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Background. Cutaneous melanoma (CM) is one of the most life-threatening primary skin cancers and is prone to distant
metastases. A widespread presence of posttranscriptional modification of RNA, 5-methylcytosine (m5C), has been observed in
human cancers. However, the potential mechanism of the tumorigenesis and prognosis in CM by dysregulated m5C-related
regulators is obscure.Methods. We use comprehensive bioinformatics analyses to explore the expression of m5C regulators in CM,
the prognostic implications of the m5C regulators, the frequency of the copy number variant (CNV), and somatic mutations in
m5C regulators. Additionally, the CM patients were divided into three clusters for better predicting clinical features and outcomes
via consensus clustering of m5C regulators. /en, the risk score was established via Lasso Cox regression analysis. Next, the
prognosis value and clinical characteristics of m5C-related signatures were further explored. /en, machine learning was used to
recognize the outstandingm5C regulators to risk score. Finally, the expression level and clinical value of USUN6were analyzed via
the tissue microarray (TMA) cohort. Results. We found that m5C regulators were dysregulated in CM, with a high frequency of
somatic mutations and CNV alterations of the m5C regulatory gene in CM. Furthermore, 16 m5C-related proteins interacted with
each other frequently, and we divided CM patients into three clusters to better predicting clinical features and outcomes./en, five
m5C regulators were selected as a risk score based on the LASSO model. /e XGBoost algorithm recognized that NOP2 and
NSUN6 were the most significant risk score contributors. Immunohistochemistry has verified that low expression of USUN6 was
closely correlated with CM progression. Conclusion. /e m5C-related signatures can be used as new prognostic biomarkers and
therapeutic targets for CM, and NSUN6 might play a vital role in tumorigenesis and malignant progression.

1. Introduction

Cutaneous melanoma (CM) is one of the most common,
aggressive, and life-threatening types of malignant primary
skin cancers and is prone to distant metastases associated
with a high mortality rate [1, 2]. Surgical management,
chemotherapy agents, and immunotherapy have been
considered the fundamental treatment of CM in recent years
[3, 4]. Although great achievements have been made in CM
treatment, the 5-year overall survival with metastatic mel-
anoma patients remains poor, attributed to late diagnosis
[5, 6], rapid metastasis, and poor response to treatment

[7, 8]. /erefore, exploring powerful prognostic predictors
and a novel therapeutic target is urgent and crucial to
improving CM diagnosis and treatment.

Additionally, 5-methylcytosine (m5C) is a widespread
in posttranscriptional modification of RNA which has been
observed in substantial RNA species, including rRNAs and
tRNAs, mRNAs, eRNAs, and noncoding RNAs in the
cytoplasm and mitochondria [9–18]. /e methylation of
m5C involves a series of regulators, including m5C
methyltransferases, demethylases, and “readers.” /e
methyltransferase “writer,” including NSUN1-7, DNMT1,
DNMT2, DNMT3A, and DNMT3B, increases methylation
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at the C5 position of RNAs. /en, different “reader” proteins,
such as TET1-3, recognize and bind the methylated mRNAs,
while the “eraser” protein, such as ALYREF and YBX1, re-
verses m5C modification by degrading the written methyl-
ation [19, 20]. Some studies have indicated that m5C
modification plays an important role in many biological
functions, including ribosome assembly, tRNA stability,
mRNA export, protein transcription, and stem cell regulation
[21, 22]. It has been reported that the m5C gene mutations are
closely associated with various human diseases such as ner-
vous system disorders, metabolic disease, and virus infections
[23, 24]. In addition, dysregulated m5C regulators have been
observed in human cancers such as breast, gallbladder, and
bladder cancer [25–28]. However, the potential tumorigenesis
mechanism and prognosis in CM by dysregulated m5C-re-
lated regulators is obscure.

In this study, we explored the mRNA level of expression
of m5C regulators by using /e Cancer Genome Atlas
(TCGA) database and Gene Expression Omnibus (GEO)
database. /en, we analyzed the frequency of m5C regu-
lators’ copy number variant (CNV) and somatic mutations.
/e CM patients were divided into three clusters to better
predict clinical features and outcomes via consensus clus-
tering of m5C regulators. /e established prognostic gene
signature showed a five-gene prognostic signature, which
had an effective prediction ability of the progression and
prognosis of CM patients, comprising of NOP2, NSUN3,
NSUN6, DNMT2, and YBX1 via Lasso Cox regression
analysis. Moreover, the protein expression levels of NSUN6
were significantly upregulated in the CM, associated with the
advanced TNM stage. Further survival analysis indicated that
NSUN6 could be an independent risk factor for the prognosis
of CM patients. NSUN6 expression was significantly related
to the pathologic state and TNM staging of CM./ese results
showed that m5C-regulator-based prognostic signature can
be used as new prognostic biomarkers and therapeutic targets
for CM. Additionally, NSUN6 might play vital roles in tu-
morigenesis and malignant progression.

2. Materials and Methods

2.1. Datasets. /e RNA-seq transcriptome data of CM were
downloaded from/e Cancer Genome Atlas (TCGA, https://
tcga-data.nci.nih.gov/tcga) and the Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/GSE3189, GSE7553,
GSE31909, GSE46517, GSE98394, and GSE114445). /e
characteristics of these CM patients and normal people are
presented in Tables S1 and S2.

2.2. Tissue Samples. /e 40 tumors and 8 normal tissue
microarrays were purchased from Shaanxi Avila Biotech-
nology Co., Ltd. (Xi’an, China). Also, our studies were
approved by the Ethics Committee of the First Affiliated
Hospital of Zhengzhou University.

2.3. Immunohistochemistry (IHC). Immunohistochemistry
was performed as previously reported [29, 30]. Semi-
quantification analysis of immunohistochemical staining was

performed using ImageJ (NIH, Bethesda, MD). Two expe-
rienced pathologists who were blinded to the clinicopatho-
logical data evaluated the immunostaining samples separately,
and they scored the samples according to the proportion of
positive cells as follows: no staining, 1+; weak staining, 2+;
moderate staining, 3+; and strong staining, 4+. Table S3 lists
the information of antibodies used in this study.

2.4. Consensus Clustering. Consensus clustering was based
on the m5C regulators’ profiles in CM using the R package
“Consensus Cluster Plus,” and to guarantee the stability of
clustering, 1000 times repetitions were performed. /e ap-
propriate number of clusters was calculated via the cumu-
lative distribution function (CDF) and consensus matrices.

2.5. Pathway Enrichment Analysis. Spearman’s analysis was
conducted to evaluate the correlation between 16 m5C
regulators and their function, and interaction analysis was
predicted by the String website (https://string-db.org/). A
comprehensive gene function analysis was performed with
Metascape (http://metascape.org/). To further explore the
potential mechanism of the m5C regulators in CM, we
performed the gene set variation analysis (GSVA), the Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Gene
Ontology (GO) analysis [31].

2.6. Construction and Validation of Risk Score. To construct
the powerful prognostic factors, the five m5C regulators were
selected by the Least Absolute Shrinkage and Selection Op-
erator (LASSO) Cox regressionmodel [32]./e Cox regression
analysis was conducted for 16 genes, and 0.2 was set as the
cutoff P value to prevent omissions. /e risk score for each
patient in both the training (TCGA) and validation (GSE65904)
datasets was calculated using the following formula:

risk score � 􏽘
n

i�1
Coef ∗xi. (1)

Coefimeans the coefficient, and xi is the expression value
of the z-score transformation of each selected m5C
regulator.

2.7. Machine Learning Algorithm. We used the machine
learning model, extreme gradient, (XGBoost) with the
Shapley additive explanation method to explore the im-
portance of m5C regulators to the risk score.

2.8. Statistical Analysis. All statistical analyses were per-
formed in the R statistical computing language (R version
4.0.4) unless otherwise indicated. /e differences between
the two independent groups were determined using Stu-
dent’s t-test (unpaired, two tailed). /e chi-square test and
rank-sum test were used for qualitative variables. /e
Kaplan–Meier overall survival (OS) and progression-free
survival (PFS) analyses were performed using the log-rank
test based on the median. Univariate and multivariate Cox
regression analyses were performed to assess independent
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prognostic factors. P< 0.05 was considered statistically
significant (∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001).

3. Results

3.1. Variation and Prognosis Value of m5C Regulators in CM.
To probe the significant biological function of m5C regu-
lators in CM, we explore the mRNA expression levels of
m5C regulators in CM and normal tissues using public
databases. We found that the mRNA expression levels of
NOP2, YBX1, DNMT3A, NSUN5, ALYREF, and DNMT1
were significantly upregulated and NSUN6, NSUN7, TET2,
and TET3 were significantly decreased in CM tissues
(Figure 1(a)). Furthermore, to obtain insight into the causes
of dysregulation of m5C regulators, we investigated alter-
ations to the somatic mutations and the CNV alteration
frequency of m5C regulators. Among all the 467 patients,
130 experienced m5C regulators mutations with a frequency
of 27.84%, indicating a high frequency of somatic mutations
of the m5C regulatory gene in CM (Figure 1(b)). We found
that the copy number of CNV in NSUN5, DNMT3B, and
ALYREF was amplificated while NSUN6, TET1, TET2, and
DNMT2 were deleted. NSUN5 and ALYREF consistently
represented high mRNA expression levels, while NSUN6
and TET2 indicated low mRNA expression levels
(Figure 1(c)). Survival analysis showed that NSUN3,
DNMT2, and NSUN6 were potential protective factors and
that YBX1 and NOP2 were potential risk factors for OS
(Figures 1(d) and S1). Moreover, NOP2 was a potential risk
factor for PFS in CM (Figures 1(e) and S2). Overall, as these
results presented significant genomic variations of CM m5C
regulators, m5C regulators had a potential prognosis value
in CM.

3.2. Unsupervised Consensus Clustering Analysis of m5C RNA
MethylationModulators. To integrally investigate the role of
m5C modification in CM, we analyzed the interaction
among the 16 m5C-related regulators. Results indicated that
the protein-protein interaction networks and m5C-related
proteins interacted with each other frequently (Figure 2(a)).
Additionally, we explore the correlation among the ex-
pression profile of 16 m5C regulators in a TCGA dataset by
conducting a Pearson correlation analysis. /ese results
indicated that most m5C regulators were positive correla-
tions, among which the expression of ALYREF, DNMT2,
DNMT3B, NSUN5, NSUN6, and TET1 showed a stronger
correlation in CM (Figure 2(b)). /us, there is a close re-
lationship between the biological functions of 16 m5C
regulators and CM. Based on the expression levels of the
m5C modulators of CM patients, we observed the clustering
stability of the TCGA dataset from k� 2 to 6 (Figure S3) via
unsupervised consensus.

3.3. Clustering analysis. Using k� 3, we identify these three
clusters, designated as m5C cluster 1, m5C cluster 2, and
m5C cluster 3 (Figure 2(c) and Table S4). Subsequently, we
found that cluster 1 presented moderate expression in most
of the m5C regulators and cluster 2 showed the highest

expression of USUN6, USUN7, TET1, TET3, DNMT3A, and
DNMT3B; cluster 3 exhibited the lowest expression of
NSUN3, USUN6, TET1, TET2, TET3, DNMT2, DNMT3A,
and DNMT3B (Figure 2(d)). /en, we compared the
prognosis between cluster 2 and cluster 3, finding a sig-
nificant distinction between m5C cluster 2 and cluster 3.
According to the prognostic analysis, cluster 2 had a more
significant potential survival advantage than cluster 3
(Figure 2(e)). Moreover, a t-SNE dimensional reduction
showed that it was feasible to segregate the m5C clusters into
three discrete clusters (Figure 2(f )). /ese results indicate
that m5C clusters might be more related to CM prognosis.
Next, we compared the clinical features and clinicopatho-
logical factors between these three clusters. Chi-square
analysis indicated that cluster 3 was significantly associated
with higher pathological grade (P< 0.05) and deeper Bre-
slow depth value (P< 0.001) and cluster 2 was significantly
associated with orthotopic tumors, a lower pathological
grade, and shallower Breslow depth value (Table S4).

3.4. Biological Functional Annotation of m5C Clusters. To
further explore the biological behaviors of m5C clusters, we
selected the top 500 upregulated expressed genes in cluster 3
based on the P value to annotate the biological function.
Results indicated that the “Melanin biosynthetic process”
and “Keratinization” were significantly enriched in m5C
cluster 3. We displayed the top 20 significantly enriched
biological processes in Figure 3(a). Simultaneously, the
GSVA analysis indicated that certain tumor progression
pathways (“DNA repair,” “the reactive oxygen species
pathway,” “the p53 signaling pathway,” and “angiogenesis”)
were significantly activated in m5C cluster 3 patients
(Figure 3(b)). Moreover, GSEA analysis showed that “cel-
lular response to reactive oxygen species,” “the melanin
biosynthetic process,” “cell cycle DNA replication,” “an-
giogenesis,” “the Wnt signaling pathway,” and “the p53
signaling pathway” were significantly enriched in m5C
cluster 3, exhibiting worse clinical features and prognosis
(Figures 3(c)–3(h)). In summary, there was a significant
association between clusters of m5C RNA methylation
modulators and the progression of malignant CM.

3.5. Prognostic Value and Construction of the Risk Score
Signature of m5C Regulators. We performed a prognostic
risk score signature containing DNMT2, NSUN3, NSUN6,
YBX1, and NOP2 using a LASSO Cox regression model
according to the minimum criterion to evaluate the prog-
nosis value of m5C methylation modification on individual
CM patients accurately (Figure 4(a)). /e coefficients of
DNMT2, NSUN3, NSUN6, YBX1, and NOP2 were
−0.01842, −0.08767, −0.07701, 0.00057, and 0.18925, re-
spectively. /us, we calculated each for CM patients with the
formula risk score� (−0.01842× expression of DNMT2)
+ (−0.08767× expression of NSUN3) + (−0.07701× expre
ssion of NSUN6) + (0.00057× expression of YBX1) +
(0.18925× expression of NOP2) in the training (TCGA) and
validation (GSE65904) dataset.
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To further investigate the prognostic value of the risk
score, CM patients in the TCGA were classified into high- or
low-risk groups according to the median. /e results dem-
onstrate that patients with high-risk scores were correlated
with a higher death rate (Figure 4(b)). Additionally, we found
that the difference between high- and low-risk groups in OS
and PFS was significant (Figures 4(c) and 4(d)). Moreover, to

validate the predictive efficiency of the prognostic risk score,
we used the same analysis in the GSE65904 dataset; the results
were in line with the aforementioned findings (Figures 4(e)–
4(g)). Our findings suggested that the signature based on five
m5C regulators could function as a potent prognostic sig-
nature and effectively stratify CMpatients based on risk scores
providing new insight into targeted therapy.
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Figure 1: /e variation and prognosis value of m5C regulators in CM. (a) /e mRNA expression status of m5C regulators in CM. (b) /e
CNV frequency of m5C regulators in the TCGA-CM cohort. (c) /e copy number of 16 m5C-related genes in CM. (d) Univariate Cox
analysis of OS in CM. (e) Univariate Cox analysis of PFS in CM.
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Figure 2: Continued.
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3.6. Relationship between the Risk Score and Clinical Char-
acteristics in CMPatients. Next, we tested the correlation of
m5C-related genes and risk scores with clinical charac-
teristics. Heatmaps represented the expression of m5C

regulators and clinical features in low- and high-risk pa-
tients in the TCGA dataset (Figure 5(a)). Results illustrated
that high expression of NOP2 and USUN5 and low ex-
pression of USUN6, DNMT2, TET2, and USUN3 were
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Figure 4: Prognostic value and construction of the risk score signature of m5C regulators. (a) LASSO Cox regression was used to calculate
the coefficients for five m5C-related genes. (b) Patients with high-risk scores were correlated with higher death rates among CM patients.
(c, d) Kaplan–Meier analysis of OS and PFS in patients with high- and low-risk score groups in the TCGA dataset. (e, f, g) Validation of the
risk score signature in the GSE65904 dataset using the same analysis.
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associated with the high-risk score. In addition, we ana-
lyzed the association between the risk scores and each
clinicopathological characteristic. As shown in Figure 5, the
risk scores of cluster 2 and cluster 3 were significantly

different in the Breslow depth value and pathologic stage
(Figures 5(b)–5(d) and Table S5). Moreover, univariate and
multivariate Cox regression analyses of OS and PFS in CM
were conducted, indicating that the risk score was an
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Figure 5: /e relationship between the risk score and clinical characteristics. (a) /e relationship between sixteen m5C expression profiles
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independent predictor of prognosis and progression
(Figures 5(e)–5(h) and Table S6). Results revealed that the
risk scores were significantly correlated with the malig-
nancy of CM.

3.7. Importance of m5C Regulators to the Risk Score Using
Machine Learning. To build a classifier that could recognize
the outstanding contributors of risk score, we applied the
XGBoost algorithm to build the model. NOP2, NSUN6,
NSUN3, and DNMT2 were the top four important regu-
lators evaluated by SHapley additive exPlanation value
(SHAP), as shown in Figures 6(b)–6(f ). Each point is the
feature value of the specific gene. /e features are sorted by
the sum of the values of all samples. We found that NOP2
and NSUN6 were the most important regulators in our risk
score.

3.8. Close Correlation of CM Progression and Low Expression
of USUN6. Subsequently, immunohistochemical staining
revealed the decreased protein expression level of NSUN6 in
CM tissues which was consistent with our findings
(Figure 7(a)). According to the staining intensity, NSUN6
staining was scored from 1+ to 4+ (Figure 7(b)). Further-
more, NSUN6 expression was significantly related to the
pathologic state and TNM staging of CM in TCGA and
tissue microarray cohorts (Figures 7(c)–7(f)). /ese findings
strongly suggested that USUN6 might serve as a tumor
suppressor molecule in CM.

4. Discussion

CM is the primary skin cancer mortality cause worldwide
owing to its high metastasis, invasiveness, and annually
increasing incidence [1, 5]. Although present studies have
shown that many complex multistep processes contribute to
the initiation, progression, and metastasis of CM, its
pathogenesis has not been well determined and effective
prognostic biomarkers in CM are still lacking [4]. /erefore,
it is valuable to understand the underlying molecular
mechanisms, which contribute to the prognostic prediction
and therapeutic target of CM. In recent years, m5C modi-
fication has been found to play a significant role in the
biological function of many cancers. Additionally, the
dysregulation of m5C regulators has been observed in nu-
merous cancers including breast, gallbladder, and bladder
cancer [25, 26, 28, 33]. Xue et al. [27] recently clarified the
m5C-related regulators are more abundant in head and neck
squamous cell carcinoma and play vital roles in tumor
progression. However, the potential tumorigenesis mecha-
nism and prognosis of CM by dysregulated m5C-related
regulators is still elusive.

Our study systematically analyzed the mRNA expres-
sions of m5C regulators and characterized themutations and
copy number variations (CNVs) of m5C regulators in CM
for the first time, utilizing data extracted from the public
databases. We found that the mRNA expression levels of
NOP2, YBX1, DNMT3A, and DNMT1 were significantly
increased and NSUN6, NSUN7, TET2, and TET3 were

significantly decreased in CM tissues. Somatic mutations
and CNV alterations indicated a high mutation frequency of
the m5C regulatory gene in CM. Previous studies have
demonstrated that some m5C regulators participate in the
malignant progression of cancer such as NOP2 and YBX1.
/e literature suggests that NOP2 is highly expressed in
prostate cancer, gallbladder cancer, and lung adenocarci-
noma, while upregulated YBX1 plays a significant protu-
mourigenic role in breast, renal, and gastric cancer [34–38].
Conversely, NSUN6 confers cellular fitness advantages and
functions as a tumor suppressor in pancreatic cancer [39].
Furthermore, survival analysis of OS and PFS in the TCGA
revealed that the m5C regulators had a potential value in
evaluating prognosis in CM. In summary, our findings
showed that dysregulated m5C regulators may play a key
role in the initiation and progression of CM.

Accumulating evidence indicated that m5C RNA
methyltransferase-related regulators were implicated in
tumorigenesis and tumor development in ovarian cancer,
cervical cancer, prostate cancer, glioma, and other several
tumors [12, 40]. However, the current study did not in-
vestigate the relationship between m5C modifications and
CM development. We investigated the association between
m5C regulators, clinical features, and prognosis in CM for a
comprehensive analysis, finding that m5C regulators had
frequent crosstalk. Additionally, we analyzed the expression
profiles of m5C regulators, and three clusters with different
clinical features and prognoses were identified. Further-
more, we chose hallmark pathways to conduct an in-depth
research. Consistent with our results, UV radiation is the
primary environmental driver including oxidative stress and
DNA damage. Following UV exposure, keratinocytes in a
p53-dependent manner produced α-melanocyte-stimulating
hormone and stimulated the melanocortin 1 receptor to
produce melanin. Meanwhile, it has been demonstrated that
Wnt/β-catenin signaling and angiogenesis played a crucial
role in the pathogenesis and progression of CM [41–44].
/erefore, further studies should be conducted on m5C
regulators and cancer-promoting signaling pathways that
form a potential comprehensive network, significantly
influencing CM progression.

We constructed a risk score, including the expression of
DNMT2, NSUN3, NSUN6, YBX1, and NOP2, using the
scoring algorithm in the TCGA (training set) and the
GSE65904 (verification set) to accurately evaluate the pa-
tient’s prognosis. Based on the median, CM patients were
divided into high- and low-risk groups. Further analysis
revealed that risk score had suitable stratification abilities for
predicting prognosis and tumor progression in CM patients.
Moreover, the risk score could independently predict
prognosis and progression in CM patients. Moreover, the
high-risk group is highly correlated with the advanced
pathologic stage and deeper Breslow depth. /ese results
demonstrate that the m5C regulators might be regarded as a
potential tool to predict progression and prognosis in CM
patients.

To gain more information on the core signature among
m5C regulators in CM, we performed machine learning via
the XGBoost algorithm [45–48]. An interesting finding was
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that, of m5C regulators, NOP2 contributed the most to CM,
while NSUN6 ranked second. NOP2 (also named NSUN1,
p120) has been improved primarily for its protumorigenic
roles in many cancers such as prostate cancer, gallbladder
cancer, lung adenocarcinoma, and several other cancers,
consistent with our study [34, 49, 50]. NSUN6 targets mRNA
to transfer methyl and is higher expressed in healthy tissues
than in tumors. Previous studies also found that NSUN6
could inhibit pancreatic cancer development [39, 51].
However, the role of NSUN6 in CM has not been docu-
mented thus far. To our best knowledge, our study would be
a pioneering contribution to the suppressive role of NSUN6
in CM. Finally, using immunohistochemistry analysis, we
found that the expression level of NSUN6 was lower in CM
tissues than in the corresponding peri-CM tissues. In
summary, our studies revealed that NSUN6 was a significant
contribution suppressor molecule in CM.

5. Conclusions

We explored the relationship between m5C regulators and
the progression and prognosis of CM. A risk score model
was also established and validated to predict the progression
and prognosis of CM patients. Machine learning algorithms
indicated that NSUN6 was a significant contribution sup-
pressor molecule in CM. Our results provide a unique
approach to the application of novel diagnostic biomarkers
and targeted therapy for CM.
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[7] L. Nájera, M. Alonso-Juarranz, M. Garrido et al., “Prognostic
implications of markers of the metabolic phenotype in human
cutaneous melanoma,” British Journal of Dermatology,
vol. 181, no. 1, pp. 114–127, 2019.

[8] D. Grossman, N. Okwundu, E. K. Bartlett et al., “Prognostic
gene expression profiling in cutaneous melanoma: identifying
the knowledge gaps and assessing the clinical benefit,” JAMA
Dermatology, vol. 156, no. 9, pp. 1004–1011, 2020.
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