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Abstract

QM/MM simulations have become an indispensable tool in many chemical and biochemical 

investigations. Considering the tremendous degree of success, including the recognition by a 2013 

Nobel Prize in Chemistry, are there still “burning challenges” in QM/MM methods, especially 

for biomolecular systems? In this short Perspective, we discuss several issues that we believe 

greatly impact the robustness and quantitative applicability of QM/MM simulations to many, if not 

all, biomolecules. We highlight these issues with observations and relevant advances from recent 

studies in our group and others in the field. Despite such limited scope, we hope the discussions 

are of general interest and will stimulate additional developments that help push the field forward 

in meaningful directions.

Graphical Abstract

1 Introduction

Following many years of development and calibration, hybrid quantum mechanical/

molecular mechanical (QM/MM) methods1–4 have become an essential tool5–8 in chemical 
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and biochemical research. Applications of QM/MM simulations to enzymes include not 

only dissection of reaction mechanisms, elucidation of various factors that contribute to 

catalysis, but also design of enzyme inhibitors, analysis and improvement of designed 

enzymes as well as understanding evolutionary relations between enzymes.9–16 Indeed, a 

search using the keyword “QM/MM” or “ONIOM”17 in the Web of Science points to >800 

articles published in 2019–2020 alone. Numerous molecular simulation packages such as 

CHARMM, AMBER, NAMD, OpenMM and Gromacs all have QM/MM functionalities, 

some with build-in QM modules, while others providing interfaces with popular QM 

packages such as Gaussian, Q-Chem, Turbomole, Psi4 and ORCA; similarly, many quantum 

chemistry packages such as Gaussian, ORCA, C2PK and DFTB+ offer coupling with 

external MM models; there are also platforms that focus entirely on QM/MM calculations, 

such as the celebrated Chemshell environment18 pioneered by Sherwood and the late 

Walter Thiel,19 who has made numerous important contributions to the field in terms of 

both method developments and systematic analyses of factors that impact the accuracy of 

QM/MM simulations.

In light of such tremendous success, including the recognition by the 2013 Nobel Prize in 

Chemistry, one is tempted to ask: are there still “burning issues” for QM/MM methods, 

especially for biomolecular systems? If so, are the corresponding challenges fundamental 

in nature, or should they be better thought as establishing the best practice and enabling 

most efficient execution for realistic applications? The answers to such questions are clearly 

highly subjective, and in this short Perspective article, we discuss our views based on the 

recent research interest and developments in the group. Despite such limited scope, we hope 

the discussions are of general interest and will stimulate additional developments that help 

push the field forward in meaningful directions.

Before turning to these discussions, it is worth noting that application of QM/MM methods 

to solid/liquid interfaces,20,21 for example in the important context of electrochemistry22 

and heterogeneous catalysis,23 has been much more limited compared to biomolecular 

studies. This is perhaps due mainly to the less obvious scheme to divide the solid into 

QM and MM regions without considerable perturbation to the electronic structure of the 

solid, especially for metallic systems (e.g., the electrode). Therefore, efforts have focused 

primarily on pure QM based embedding approaches, such as those pioneered by Carter 

and co-workers based on orbital-free DFT,24 which have been successfully applied to many 

materials problems. Nevertheless, these pure QM based embedding approaches remain 

computationally expensive for solid/liquid interfaces, for which an adequate sampling of 

the interfacial solvent and ions (i.e., the electric double layer25) is expected to be essential. 

Therefore, further development, implementation and calibration of robust QM/MM methods 

for solid/liquid interfaces, especially under the condition of constant potential,26,27 ought to 

be considered an important area of research. Similar to the studies of reactions in solution, 

QM/MM simulations with explicit solvent28 and advanced implicit solvent models29,30 are 

expected to be complementary to each other for the mechanistic analysis of electrochemical 

reactions.
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2 Several “Burning Issues”

In the following, we discuss several “burning issues” that we believe greatly impact 

the robustness and quantitative applicability of QM/MM simulations to many, if not 

all, biomolecules. We group these issues into several general topics related to QM/MM 

simulations, and we highlight them with observations and relevant advances from recent 

studies in our group and others in the field.

2.1 Potential Function: QM and MM Selections

The choices for QM/MM partitioning and the relevant QM and MM methods are 

largely system-dependent. Nevertheless, given a considerable number of recent studies and 

sometimes passionate debates31–40 regarding these choices, it is worth discussing several 

issues explicitly.

2.1.1 The value of semi-empirical and machine learning potentials—Since 

adequate sampling is important to biomolecular applications, the need of an efficient QM 

potential is compelling, especially when the proper QM region contains at least hundreds 

of atoms. Along this line, approximate QM approaches such as semi-empirical QM 

methods41,42 and the empirical valence bond (EVB) method43 remain particularly attractive 

in many applications. They need to be carefully calibrated to generate meaningful results; 

once calibrated (e.g., using spline fits to high-level reference reactions44), they are uniquely 

powerful for the analysis of systems and/or experimental observables that demand extensive 

sampling. For example, as discussed further below, DFTB3/MM simulations enable 

the sampling of multi-dimensional free energy surfaces, which are required to analyze 

complex reaction pathways and to characterize the coupling between different processes 

(e.g., mechanochemical coupling). On the other hand, EVB based simulations have been 

instrumental to the computation of experimental observables that require extensive sampling 

to achieve the necessary numerical precision, such as activation entropy45 and linear free 

energy relations,46 which are difficult to compute otherwise. These examples include >150 

ns of DFTB3/MM simulations47 and thousands of independent EVB free energy profile 

simulations,48 which are indeed very difficult, if not currently impossible, to reach with ab 
initio QM/MM simulations, despite impressive progress in computational algorithm as well 

as hardware.49,50

Motivated by these considerations, a “burning issue” is to improve the accuracy and 

applicability of semi-empirical QM methods; work along this line has been reviewed fairly 

recently51 and will not be repeated here. A notable advance since then is the development of 

the extended tight binding model of Grimme et al. (xTB),52 which has been parameterized 

for the entire periodic table. While the model was developed mainly for capturing structures 

and vibrational frequencies, it gives encouraging results also for energetics, especially for 

non-covalent interactions.53 In Fig.1a, we compare the performance of several popular 

semi-empirical methods for computing the second virial coefficients of small molecules 

of different levels of polarity; in Fig.1b, we compare the two-body and three-body 

interactions of water molecules by DFTB3 and xTB using the dataset of Paesani and 

co-workers.54 Evidently, despite the minimal basis nature of these methods, the performance 
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is quite respectable even for three-body interactions of water, and these tight binding 

methods outperforms several NDDO methods, even those including empirical corrections 

for hydrogen-bonding interactions (see Supporting Information). On the other hand, there is 

clearly room for improvements, which would also require analysis in the condensed phase 

environment,55 such as the computation of solvation free energy and binding affinity.

A major remaining challenge for the semi-empirical QM methods (and ab initio QM 

methods) is the treatment of transition metal ions, which are common in enzymes. The 

highly localized nature of the d and f electrons requires a reliable treatment of electron 

correlation, both dynamic and static. For structural properties, both DFTB3 and xTB appear 

to be able to provide adequate equilibrium parameters,51,53 although the energy landscape 

has not been thoroughly analyzed. Analysis of the electronic structure using Natural 

Bonding Orbital analysis57,58 found that DFTB3 provides physically sound descriptions for 

different bonding scenarios, including those exhibiting pseudo Jahn-Teller effects (see Fig.2a 

as an example). The degree of ligand to metal charge transfer and ionic character of certain 

bonds are overestimated, likely reflecting the minimal basis nature of DFTB3, and certain 

orbital interactions, such as geminal interactions, were observed to be grossly overestimated 

by DFTB3 for several transition metal compounds. Energetics are generally less satisfying, 

especially when considering different spin states, since interactions among d/f electrons 

are treated in an averaged fashion in the current tight-binding models. One possible 

improvement is to treat the d/f electrons separately, along the line of the DFT+U model 

in materials science59 or the ligand-field model in the inorganic chemistry literature.60,61 In 

a recent explorative study,62 together with collaborators we have implemented a preliminary 

version of the DFTB3+U model,

EDFBT3 + U = EDFTB3 + ∑
α, β, α′, β′ ∈ d/f

Pαβ
U Pα′β′

U αα′‖ββ′ − Pαβ
I Pα′β′

I αβ′ ∣ β′α

,
(1)

in which PU(PI) are the spin unpolarized (polarized) density matrix elements involving the 

d/f electrons and the usual two-electron integrals are parameterized in terms of the Slater 

integrals or the Racah parameters.60 It was found62 that the additional U contribution indeed 

improved the splitting between the low-spin and high-spin states in a series of Ni(II) and 

Ni(III) compounds as well as the populations of the 3d orbitals.63 Further self-consistent 

tuning of the electronic parameters in the model will be informative regarding the degree 

of transferability and expected accuracy for the +U model, and whether a multi-determinant 

formulation of the DFTB3 model (e.g., in the framework of ensemble64 or multi-state65 

DFT) is warranted.

Another promising direction for improving approximate (tight-binding and DFT) methods 

is to employ machine learning (ML) techniques,66 which have seen explosive progress in 

recent years for developing potential energy functions,67 predicting molecular/materials 

properties68 as well as enhancing conformational sampling.69 Specific for metal ions, 

for example, ML approaches have been used to analyze spin state properties70 as well 

as diagnostics for static electron correlations.71 ML models have also been used to 

improve the accuracy of mean-field models such as tight-binding and Hartree-Fock, with 
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features ranging from simply atomic coordinates to Fock matrix elements.72,73 For realistic 

condensed phase QM/MM applications, the judicious combination of a physical reference 

QM level and ML is required to ensure the optimal balance of accuracy, robustness 

and transferability. Further developments along this line, so as to enable stable, energy

conserving MD simulations,74,75 will be exciting and transformative in terms of the type of 

problems that QM/MM simulations are able to tackle.

2.1.2 Going beyond popular additive MM models—Most QM/MM applications 

to biomolecules use popular fixed-charge MM force fields. The general success of these 

applications suggests that this combination is adequate for many problems, an observation 

also made in several comparisons of QM/MM results using both fixed-charge and 

polarizable force fields.76 Nevertheless, the need to include explicit electronic polarization 

for certain problems has also been well documented, such as for the prediction of absorption 

spectra,77,78 reduction potential79 and pKa values;80 i.e., for situations where there is a very 

large change in the electrostatic properties (e.g., either the net charge or dipole moment) of 

the QM region. While more ad hoc models such as charge scaling80 or atomic polarizability 

models81 were used in earlier studies, more systematic efforts that integrate QM with well 

calibrated polarizable force fields such as AMOEBA, Effective Fragment Potential and 

MB-pol have been reported.79,82–84

A systematic comparison between QM/MM simulations with different MM models will be 

informative for better identifying problems for which an explicit treatment of electronic 

polarization makes a qualitative difference; for example, it was suggested that to properly 

capture the electric field in enzyme active site for the purpose of guiding design, including 

electronic polarization is essential.85 Along this line, we highlight that a meaningful 

comparison will require extensive sampling. In part, this is because electrostatic interactions 

between groups in a biomolecule are screened quite effectively;86,87 this is especially the 

case for many enzyme active sites, which are buried but not far from the protein/solvent 

interface. To properly capture the screening effect, it is important to consider reorientation 

of the protein and solvent dipoles during a chemical reaction (this contrasts to the situation 

of ultrafast spectroscopy,78,83 for which electronic dielectric response of the environment 

tends to be particularly important due to the limited degree of dipolar reorientation during 

the short time scale); without adequate sampling of such dipolar reorientations, the effect of 

distant groups can be overestimated. A somewhat extreme illustration is that contributions 

from distant charged residues to the pKa of a titratable group are significantly overestimated 

(>10 kcal/mol) when analyzed in a perturbative fashion,88,89 i.e., by computing the change 

of QM/MM interaction energies without re-sampling the MD trajectory after the MM partial 

charges on a charged residue are turned off. For a similar reason, without adequate sampling, 

the effect of altering the description (MM vs. QM) of distal residues can be exaggerated, 

thus the issue of sampling is also highly pertinent to the discussion of QM region size in 

QM/MM simulations.31–39

The sampling challenge is particularly significant for the prediction of properties that 

involve a net change of total charge, such as reduction potential and pKa values, since the 

corresponding “charging” process is likely coupled with non-trivial changes in the protein 

structure and local hydration levels.90,91 Along this line, recent studies suggested that the 
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lack of explicit electronic polarization leads to errors more than 1 eV for the reduction 

potential of flavins in proteins;79 this important observation is somewhat surprising as 

fixed-charge force field models have been quite successful at capturing relative reduction 

potential and pKa values based on alchemical free energy simulations,92–94 provided that 

adequate sampling is done; one possible explanation is that the average polarization effect 

is empirically included in the fixed-charge force fields. Therefore, thorough comparison 

of different QM/MM models for both absolute and relative free energies with sufficient 

sampling is of great value. To enable such comparisons, advanced sampling techniques, 

including grand canonical Monte Carlo approaches for efficiently sampling local hydration 

level, are expected to be essential; subtle technical issues such as the effect of net charge 

change in Ewald summation, which are well understood,95 should be considered when 

comparing results from different set ups, as many ab initio QM/MM simulations, especially 

those employ advanced MM models, still do not use periodic boundary condition while 

many semi-empirical QM/MM simulations do.96,97

Another deviation from standard QM/MM setups is to employ coarse-grained (CG) models 

for at least part of the MM environment,98–100 which was motivated by applications that 

involve slow processes such as large-scale structural transitions of the biomolecule101 or 

protein design. Considering that QM/MM interaction terms are crucial to the accuracy of 

QM/MM simulations in general, it is challenging to construct reliable QM/CG models that 

are transferable among distinct conformational states, although solid progress have been 

reported.98

2.2 Local Sampling: Multi-dimensional and Multi-level free energy simulations

For effective sampling, depending on the nature of the bottleneck, different strategies are 

required. Thus we separately discuss several “burning issues” related to local sampling 

and remote (allosteric) effects in this and subsequent subsections, respectively. We focus 

on issues most relevant to biomolecular QM/MM applications, since excellent reviews are 

available on the general topic of enhanced sampling for biomolecules.102,103

2.2.1 Multi-dimensional free energy simulations: competitive pathways and 
causal relations among different processes—One could argue that to capture the 

key features of the chemical step(s) in most enzymes, standard QM/MM free energy 

simulations (e.g., umbrella sampling and metadynamics) using one or two collective 

variables (CVs) are likely adequate. For more complex transformations that explicitly 

involve multiple catalytic groups, such as ATP hydrolysis in molecular motors, finite 

temperature string methods104 that parameterize the minimum free energy path with a large 

number of CVs can be very effective.105,106 A direction of major interest is to develop 

the finite temperature analog of automated and exhaustive reaction path searches107,108 on 

potential energy surfaces such that catalytic mechanism analysis for multi-step reactions in 

enzymes can be done in an automated fashion without prior bias by human intuition.

On the other hand, some problems require alternative approaches. For example, one hall

mark that distinguishes biomolecules from artificial catalysts is that the chemical activities 

in the former are often tightly coupled to other processes. As a result, chemical reactions 
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can be used in biology to drive other events such as conformational transitions or pumping 

ions across the cell membrane, forming the basis of energy and signal transductions in 

cells.109 As the other side of the coin, the level of chemical activity in biomolecules 

can be significantly perturbed by processes that occur either proximal or distal to the 

active site, giving rise to a multitude of regulatory mechanisms of enzyme catalysis. 

Therefore, understanding the physical principles that govern the coupling between the 

chemical step and other events, such as penetration of water molecules into the active 

site,110–112 recruitment of transient metal ions,113,114 or conformational rearrangements near 

and afar,115–119 is of great fundamental and practical importance.

For such problems, the most revealing approach that can clearly elucidate the causality 

among different processes is to conduct multi-dimensional free energy simulations. This 

is computationally demanding and therefore particularly requires a balance between 

computational accuracy and efficiency; semi-empirical QM/MM methods, perhaps 

augmented with ML corrections, are uniquely appropriate in this context. Even with 

inexpensive QM/MM methods, it is essential to ensure optimal efficiency in building up the 

free energy surface and allocating computational resources for the sampling of the relevant 

CV space; the selection of the appropriate set of CVs is not unique to QM/MM simulations 

and has been discussed extensively in the literature.69,103

Along this line, ML approaches can again offer simple and effective solutions. For example, 

Zhang et al.121 developed a reinforcement learning approach in which a neural network 

ensemble is used to learn the multi-dimensional free energy surface. The approach takes 

advantage of the numerical flexibility of neural networks to parameterize high-dimensional 

functions; in addition, the use of an ensemble of neural networks makes it straightforward 

to identify regions of the CV space that have been undersampled, so that computational 

resources are automatically re-allocated accordingly. The approach can be straightforwardly 

applied to QM/MM simulations (Fig. 3) to analyze competition of multiple reaction 

pathways as well as coupling between the chemical step and other local processes, such 

as metal ion trafficking. In the current form, the approach does not actively enhance the 

sampling of degrees of freedom not included in the CV space, which again is not a unique 

challenge to QM/MM simulations.

2.2.2 Multi-level free energy simulations: bridging the distributions at 
different levels of theory—In quantum chemistry, it is routine to combine different 

levels of theory to focus on structure and energetics, respectively.122 It is therefore natural 

to pursue “multi-level” free energy simulations123,124 in which an inexpensive QM/MM 

potential is used to explore the conformational space and a more accurate QM/MM 

potential is used to improve the energetics. The fundamental challenge for condensed phase 

simulations at a finite temperature is that the configurations with high Boltzmann weights 

may differ significantly at different levels of theory, thus merely re-weighting of samples 

collected from a low-level simulation with high-level energies125 is unlikely to lead to 

proper convergence,126 especially when the QM region is large (for example, 100–250 

atoms, as in many semi-empirical QM/MM simulations127).
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As discussed extensively in the literature, the success of “multi-level” free energy 

simulations depends critically on the overlap of the configurational distributions; specifically 

in the framework of free energy perturbation upon changing potential energy, one useful 

metric is the overlap in the energy gap (i.e., ΔULH(X) = UH(X) − UL(X)) distribution at the 

two levels (L, H) of theory (ρL(ΔULH) vs. ρH(ΔULH)), as reflected by the well-established 

identity,128

e−βΔULHρL ΔULH = e−βΔALHρH ΔULH , (2)

in which ΔALH is the free energy difference between the two levels of theory; more 

quantitative criteria for the degree of overlap have been proposed in the literature,129–131 

many of which are based on the work of Kofke and co-workers for free energy perturbation 

in general.132 Therefore, the key challenge is to establish protocols that ensure adequate 

overlap during the L to H transformation while maintaining computational efficiency, i.e., to 

minimize the amount of computations at the H level.

One natural approach is to improve the L level towards the H level, by either system-specific 

reparameterization of L,133 learning the difference between L and H on the fly via ML,72 

or switching from L to H via many short, non-equilibrium simulations134 in which L 

and H potentials are mixed explicitly. Alternatively, one can systematically identify the 

degrees of freedom that lead to poor energy gap overlaps at L/H levels, and treat these 

“problematic” degrees of freedom separately. Several studies of systems that included 

relatively small QM regions suggested that the bonded, stiff degrees of freedom tend 

to be problematic,131,135–137 as even small structural differences between L and H can 

have significant energetic consequences and thus leading to a poor overlap in energy gap 

distributions. Different approaches have been developed accordingly, which involve either 

refitting these degrees of freedom via, for example, force-matching,131,138 or ignoring them 

so as to focus on interaction energies between the QM and MM degrees of freedom.139,140

In the “staged transformation” approach explored by us recently,141 these problematic 

degrees of freedom are subject to constraints or restraints, such that the conversion from 

L to H models is done through a thermodynamic route that ensures favorable distribution 

overlaps along the way. The free energy components associated with different steps are 

mostly evaluated explicitly, thus the final result can be compared to the rigorous free energy 

difference between the two levels of theory with limited and well-defined approximations. 

Importantly, the additional free energy component calculations involve simulations at the 

low level of theory and therefore do not incur high computational costs. The approach has 

been illustrated with solution systems with encouraging results, although further tests and 

improvements are required for treating more complex systems.

For systems that involve larger QM regions, however, it is not clear at all that only bonded 

degrees of freedom are problematic, as small errors associated with non-bonded degree of 

freedom can accumulate quickly, leading to poor energy gap overlaps. Therefore, additional 

developments are sorely needed to automatically identify the “problematic” degrees of 

freedom and mitigate their impact on the computed free energies. Along this line, we 

note that broadening (as opposed to narrowing, as commonly done in previous work) the 
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distribution at the L level and/or introducing intermediate distributions that bridge the L/H 

distributions with generalized ensemble based sampling102,142 or generative ML methods143 

are interesting alternative directions to pursue.

2.3 Remote Effects: Allostery, Enzyme Evolution and Design

As alluded to above, one fascinating aspect about biomolecules is the existence of coupling, 

or co-operativity, among distant sites. Although the mechanism of allostery in biomolecules 

has been studied for decades,144–149 it remains difficult to precisely predict residues that 

dictate the long-range co-operativity; this incomplete level of understanding limits our 

ability to engineer allostery into biomolecules, although sporadic successful examples have 

been reported in the literature.149–151 Specifically in the context of enzyme catalysis, it has 

been well documented that remote mutations may have a significant impact on catalysis,118 

leading to hypotheses and debates about the roles of enzyme motions in catalysis. In directed 

evolution studies of designed enzymes, it is often observed that improvement of catalytic 

proficiency or expansion of substrate scope involves residues not in the active site.118,152–154 

In enzyme evolution studies,155 fitness landscape of several enzymes has been shown to be 

determined by residues distributed throughout the enzyme structure,154 again highlighting 

the holistic nature of protein function.

In some cases, the roles of remote residues can be intuitively understood at a structural 

level;119 i.e., through a domino or Goldberg machine fashion, remote mutation(s) perturb 

the dominant conformation of active site residues156,157 and therefore the chemical 

activity therein, including both catalytic proficiency and substrate scope. The challenge 

for any computational analysis is thus to capture such “population shifts” due to distal 

mutations. Several compelling examples have been reported recently using enhanced 

sampling techniques, such as path-variable based metadynamics simulations103 for variants 

of Tryptophan synthase subunit B (TrpB);158 the simulations showed that the populations 

of several conformational states of TrpB were modulated by distal mutations, providing 

a molecular level rational for the emergence of these mutation in directed evolution 

studies159,160 that engineered TrpB into a standalone enzyme in the absence of the 

neighboring α subunit.

However, in other cases, the effects of distal changes appear more indirect. For example, in 

our recent analysis of ATP hydrolysis of myosin,106 we studied two models for the motor 

domain that have almost identical conformations for residues in the nucleotide binding site 

but differ in distal regions and hydration of the critical R238-E459 salt bridge (Fig. 5a). 

String based DFTB3/MM free energy simulations found that activation free energy and 

exergonicity in the two models differ by as much as 9 kcal/mol, highlighting that the average 

ground state configurations of catalytic residues are not the only determinant. Indeed, 

the distal residues can instead modify the fluctuations of active site residues and water 

molecules, and thus the reorganization energy or entropic contributions to the activation 

free energy.45 In a different context, elegant EVB analysis of Aqvist and co-workers have 

clearly shown that flexibility of surface protein residues plays a major role in modulating 

the enthalpic and entropic components of activation free energy,161 leading to different 

temperature adaptations for mesophilic and psychrophilic enzymes.48
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The temperature dependence of enzymes has led to many fascinating discussions regarding 

the mechanisms that govern enzyme stability and catalysis.48,162–165 A particularly 

intriguing phenomenon noted in recent literature concerns non-linearity in the Arrhenius 

plot at high temperatures,165–167 for which quantum mechanical tunneling of nuclei11,168,169 

is unlikely the cause. Two different models have been proposed to explain the non-linear 

Arrhenius plot: conformational redistribution170,171 vs. activation heat capacity.166,172 In 

the former model, the equilibrium between catalytically active and inactive conformations 

is perturbed by temperature, leading to different populations of the active conformation 

and therefore different apparent rate constants. In the latter case, a non-vanishing heat 

capacity difference between the ground and transition states (ΔCp
‡) makes the activation 

free energy temperature-dependent, leading also to deviation of the Arrhenius plot from 

linearity. Both thermodynamic models can be used to fit available experimental kinetic 

data, and for different systems, both models have been supported with microscopic analysis 

based on extensive molecular dynamics simulations,167,171–173 respectively. As discussed 

by Aqvist and co-workers,171 the two models do lead to significantly different predictions 

about activation enthalpy and entropy for broader temperatures, for which no experimental 

data are yet available. On the other hand, it has been suggested that the different proposals 

consistently point toward a general picture of more than one reactant state before passing the 

transition state.165

A particularly interesting case concerns the de novo designed enzyme for catalyzing 

the Kemp elimination reaction.174 While the designed enzyme, which has low catalytic 

proficiency, features a linear Arrhenius plot and therefore zero activation heat capacity, 

its more efficient variant following several generations of directed evolution exhibits a 

non-linear Arrhenius plot, which can be fitted with a negative ΔCp
‡. Mulholland and co

workers173 showed that extensive (~5 μs) classical MD simulations with a MM model for 

the transition state indeed recapitulated a negative ΔCp
‡, which was estimated based on the 

fluctuation of the protein energy in the MD simulations. Further analysis of the trajectories 

found that the negative ΔCp
‡ in the more active enzyme variant was likely the result of a more 

compact active site in the transition state due to a higher population of an active site loop 

in its closed conformation. The more compact structure is also congruent with extensive 

correlated motions throughout the protein (Fig.5b). Therefore, an interesting notion from the 

analysis is that to further enhance catalytic proficiency of designed enzymes, one strategy 

might be to enhance correlated motions that implicate both active site and distal regions; this 

point was also made in the aforementioned study of TrpB,158 in which the distal mutation 

sites observed in the directed evolution study were also identified with a motional network 

analysis for the wild type enzyme.

Evidently, the causal relation between correlated motion, negative ΔCp
‡ and catalytic 

proficiency remains to be further analyzed. Nevertheless, these recent studies further 

highlight the significance of better understanding collective motions of enzymes, their 

thermodynamic signature and factors that control the nature and functional implication 

of such motions. Along this line, close integration of extensive classical and QM/MM 

studies with recent breakthrough in continuous evolution techniques,175–177 which makes 
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it straightforward to evolve enzymes for many (>100) generations in independent 

trajectories,178 is poised to lead to significant insights into new strategies that can be used to 

enhance the catalytic proficiency of designed enzymes.

3 Concluding Remarks

In this short perspective, we discussed a number of “burning issues” related to biomolecular 

QM/MM simulations. Although most of these discussions are motivated primarily by our 

own research interest, we believe many of the discussions are relevant to biomolecular 

QM/MM applications in general. Many aspects of the discussed issues are related to 

establishing “best practice” for realistic applications, such as choices of the QM region size, 

QM and MM potential functions, and methodologies that best integrate physical methods 

and established machine learning techniques for efficient free energy simulations. There are, 

nevertheless, in our opinion, fundamental conceptual issues, such as developing efficient 

methods for better treating transition metal ions,179,180 pursuing generally applicable 

machine learning models for both short-range and long-range interactions,67,181 identifying 

problems for which the explicit inclusion of electronic polarization makes a qualitative 

difference, and clearly dissecting and defining the roles of distal residues and specific 

motions in enzyme catalysis.

In terms of connections with experiments, while it remains important to compute multiple 

observables that characterize physical properties of biomolecules, such as kinetic isotope 

effects, free energy relations and various spectroscopies,182 an emerging opportunity is 

to integrate computations with high-throughput experiments. For the analysis of protein 

allostery, for example, deep mutation studies183 have revealed a rather different picture 

for the distribution of “hotspot” residues that are essential to co-operativity.184 Similarly, 

continuous evolution studies are starting to generate large datasets on mutation effects on 

catalytic properties.178 Providing a molecular level understanding for these rich datasets 

and making testable predictions with multi-faceted computational analysis is a formidable 

yet exciting challenge. To paraphrase one of the ten big ideas from the National Science 

Foundation, developing novel methodologies that can truly embrace “the data revolution” 

is of great urgency. With further development and integration with data science/machine 

learning techniques, QM/MM methods will play increasingly essential roles in the 

mechanistic analysis and rational design of novel biomolecular functions.119,185

Before closing, we note that exciting developments in ab initio quantum chemistry 

methodologies continue to take place at a pace as rapid as ever.186 We also can’t resist 

mentioning that major strides are being made in the areas of quantum Monte Carlo187 and 

related ML methods188 as well as quantum computing,189,190 in terms of both fundamental 

algorithms and hardware. While these more advanced and expensive methodologies are 

yet to directly impact biophysical and biochemical applications, it is clear that the list of 

powerful tools available to multi-scale computations will continue to expand rapidly and 

therefore the future is undoubtedly bright.
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Figure 1: 
Non-covalent interaction with two density functional tight binding methods. (a) Second 

virial coefficients (B2) for several small molecules, in comparison with CHARMM

CGenFF56 and experimental results; (b) 2,3-body interactions of water in comparison with 

the BSSE corrected CCSD(T)/aug-cc-pVTZ database of Paesani and co-workers.54 For 

additional results, see Supporting Information.
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Figure 2: 
Description of Ni compounds with DFTB3. (a) Comparison of the nickel lone valence 

hybrid in [Ni(CO)3]2+ with DFTB3/3OB and B3LYP based Natural Bonding Orbital 

analyses;57,58 DFTB3 and B3LYP favor D3h and C2v symmetry, respectively. (b) Examples 

of frontier orbital comparisons between DFTB3, DFTB3+U and PBE calculations for 

high-spin [Ni(H2S)6]2+. Including the +U correction in DFTB3/3OB62 improves various 

properties such as d orbital populations, nature of frontier orbitals, ligand field splitting and 

energy difference between low/high-spin states.
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Figure 3: 
Results from an automated reinforcement learning driven free energy simulation of methyl 

phosphate hydrolysis in solution. The three coordinates are the nucleophilic attack P-O 

distance, the leaving group P-O distance and the antisymmetric O-H-O stretch that describes 

the proton transfer from the nucleophile (water) to the phosphate oxygen. (a) The three

dimensional PMF converges after 42 iterations of automated restrained MD-reinforcement 

learning cycles; the results indicate that with the current DFTB3/MM model, the solvent

assisted pathway120 is not the dominant mechanism. (b) The two-dimensional PMF cut after 

the proton transfer is complete indicates a dissociative pathway that involves a loosely bound 

metaphosphate species. Further refinement of the QM/MM energetics will provide insights 

into this prototypical phosphoryl transfer reaction at an unprecedented level of detail.
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Figure 4: 
A staged transformation approach141 for computing the free energy difference at two levels 

(L/H) of theory, ΔGL→H. (A) The staged thermodynamic path treats selected degrees of 

freedom (X) separately from the rest (Y); X represents the degrees of freedom that lead to 

a large gap in the ΔULH distribution. Assuming that the free energy costs for confining X 
to values at (or near) the free energy minima are similar at the L and H levels, ΔGL→H is 

given by the sum of ΔG0
L H, which converges readily since the sampling involves only Y, 

and the “reorganization free energy”, ΔGΛ
L, which is the free energy cost of changing X0 to 

X0′  at the low level of theory. (b-c) Illustration of the impact of bond and angle restraints on 

the ΔULH distribution for a methyl diphosphate, which is treated with either DFTB3 (L) or 

B3LYP (H), solvated by TIP3P water.

Cui et al. Page 25

J Phys Chem B. Author manuscript; available in PMC 2022 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Examples of distal contributions to enzyme catalysis from computational analyses. (a-b) 

ATP hydrolysis in two models of the myosin motor domain may differ by ~9 kcal/mol in 

activation free energy although the nucleotide binding site residues have almost comparable 

average configurations;106 (c-d) A de novo designed enzyme for Kemp elimination and 

its more efficient variant following directed evolution feature rather different collective 

motions;173 the latter also features a negative activation heat capacity.174 Panels c-d have 

been provided by Drs. A. Bunzel and A. Mulholland.
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