Skip to main content
. 2021 Aug 13;2(3):146–156. doi: 10.1016/j.jnlssr.2021.08.002

Table 2.

Semi-supervised learning process.

Algorithm:DYGIE++ with Semi-Supervised Learning
Input: Training set of CPHIE dataset as seed corpus (Ds)
unlabelled raw corpus (Du)
Output: Trained DYGIE++ model (MK)
Train DYGIE++ model M0 on Ds
Randomly split Du into K subsets
fori in 1...Kdo
Du(i1)* Predict using Mi1
Du(i1) Relabel Du(i1)*
s.t.
ifp(yk*)<θthen
yk*0
end
Train DYGIE++ model Mi on DsDs+Du(i1)
end
returnMK