to the same motor unit were
more similar than action potentials assigned to different motor units.
Similar analyses have been proposed in previous work for validating the
tracking of motor units by EMG decomposition across a variety of con-
ditions (see Del Vecchio et al., 2019).

A binary sequence was created to represent each spike train, with
1 indicating the occurrence of a spike and 0 otherwise, having the
length of the original EMG signals. The binary sequence of spikes
for each detected motor unit was smoothed by a fourth-order
Butterworth low-pass filter with cutoff frequency of 2.5 Hz and then
normalized between 0 and 1. This frequency bandwidth corresponds
to the one obtained using a 400-ms Hanning window, as done in
previous work (De Luca et al., 1982; Negro et al., 2009). The
smoothed discharge rates (SDRs) provide an estimation of the in-
stantaneous firing rate (De Luca et al., 1982) for each motor unit.
We used sinusoidal contractions to focus on the modulation of
motor neuron discharge rates rather than the average baseline value.
We note that the baseline of the sinusoidal SDR signals would be
determined by the average discharge rates, whereas motor neuron
discharge rate oscillations around the average value would be deter-
mined by the modulation in discharge rates.
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Figure 4. Methods to obtain bipolar EMG channels and anatomic representation of hand motor neuron synergies and muscle synergies. A, Extraction of one 16 mm-IED bipolar channel for
each of the 14 investigated muscle compartments for all six electrode grids used to compute muscle synergies. B, Each motor neuron is identified by STA (left) and associated with one of the
muscles under the same grid (for FDI and ADM, there was only one muscle per grid). Here, we show the example of the interossei grid. For each synergy, the motor neuron weights associated
with a certain muscle were averaged and this average corresponded to a muscle activity. €, Muscle activity is represented with a color scale and normalized from 0 to 1, indicating muscle acti-

vation in an anatomic representation.

A motor neuron was considered active for a given grip type when dis-
charging at least 20 firings in the 10-s interval analyzed. The percentage of
motor neurons active in two tasks was quantified for each task pair.

Synergy extraction by NMF

To test the hypothesis of a low-dimensional representation of motor
neuron activity, we factorized motor neuron SDRs and interference
EMG envelopes using NMF (Fig. 3C). We will use the term motor neu-
ron synergies to indicate the time-invariant weights extracted by factori-
zation of motor neuron SDRs and muscle synergies to indicate the
weights identified with the same factorization applied to 14 interference
EMG envelopes (one per muscle). To select the bipolar EMG channels
for each muscle to compute muscle synergies (Bizzi et al., 2008; Cheung
et al, 2009), we divided the electrode grids placed over the extrinsic
muscles, the DI, and the thenar eminence (Fig. 4A) in bands of four,
five, and four columns, consisting of five channels each. This subdivision
was made by assuming the main three muscles under each grid were
roughly equally represented in terms of channels. This assumption was
based on the standardized placement of the electrode grids according to
anatomic landmarks, as previously described (Tanzarella et al., 2020).
This muscle assignment was used exclusively to extract bipolar EMG sig-
nals for a comparison with muscle synergy weights and for the anatomic
map representation (see below, Motor neuron synergy anatomic maps).
We note that this muscle assignment procedure was not required by nor
impacts the NMF analysis because motor neurons from all the muscles
were factorized as a unique pool (i.e., without grouping). By adopting
this division in bands, the central pair of electrodes of each band was
chosen to compute the bipolar derivation, so that for both the small (4-
mm IED) and large grids (8-mm IED) the equivalent bipolar IED was 16
mm. The bipolar EMG signals were then rectified and smoothed with
the same filter applied to the motor neuron SDR.

Let X be the original matrix, where the M rows represent the SDRs of
motor neurons (alternatively N rows represent the 14 EMG envelopes),
and the L columns represent the time samples of the original motor neu-
ron or EMG signal. The NMF factorization represents X as follows (Lee
and Seung, 2001):

X ~ WH,

where W is the matrix of the synergies, with dimension M x § (N x S for
EMG envelopes), and H is the matrix of the activation signals, with

dimension S x L, with S being the number of extracted synergies. While
the time-invariant W represents, for each column, how a motor neuron
(muscle) contributes to a synergy, H contains the time-varying activation
of each synergy during isometric force production for each grip type.

NMEF is an iterative process that minimizes the Euclidean distance
between the original signals X and the reconstruction obtained by the
multiplication of the matrices W and H. In this study, the NMF itera-
tions were repeated 10 times (Cheung et al,, 2009) for each number of
extracted synergy, i.e., from 1 to 10 synergies, with different initial ran-
dom values for the matrices W and H.

We note that the extraction of motor units from the EMG signal may
remove variance from the data that could be potentially informative
about synergistic motor neuron control. To address this issue, we
repeated the same analysis of extraction of muscle synergies both from
the EMG signal derived only from the decomposed motor units and
from the residual EMG signal, i.e., the original EMG signal minus the
EMG obtained when adding only the decomposed motor unit action
potential trains. We aimed to test whether the synergistic informa-
tion could be preserved in both these signals. This analysis aimed at
proving that the identified motor unit activities from the EMG
decomposition were representative of the information contained in
the full EMG signal.

Number of synergies across grip types

We examined the extent to which a given set of synergies extracted from
the motor neuron and EMG datasets were sensitive to grip type. Because
of the vast range of possible simultaneous activations of available degrees
of freedom, synergies extracted from a small set of grips could predict
more complex grips (Ajiboye and Weir, 2009; Muceli et al., 2010). Thus,
if the number of synergies does not scale with the number of grip types,
fewer synergies than grip types should be able to account for all grip
types. In particular, the seven grip types we considered involved the
thumb in opposition with different combinations of fingers. Therefore,
we examined whether the number of extracted synergies changed when
considering grips involving the thumb and only one finger versus com-
binations of fingers.

The reconstruction of the original dataset by W and H, either repre-
senting the seven grips or only the four single-finger grips, was quanti-
fied with the coefficient of determination (R?), as done in Muceli et al.
(2010). The greatest R* among the 10 repetitions with different initial
random weights was retained for each number of synergies (Muceli et
al.,, 2010).
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The selection of the number of synergies was performed by identify-
ing the number for which the R*> curve showed a change in slope
(Cheung et al., 2005; d’Avella et al., 2011). This was quantified by com-
puting the mean squared error (MSE) of a line fitting the part of the R?
curve from each number of synergies between 1 and 9, to the maximum
number evaluated, i.e, 10. The minimum MSE threshold chosen to
determine the number of synergies was 5e-4, as done in d’Avella et al.
(2011).

To assess the functional role of each synergy in relation to the actua-
tion of individual fingers coupled to the thumb, synergies extracted from
each subject were re-ordered by associating four of the total extracted
synergies (according to the R*-curve-change-in-slope criterion) to indi-
vidual finger control. This procedure consisted of considering the var-
iance of the 10-s segment for each grip type of each synergy and
assigning progressively each synergy to the finger with the highest var-
iance accounted for by the relative thumb-single finger grip.

Motor neuron synergy anatomic maps

We associated motor neuron spike trains to a given muscle according to
the amplitude distribution of the corresponding single motor unit action
potentials estimated by STA (Farina et al., 2002). The association of
motor neurons to muscles was done using the same partitioning used
for HD-sEMG (Fig. 4A) but applied to the root mean square values of
the single motor unit action potentials across the grid (Fig. 4B).

Weights of each synergy are usually represented with a bar graph,
where each bar represents the synergistic contribution of a muscle or,
introduced here, a motor neuron. To enable an easier functional inter-
pretation of muscle or motor neuron synergies, we introduce a way to
represent them with an anatomic map (Fig. 4C). This could be done ei-
ther when a single source of myoelectric activity is recorded for each
muscle or when more motor neuron SDR are associated to the same
muscle. In the latter case, for each synergy, the weights associated with
the same muscle have been normalized and then averaged to produce a
value which was represented with a color scale, normalized from 0 to 1,
in the anatomic map.

Force and synergy activation signals

In order to evaluate the extent to which the activation signals extracted
by NMF accounted for the isometric force exerted with each grip, we
computed, for each subject, the cross-correlation between each 10-s
epoch of each synergy activation signal (i.e., during the execution of a
given grip) and the respective 10-s epoch of the exerted force. For this
cross-correlation, we used only the forces exerted by the fingers in oppo-
sition with the thumb for each grip type. This allowed also to test how
much a synergy associated to a finger, as defined above, in Synergy
extraction by NMF, correlated with the force exerted during the grip
types involving that finger.

Synergistic behavior of motor neurons within each muscle
We assessed the existence of a consistent synergistic behavior of motor
neurons within each muscle. To do so, for each subject, we analyzed
whether motor neurons innervating the same muscle were activated in
different synergies. For this purpose, we identified motor neurons of the
same muscle with a large difference in weight across different synergies.
Subsequently, we assessed whether in two or more synergies, for the
same muscle, groups of motor neurons were alternatively synergistically
recruited with respect to most of the motor neurons for the same
muscles. We identified these motor neurons as the ones that were acti-
vated less than one half of the mean across all the motor neuron weights
for the synergy when the relative muscle was maximally activated, and at
the same time, were activated more than one half of the mean across all
the motor neuron weights for at least another synergy.

Testing the effect of number of motor neurons per muscle on synergy
identification

As the number of motor neurons included in each muscle might affect
the structure of the identified synergies and, therefore, the comparison
between motor neuron synergies with muscle synergies, we extracted
synergies from subsets of motor neurons, each subset consisting of the
same number of motor neurons per muscle. Subsets with one to four
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Table 1. Number of identified motor neurons associated with each muscle
across the total 379 identified motor neurons

Number of identified motor neurons for each muscle

Muscles s1 s2 s3 s4 s5 56 s7 Mean Std
FDI 12 N 6 13 8 6 13 9.9 3.1
11 DI 6 6 3 7 5 1 8 5.1 24
1ol 6 5 2 1 1 6 3 34 2.2
IV DI 2 3 4 2 0 0 2 1.9 1.5
ADM 10 6 1 6 9 5 N 6.9 3.4
FPB 0 0 0 2 0 0 1 0.4 0.8
APB 4 2 0 0 4 3 4 24 1.8
(0] 2 2 1 8 5 5 4 3.9 24
ECU 4 5 2 2 3 4 6 3.7 1.5
EDC 2 5 6 8 5 2 0 4.0 2.8
ECR 2 1 2 0 1 2 3 1.6 1.0
FCU 4 3 4 6 3 2 2 34 14
FDP 4 4 0 4 7 2 9 43 3.0
FCR 8 2 4 3 1 2 3 33 23

Values for each subject and also mean and SD across subjects are reported.

motor neurons per muscle were considered, and five permutations for
each subset were tested. When the number of motor neurons in a given
muscle was lower or equal than the one required for the subset, all the
motor neurons of that muscle were taken into account. Muscle synergies
were extracted as explained above, Synergy extraction by NMF, and the
number of chosen synergies was determined with the above-described
change-in-slope criterion. Cross-correlation peaks between activation
signals and force were computed as done for the data obtained from the
analysis of all motor neurons.

Results

EMG decomposition

The total number of motor neurons identified for each subject
was 66, 55, 35, 62, 52, 40, and 69, for a total of 379 motor neurons
(Table 1). The level of accuracy (PNR) for the identified dis-
charge times across subjects was 30.7 4.6 dB, corresponding to
an average range of accuracy between 90% and 100% (Holobar et
al.,, 2014). From Table 1, only three MUs could be identified for
FPB across all subjects. Moreover, the global activity of FPB
could be observed only in two subjects. This can be because of
the position of this muscle, the closest to the palm, from which it
can be difficult to identify motor units. For this reason, the
results for this muscle should be considered cautiously.

Each row in Figure 5A shows discharges of a distinct motor
neuron obtained from one subject across all the grip types. A
total of 69 motor neurons across 13 muscles were identified for
this subject. In this example, most motor neurons exhibited pha-
sic discharges for almost all the grip types, while some motor
neurons for ADM, APB and for extrinsic muscles exhibited tonic
discharges for some grip types. Figure 5B shows motor neuron
discharges obtained from the IND-MID grip type shown in
Figure 5A but enlarged to show both spike trains and MVC-nor-
malized grip force measured from thumb opposed to the index
and middle fingers. Figure 5 and Table 1 show that, for some
grip types and muscles, it was not possible to identify active
motor neurons. For example, in Figure 5, motor neuron activity
was not extracted for the EDC muscle whereas in Table 1 motor
neurons of the FPB were identified only for two subjects, as men-
tioned above.

To demonstrate that the sparse activation of motor units
across grip types represented in Figure 5 was not because of an
erroneous identification of the decomposition algorithm, we
computed the STA for each motor unit and for each grip type
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Motor neuron spike trains and grip force. A, Motor neuron discharges identified for one subject (69 motor neurons across all muscles) are shown in each row and color-coded for

each muscle. B, Motor neuron discharges extracted during force production using the IND-MID grip type are enlarged and plotted with normalized grip force exerted by the thumb and two fin-

gers (index and middle fingers).

(see Materials and Methods, EMG signal decomposition). Across
all subjects, some units were identified in all grip types and the
normalized 2D cross-correlation of the STAs within each motor
unit across all grip types was 0.91 = 0.11, while some were identi-
fied only in some grip types and the cross-correlation within
motor units for these grip types was 0.86 = 0.04. These correla-
tions were higher than the cross-correlation values between dif-
ferent units (0.64 = 0.18 across all subjects and grip types). This
confirms that the action potential waveform of motor units
active in several tasks did not substantially change among tasks.
It would be highly unlikely that the action potential waveforms
of other units would change substantially since they are part of
the same muscle. We conclude that the decomposition algorithm
tracked the units across tasks correctly without splitting units
and that the sparsity in recruitment is an actual physiological
phenomenon.

Sparse recruitment across grip types

As seen in Figure 5, among the identified motor neurons, some
were active only for some grip types (a motor neuron was
defined not active when it discharged <20 spikes in the 10-s-
long grip observation, see Materials and Methods, Synergy
extraction by NMF). Figure 6A shows the percentage of motor
neurons that were active in two grip types. The grips involving
the index finger (GRASP, INDEX, IND-MID, and IND-LIT) con-
tained the highest number of motor neurons firing in a pair of grip
types (the maximum was 33% between INDEX and IND-MID
grips, the minimum was 22% between IND-MID and IND-LIT
grips). Moreover, for IND-LIT/LITTLE, IND-MID/MIDDLE and
INDEX/MIDDLE grip pairs, a similar percentage of motor neu-
rons firing in two grip types was found (25%, 22%, and 21%,
respectively). Percentages of motor neurons firing in a pair of grip
types among other grip type pairs were below 20%.

Figure 6B shows data obtained using the same analysis but
applied to motor neurons innervating each muscle. For FDI, the
grips involving the index finger had the highest proportion of
motor neurons active in more than one grip type (the maximum
was 58% between GRASP and INDEX, the minimum was 40%

between IND-MID and IND-LIT). There was a correspondence
between the main activated muscles and the finger activated in
grip pairs, e.g., motor neurons innervating the II DI activated
with the index and middle finger actuation, ADM exhibited little
activity, and different thenar and extrinsic muscles were involved
to different extents according to the finger(s) involved in the
grip. These results are similar to the motor neuron synergy ana-
tomic maps discussed below (Figs. 8, 9).

Thus, the sparse recruitment of motor neurons shown in
Figure 5 can be related to the muscle coordination by the CNS to
fulfil different tasks shown in Figure 6, by analyzing coordination
of individual motor neurons. We further elaborate this observa-
tion in Discussion.

Dimensionality

Figure 7 shows the extent to which each type of synergy could
reconstruct the original datasets quantified by the R* as a func-
tion of the number of synergies. Mean and SD (thick line and
shaded area, respectively) of R* averaged across subjects is shown
as a function of number of synergies used to reconstruct the orig-
inal data (1-10). For each type of synergy, the first column repre-
sents the average R* curves from synergies extracted from all grip
types combined. The second column represents the averaged R*
curves from synergies extracted from the four thumb-single fin-
ger grips. In all cases, we found a systematic difference in R* for
motor neuron and EMG synergies, with R values associated
with reconstructing EMG envelopes being always higher than
those associated with reconstructing motor neuron SDRs. The
vertical line in Figure 7 determines the number of synergies
selected which is the minimum value of synergies required to
bring the MSE below the 5e-4 threshold (dashed red line;
d’Avella et al.,, 2011). According to this criterion, the number of
motor neuron synergies was 4, for both selections of concaten-
ated grip recordings, for a mean and SD of R* across all subjects,
respectively, of 0.70 = 0.03 (seven grips) and 0.78 £ 0.05 (four
grips). For muscle synergies, the identified value was four for
synergies extracted from all grips (R* = 0.89 = 0.02) and three
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Percentage of motor neurons firing in two grip types. These results were obtained by computing for each pair of grips the percentage of motor neurons firing in two grip types

(Fig. 2B). In A, the percentage is represented for motor neurons from all muscles, while in B, it is represented for each muscle. The color scale is represented between 0% and 80%, the maxi-

mum value found for these results.
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Figure 7.  Reconstruction of original EMG data: comparison among motor neuron synergies and muscle synergies.
The R? quantifies the ability of each type of synergy (motor neuron or muscle) to reconstruct the original data (motor
neuron SDR or EMG envelopes, respectively) as a function of the number of synergies used for the reconstruction. The
top panel shows mean and SD (thick line and shaded area, respectively) of the R? averaged across subjects. The bot-
tom panel shows the corresponding MSE of linear fits. The drop of MSE below the threshold of 5e-4 (horizontal
dashed red line; d’Avella et al., 2011) is used to determine the minimum number of synergies to reconstruct the orig-
inal signals (vertical lines).

for synergies extracted only from single-
finger grips (R* = 0.86 = 0.04).

Muscle synergies

Figure 8 shows activation signals associ-
ated with muscle synergies across the
seven grip types for all subjects. We show
four synergies because this was the num-
ber of synergies identified according to
the MSE criterion (Fig. 7, first column).
Each row of the plot in Figure 8A repre-
sents the average activation signal across
subjects (row of the H matrix) for the syn-
ergy associated with a finger (Materials
and Methods, Synergy extraction by
NMEF). To further address the functional
role of each synergy, we represent the ana-
tomic maps of the synergy weights next to
each respective activation signal and also
the mean and the SD of the weights as bar
graphs (Fig. 8B). This figure provides the
spatiotemporal information about muscle
coordination, among the 14 extrinsic and
intrinsic hand muscles examined in this
study. While the spatial aspect of this
coordination is described by synergy
weights, the correspondent temporal as-
pect is described by the activation signals.
Moreover, the correlation between activa-
tion signals and the force is indicative of
how groups of muscles are coordinated to
generate the target force. The participa-
tion of each muscle in each synergy is
intuitively represented anatomically for a
quicker functional interpretation. A high



6886 - J. Neurosci., August 11,2021 - 41(32):6878—6891

A Activation Signals

GRASP INDEX IND-LIT IND-MID
XC=070+ 016 |XxC=062%020 |xC=070%015 |XC=063 £0.20

=
SYN1 <oa
o-zm

XC =066 £ 0.17

SYN2 2o,

XC=0.76 * 0.06

LITTLE
XC =056 +0.15

i

XC=056 £0.17 |XC=059 £015 |XC=059+0.23 |XC=063 +0.13

XC =064 0.16

by

XC =059 *0.13

XC=0.50 *0.16 XC =055 +0.24 XC =059 £0.17

SYN3 Zos

0.2

=

of
XC =049  0.17

0.6

XC=056 £0.16 |XC=054% 017 |XC=076%0.13

SYN4 504

0.2

o

I

o 1

5
Time (s)

Figure 8.

XC =058 +0.29

M

XC =070 +0.06

1
i
i
i
!
%

i
E
|
i

XC=053 £0.20

WWHI

Tanzarella etal.  Synergistic Organization of Spinal Motor Neurons

FDI
B Muscle participation in synergy DI

===l

'

e T

MIDDLE RING

XC =060 *0.18

g
[

XC =055 +0.20

XC =054 £ 0.25

=

a

Activation signals and anatomic maps of musde synergy weights. A, First four synergies averaged across all subjects. Mean and SD of the peak of the cross-correlation function

(XC) between each segment of the activation signals and the respective segment of the exerted force are shown above each segment. B, Values for the anatomic maps are represented with a
color scale between 0 and 1 and denote the estimated contribution of each muscle to each synergy. For each subject, the four synergies were ranked and assigned to a given finger (for details,
see Materials and Methods, Synergy extraction by NMF). On the right of each anatomic map, the bar graph representation of the mean and the SD of the synergy weights is also provided.

variability among the weights can be observed from the SD of the
bar graphs.

By examining the muscle synergies extracted from the EMG
signal reconstructed from the decomposed motor units and the
residual EMG signal, we found three to four dimensions for both
reconstructed signals and the residual. When we found three
synergies (36% of the cases across subjects and the two types of
signals), often the synergy associated with the ring was missing.
For the reconstructed signals, the mean cross-correlation
between activation signals and force was comparable with that
obtained for the original EMG signal. This analysis confirmed
that, for each synergy, the mean value of cross-correlation was
highest for the single-finger grip involving the finger associated
to that synergy. In contrast, for the residual we found very weak
mean cross-correlation values (<0.2) for all grips and synergies.
Therefore, only the decomposable portion of the EMG signal
contained information related to finger force modulation.

Motor neuron synergies

Figure 9 shows the time course of mean activation signals for the
first four motor neuron synergies extracted from each grip type
and averaged across all subjects. The activation of the first, sec-
ond, third, and fourth synergy occurs in grips involving a single
finger coupled to the thumb, i.e., index, middle, ring, and little
finger, respectively.

For each grip type and synergy, the mean and SD across sub-
jects of the peak of the cross-correlation function between each
10-s activation signal and the relative segment of exerted force is
reported in Figure 9A (XC). The highest mean value of the cross-
correlation peak for the first synergy, associated with the index
finger, is obtained for the grip actuating thumb and index finger,
and the same observations can be made for synergies associated
with thumb-middle and thumb-little finger (synergies 2 and 4,
respectively). For the synergy associated with the ring finger

(synergy 3), the highest value is for the GRASP grip, followed by
the RING and the IND-LIT grips, which exhibited on average a
cross-correlation peak of 0.58. When eliminating the outliers
outside four times the SD, the delay between the activations sig-
nals and the force was 190 £ 55 ms, in accordance with the study
of Del Vecchio et al. (2018).

A greater functional discrimination for motor neuron syner-
gies compared with muscle synergies can be observed in the ana-
tomic representation of the weights. Specifically, the activation of
the intrinsic muscle responsible for the activation of each finger
observed in the case of motor neuron synergies (Fig. 9), is much
less discriminable in the case of muscle synergies (Fig. 8). For
example, FDI and II DI are more active than other intrinsic
muscles for the motor neuron synergy associated with the index
finger, while for the respective muscle synergies more intrinsic
muscles seem equally involved. The same could be observed for
the ADM in the motor neuron synergy associated with the little
finger, and for the different dorsal interossei in the synergies,
respectively, associated with the middle and ring fingers. For all
these cases, the muscles have a more uniform activation in the
muscle synergies compared with motor neurons in the motor
neuron synergies, with a consequent less discriminate functional
role. For each motor neuron synergy, the mean values of the
cross-correlation peak with the grip force exhibited greater dif-
ferences across grip types involving the thumb and one of the
fingers associated with a given synergy than across cross-correla-
tion peaks computed using muscle synergies (Fig. 8). The only
exception to this pattern, observable for motor neuron synergies
as well as for muscle synergies, is the RING grip, which neverthe-
less exhibited the highest cross-correlation peak value for the
GRASP grip. The mean values of the cross-correlation peak with
the force for the INDEX grip in the motor neuron synergy asso-
ciated with the index finger were higher than for the respective
muscle synergies. The same was true for the LITTLE grip in the
motor neuron synergy associated with the little finger and for
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Figure 8.

the MIDDLE grip in the motor neuron synergy associated with
the middle finger. For motor neuron synergies the mean value
of the cross-correlation with the force in the index synergy was
higher for the INDEX grip, while in muscle synergies this value
was higher for the GRASP grip and the IND-LIT grip.

In Figure 9B, the anatomic maps are obtained using the W
columns (Materials and Methods), after the reordering based on
the finger association (Materials and Methods, Synergy extrac-
tion by NMF). By inspection of the anatomic maps, it is evident
that in the synergy assigned to the index finger, the FDI is the
most activated muscle, along with the IT DI and the extensors of
the wrist (mainly ECR). In the synergy assigned to the middle
finger, the IT DI and FPB are the most activated muscles, whereas
in the synergy assigned to the ring finger the III and the IV DI
are the most activated muscles, together with OPP and APB.
ADM, along with OPP, APB, and FCU are characterized by the
largest weights in the synergy assigned to the little finger. The
different contribution of the muscles of the thenar eminence in
the four weight maps is consistent with their anatomic function:
the thumb must flex to oppose the index and the middle fingers
(synergies 1 and 2), while it must abduct and oppose to approach
the tip of the ring and little fingers (synergies 3 and 4).

The findings represented in the anatomic maps of the motor
neuron synergies are in agreement with the motor neuron firing
in two grip types (Fig. 6). In fact, quantifying the contribution of
each muscle by summing the contribution of the relative motor
neurons in each synergy, is similar to counting the activated
motor neurons for pairs of grips, where for each grip a different
combination of fingers is activated. For example, in the map
associated to the first synergy and index finger (Fig. 9), FDI and
I1 DI are the most activated muscles. Similarly, in Figure 9, FDI
motor neurons are mainly active for all the grips involving the
index finger. The same observation applies to ADM, for which
the innervating motor neurons are commonly activated for grips
where the little finger is involved, confirming the anatomic
maps. ECU and ECR, which present motor neuron firing across

grips involving index and middle fingers, are mainly activated in
the anatomic maps of the motor neuron synergies involving
those fingers (Fig. 9). Finally, the differential activation of the
muscles of the thenar during the grips with different fingers is
confirmed by results in Figure 6 (APB during ring activation and
OPP during ring and little activation).

Association of synergies to digits

To provide a more accurate comparison of the extent to which
each type of synergy could be associated with a given finger, we
compared the number of synergies that correlated the most with
grip force in (1) single-finger grips involving the finger associated
with a given synergy; (2) combined-finger grips (GRASP, IND-
LIT, IND-MID) involving the finger associated with a given syn-
ergy; and (3) grips involving fingers other than those associated
with a given synergy. Across all subjects (n="7) and the first four
synergies for each subject (i.e., 28 synergies), analyses (1), (2),
and (3) applied to motor neuron synergies revealed 17, 4, and 7
synergies, respectively. The same analyses applied to muscle syn-
ergies revealed 12, 7, and 9 synergies, respectively. This means
that a motor neuron synergy associated with a finger was more
frequently correlated, in most cases, with force during single-fin-
ger grip, e.g., index-synergy during INDEX grip, than for muscle
synergies. Moreover, a motor neuron synergy associated with a
finger was mostly correlated with force in a single-finger grip in
fewer cases relative to another finger. Thus, among the synergies
observed for the seven subjects, motor neuron synergies pro-
vided more frequently a higher discrimination of the activity of a
single finger in a given grip type than muscle synergies.

Synergistic behavior of motor neurons within muscles

Lastly, we assessed an alternative synergistic organization of
motor neurons within a muscle (Materials and Methods). Figure
10 shows the motor neuron synergy weights for all subjects to-
gether with the alternative synergistic organization (black and
red bars, respectively). Note that these motor neurons can be
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Figure 10.  Motor neuron synergy normalized weights (from 0 to 1, where 1 is the highest weight in the synergy) of all subjects. In red, the motor neurons recruited synergistically in a dif-
ferent way with respect with the majority of motor neurons of their muscle, are highlighted in all the synergies where they are more active (see Materials and Methods, Synergistic behavior of
motor neurons within each muscle). For each subject, synergies are ordered by finger association (index, little, middle, ring).

mostly active in more than one synergy, thus in the figure they
can be highlighted for all these synergies. Conversely, these
motor neurons are mostly inactive in the synergy where the con-
sidered muscle is mainly activated. For instance, motor neurons
#10 and #12 for FDI of Subject 1 in Figure 10 are active less than
one half of the mean activation of the synergy where FDI is most
active (synergy 1), but they are active more than one half of the
mean for another synergy (synergy 4). This alternative organiza-
tion indicates the existence of different spinal neural pathways
from interneuron modules to groups of motor neurons of the
same muscles, thus suggesting that the CNS controls groups of
motor neurons rather than groups of muscles. Indeed, if different
motor units of the same muscle do not act in concert, the muscle
is not necessarily activated as a whole (see Discussion). The num-
ber of these alternative organizations of activated motor neurons
was between 10% and 15% of the total (with a minimum of 6.4%
and a maximum of 16.7% depending on the subject). This result
suggests that most motor neurons of the same pool mainly
belonged to a single synergy. These results also suggest that a mi-
nority of motor neurons in the same muscle may be controlled
with a different synergistic behavior.

Synergies were extracted for different numbers of motor neu-
rons per muscle by creating subsets consisting of permutations
of motor neurons (see Materials and Methods). For all sizes of
the motor neuron subsets (in the range one to four motor neu-
rons per muscle), we identified either 3 or four synergies for each
permutation across all subjects. In the case of three synergies
(38% of all cases), the excluded synergy was the one associated
with the ring finger, except for subject #3 where the synergy asso-
ciated with the index finger was missing. This change in dimen-
sionality was not clearly related to the dimensionality of the
subsets, but rather because of the different randomizations of the
selected motor neurons. The mean and the SD of the cross-corre-
lation between force and activation signals is reported across all
subjects and all the subset permutations (thus also all the subset
numerosities) for each synergy and each grip type in Table 2.
The strongest mean cross-correlation for each synergy

corresponded to the single-finger grip when the finger associated
to that synergy was involved. This was true for all sizes of the
motor neuron subsets (1-4), except for the ring finger with sub-
set sizes more than two motor neurons per muscles. Overall,
these results confirm that the above-described observations on
motor neuron synergies extracted from all the motor neurons
and grip types were not influenced by the different numbers of
motor neurons identified per muscle.

Discussion

Our study was designed to test the hypothesis that pools of
motor neurons of different hand muscles are synergistically
organized and, therefore, that their activity should be accounted
for by a substantially smaller dimensionality than the number of
motor neurons we recorded from. Our findings support this hy-
pothesis and further indicate a similar synergistic structure for
whole muscles and motor neuron pools. However, some devia-
tions in this correspondence were also observed.

The modular behavior among motor neurons can be
observed through the sparse activation in motor neuron dis-
charge patterns across different grips (Fig. 5A). This sparsity
reflects excitatory and inhibitory spinal interneuron output to
motor neurons that differs across grip types, as represented sche-
matically in Figure 2B. We quantified the coactivation of the
same motor neuron across different grip types (Fig. 6) and used
this data to define motor neuron synergy anatomic maps (Fig.
9). We note that, for motor neuron synergistic behavior to occur,
recruitment of one motor neuron for some but not all grip types
would reflect a modular organization presumably arising from
the output of spinal interneuronal circuitry.

We identified the number of motor neuron and muscle syn-
ergies necessary to account for the signals obtained from all grips
or only the four grips that involved one finger in opposition to
the thumb. We found a comparable number of synergies when
analyzing muscle or motor neuron activities (Fig. 7). Surface
EMG signals are inevitable corrupted by cross talk, especially in
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Table 2. Mean and SD of the cross-correlation peak between activation signals and force for synergies extracted from subsets of motor neurons (MN) ranging from

1 to 4 MNs per muscle (five permutations in each case)

GRASP INDEX IND-LIT IND-MID LITTLE MIDDLE RING
Syn “index” 1 MN/musc 0.71+=0.17 0.75 = 0.12 0.63 = 0.22 0.63 =0.22 0.53 =0.18 0.63 =0.17 0.48 = 0.18
2 MN/musc 0.79 £0.13 0.75 £ 0.16 0.64 £ 0.23 0.74 = 0.21 0.55 = 0.19 0.71 £0.16 0.51£0.19
3 MN/musc 0.77 £ 0.18 0.78 £0.14 0.63 £ 0.22 0.76 = 0.19 0.55 = 0.19 0.74 £0.12 0.50 = 0.24
4 MN/musc 0.81 = 0.16 0.81 = 0.12 0.60 = 0.20 0.82+0.14 0.56 = 0.16 0.77 = 0.12 0.55 = 0.22
Syn “middle” 1 MN/musc 0.62 = 0.20 0.60 = 0.22 0.56 = 0.16 0.70 =0.20 0.46 = 0.15 0.76 = 0.14 0.53 = 0.20
2 MN/musc 0.74 £0.17 0.69 = 0.20 0.65 = 0.20 0.76 = 0.13 0.58 = 0.16 0.75 £0.17 0.61 £ 0.21
3 MN/musc 0.62 = 0.25 0.68 = 0.20 0.59 = 0.18 0.68 = 0.22 0.56 = 0.17 0.72+0.19 0.53 =0.18
4 MN/musc 0.59 = 0.25 0.60 = 0.25 0.61 = 0.22 0.66 = 0.24 0.57 =0.17 0.71=0.20 0.48 = 0.18
Syn “ring” 1 MN/musc 0.55 =0.27 0.53 = 0.19 0.57 = 0.20 0.57 =0.21 0.48 = 0.19 0.55 = 0.16 0.63 = 0.23
2 MN/musc 0.58 =0.23 0.54 = 0.14 0.56 = 0.22 0.62 +=0.18 0.52+0.20 0.60 = 0.16 0.66 = 0.19
3 MN/musc 0.68 = 0.19 0.58 £ 0.17 0.61 £0.20 0.67 = 0.19 0.52 = 0.17 0.54 £0.21 0.67 = 0.20
4 MN/musc 0.63 = 0.18 0.54 = 0.20 0.61 £ 0.21 0.67 = 0.16 0.54 =0.18 0.57 =0.23 0.65 = 0.22
Syn “little” 1 MN/musc 0.46 = 0.17 0.49 = 0.15 0.58 = 0.22 0.53 =0.19 0.68 = 0.22 0.49 = 0.21 0.46 = 0.17
2 MN/musc 0.52 £0.18 0.50 £ 0.16 0.71 £0.16 0.61 = 0.11 0.77 £ 0.15 0.53 £0.13 0.53 £0.18
3 MN/musc 0.58 =0.17 0.55 = 0.21 0.80 = 0.1 0.66 = 0.13 0.80 =0.13 0.49 = 0.14 0.51 = 0.17
4 MN/musc 0.54 = 0.15 0.55 = 0.19 0.77 =013 0.62 =0.17 0.82 0.1 0.49 = 0.15 0.52 = 0.18

Values are provided for each grip type, each synergy, and each size of the MN subset per muscle. Results are for all subjects.

the hand and forearm where muscles are small and closely
spaced (Muceli et al., 2014). On the contrary, signals extracted
from SDR are cross-talk free and therefore more independent
from each other compared with the surface EMG counterpart.

A low dimensionality in motor neuron output, even across
different task conditions, implies that the dimensionality reduc-
tion is implemented at the motor neuron level by spinal inter-
neuron modules and other supraspinal and/or afferent inputs.
This is a new and more detailed perspective in examining muscle
synergistic control that is rooted on previous evidence of pre-
dominant common synaptic input to a motor neuron pool.
Thus, for the first time this study integrates findings about mod-
ularity in muscle coordination (muscle synergy paradigm) with
reports of common synaptic input to motor neurons (Negro et
al., 2009; Del Vecchio et al., 2019; Tanzarella et al., 2020). In fact,
motor neurons may receive input from different interneurons
whose activity is modulated in common, possibly because such
interneurons receive a common input or because of other com-
plex network dynamics. Our approach allows us to interpret the
activation signals of each synergy as the common input to the
corresponding group of motor neurons for each task condition.
These groups include innervation to multiple muscles such that
the dimensionality of control is significantly lower than the num-
ber of motor neuron pools. Finally, we have found a similar low
dimensionality (three to four identified synergies) for different
subsets of motor neurons used for this analysis, suggesting that
the number of motor neurons per muscle included in the analy-
sis did not affect the structure of the extracted synergies.

By focusing on the functional role of the identified synergies,
we observed that motor neuron synergies were usually character-
ized by a greater average correlation with force than muscle syn-
ergies. Moreover, there was a better correspondence of the
activated muscles to the expected biomechanical function when
the anatomic representation of the synergy weights was derived
from motor neuron than from muscle synergies. It was therefore
possible to functionally explain the synergistic organization of
motor neuron pools innervating multiple muscles. This func-
tional role is preserved regardless of the number of motor neu-
rons per muscle included in the analysis (Table 2).

Finally, we investigated whether motor neurons innervating
the same muscle belonged to different synergies by analyzing the
motor neuron synergy weights. Most motor neurons innervating

the same muscle were activated within the same synergy, whereas
only a small percentage (between 6.4% and 16.7%, depending on
the subject) of motor neurons of the same pool were active in dif-
ferent synergies (Fig. 10). Thus, motor neurons appear to be con-
trolled in clusters and exhibit the same behavior within a cluster
(Madarshahian et al., 2021). This is in agreement with a low
dimensionality in the synaptic input that the motor neurons
receive. However, we note that there were a few exceptions to
this rule, which indicate some variability in the synergistic orga-
nization. These exceptions are particularly important when con-
sidering the correspondence between muscles, as anatomic units,
and motor neuron pools, as neural units. Although a general cor-
respondence between muscles and motor neuron pools was
observed, which corresponded to a similar synergistic organiza-
tion of muscles and motor neurons, this was not exact in all con-
ditions. This result leads to the speculation, which needs to be
assessed in future work with additional data, that the CNS may
not control synergies across muscles but across motor neurons,
with only a partial overlap between the two. At a single muscle
level, this conclusion is in agreement with the motor unit modes
identified in a single pool of motor neurons by Madarshahian et
al. (2021).

This study also contributes to our knowledge on hand motor
control. As reviewed by Santello et al. (2013), motor primitives
have been usually analyzed in terms of biomechanics (kinematic
and kinetic synergies) and neuromechanics (muscle synergies
and neural synergies). We infer for the first time those neural
synergies during hand grip execution, by relating them directly
with muscle synergies and by also computing a correlation with
the exerted force measures. In fact, although we can observe only
the final output of spinal motor neurons, their synergistic organi-
zation must be strictly related to the common input they receive,
thus establishing a synergistic behavior at the neural level, not
only muscular. Studies about motor primitives in hand control
(Santello et al., 1998; Weiss and Flanders, 2004; Ajiboye and
Weir, 2009) showed that fingers are often synergistically com-
bined together during natural grips. Our experimental protocol
also included some grip types (MIDDLE, RING, LITTLE) that
involve activation of one finger at a time (along with the thumb)
that we do not often use in activities of daily living. However,
they were introduced to equally represent and isolate each finger,
as also done in other studies (Madarshahian et al., 2021). The
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selection of the grip types investigated in this study may have
contributed to the result that each motor neuron synergy mainly
contributed to the force exerted by an individual finger.
However, we speculate that the phenomenon of low-dimen-
sional, synergistic control of motor neurons innervating multiple
hand muscles might extend to a broader range of hand-object
interaction tasks, and possibly to other sets of upper and lower
limb muscles engaged in tasks that share requirements similar to
our task conditions.

From a more general perspective, our study provides a new
perspective on the hierarchical nature of synergistic motor con-
trol. By observing the synergistic organization of motor neurons,
we are capturing the net effect of all inputs to motor neurons,
which would include ascending signals (Fetz et al, 2002).
However, for a comprehensive identification of neural synergies
of the hand, we would have to directly observe the whole chain
determining the neural drive to muscles, from descending path-
ways to the spinal and motor neuron level. Our investigation
cannot discern the mechanisms underlying the excitation and
the inhibition of the interneuron at the spinal level, as directly
observed in non-human primates by Takei and Seki during grip
(Takei and Seki, 2010, 2013a,b). Takei et al. (2017) showed that
muscle fields of PreM-INs are distributed as clusters, spatiotem-
porally correlated with muscle synergies, suggesting that the fun-
damental coordination of multiple muscles is prescribed by
spinal premotor circuits. To expand these results beyond the
well-studied role of spinal modules for muscle synergies (Ting
and McKay, 2007; Tresch and Jarc, 2009; Bizzi and Cheung,
2013), it is necessary to assess the concurrent motor neuron
behavior. Also, the function of motor cortex in this synergistic
control should be clarified. It was indeed shown that a synergistic
structure of motor control may be coded in the primary motor
cortex (Schieber and Santello, 2004; Ejaz et al., 2015; Leo et al.,
2016; Fricke et al., 2020). Invasive cortical stimulation of mon-
keys further confirmed this phenomenon (Overduin et al., 2015),
which nevertheless needs to be associated with how descending
commands are organized at the spinal level.

Future studies should combine cortical activity recording,
invasive recordings of PreM-INs (in primates), motor neuron
discharge patterns and biomechanical measurements in a large
repertoire of tasks, to address the interaction among central and
peripheral mechanisms responsible for the coordination of activ-
ity across multiple muscles. To provide a robust framework for
interpreting these studies, a computational model of the neural
command integration at the spinal level by PreM-INs is neces-
sary. This model should describe the relation among (1) motor
neuron synergies (defined in this paper); (2) behavior and tuning
of motor neuron subsets within individual muscles; and (3) how
afferent and cortical inputs are integrated by PreM-INs to pro-
duce the net input to motor neurons.
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