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Abstract
This work aimed to evaluate whether a radar sensor can distinguish sleep from wakefulness in real time. The sensor detects body 
movements without direct physical contact with the subject and can be embedded in the roof of a hospital room for completely 
unobtrusive monitoring. We conducted simultaneous recordings with polysomnography, actigraphy, and radar on two groups: 
healthy young adults (n = 12, four nights per participant) and patients referred to a sleep examination (n = 28, one night per 
participant). We developed models for sleep/wake classification based on principles commonly used by actigraphy, including 
real-time models, and tested them on both datasets. We estimated a set of commonly reported sleep parameters from these data, 
including total-sleep-time, sleep-onset-latency, sleep-efficiency, and wake-after-sleep-onset, and evaluated the inter-method 
reliability of these estimates. Classification results were on-par with, or exceeding, those often seen for actigraphy. For real-time 
models in healthy young adults, accuracies were above 92%, sensitivities above 95%, specificities above 83%, and all Cohen's kappa 
values were above 0.81 compared to polysomnography. For patients referred to a sleep examination, accuracies were above 81%, 
sensitivities about 89%, specificities above 53%, and Cohen's kappa values above 0.44. Sleep variable estimates showed no significant 
intermethod bias, but the limits of agreement were quite wide for the group of patients referred to a sleep examination. Our results 
indicate that the radar has the potential to offer the benefits of contact-free real-time monitoring of sleep, both for in-patients and 
for ambulatory home monitoring.

Key words:  sleep; radar; actigraphy; polysomnography; sleep monitoring; ambulatory home monitoring

Statement of Significance

This work shows that a contact-free radar sensor with our real-time actigraphy-inspired algorithm can detect body movements and pro-
vide valid estimates of sleep, wakefulness, and related parameters. The performance was best for healthy volunteers in a psychiatric hos-
pital environment, with the radar placed either on the nightstand or permanently mounted in the ceiling. The radar generally performed 
on par with actigraphy for sleep/wake classification. Contact-free recording is an advantage for patients with less tolerance for wearable 
devices, e.g. in psychiatric hospitals. Future studies should attempt to improve the performance for home use and further validate this 
tool for sleep/wake classification in a wider population, particularly in a real in-hospital setting. Sleep-stage classification from radar data 
should also be explored.
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Introduction

The polysomnography (PSG) test [1] is considered the gold 
standard of sleep studies, but it is not always an ideal option 
[2, 3]. The multiple on-body sensors can be experienced as in-
vasive and uncomfortable, and the time and expense involved 
in laborious manual interpretation make it a poor choice for 
long-term monitoring or population studies. Fortunately, elec-
trophysiological signals are not the only way to get a measure of 
sleep. Body movement modalities have been used for this pur-
pose since the first actigraphs were validated in the late 1970s–
early 1980s [4–6]. These devices typically record activity with 
an on-body accelerometer and determine activity–rest from 
those signals, commonly through simple automatic classifica-
tion models [7, 8]. Compared with PSG, they are cost-effective, 
noninvasive, reasonably reliable for estimating periods of sleep 
(although also recognized as having unfortunately low specifi-
city for periods of wakefulness during the night), and particu-
larly well suited for monitoring activity–rest cycles over time. 
These properties have granted them a position of ubiquity in 
sleep medicine and research as an alternative when PSG is not 
feasible or desirable [9–11].

However, sometimes even a wrist actigraph can be too 
demanding. For patients in a psychiatric hospital setting, 
with, for example, disorganized behavior, psychosis, or sui-
cidal intents, the use of on-body sensor equipment of any kind 
can be challenging, and potentially dangerous. And although 
actigraphy data are collected prospectively, they are analyzed 
retrospectively, so they can generally not be used to monitor 
sleep in real time. Thus, they are less useful for hospital night 
staff who needs to keep track of the sleep/wake state of patients 
at any given time. So, even though sleep problems are virtually 
ubiquitous among inpatients with mental disorders [12], and 
although assessment of sleep can be crucial in diagnosis and 
decision making, psychiatric units typically remain limited to 
intermittent staff observations. This solution is far from ideal; 
the reliability is limited, and it has been argued that the down-
sides in terms of sleep disruption and privacy infringement for 
the patients might outweigh the benefits of this type of moni-
toring by a fairly wide margin [13].

This work seeks to evaluate if a radar sensor can be used 
to provide an unobtrusive contact-free objective measure of 
sleep. The sensor in question, an Impulse-Radio Ultra-Wideband 
(IR-UWB) radar, can detect a range of movements from a person 
in a room without requiring them to wear equipment on their 
body; from the big movements of limbs to the very small mo-
tions induced by respiration. Under favorable conditions, even 
the miniscule chest movements caused by a beating heart can 
be recognized and recorded [14, 15]. Clothes or beddings do not 
impede these signals [16], and since the registered data cannot 
be used to directly identify individuals, a degree of privacy is 
preserved. The radar is also capable of communicating its sig-
nals in real time.

The general aim of the present study was to evaluate whether 
the body movement-derived signals recorded with the radar 
sensor can be used to distinguish sleep from wake at least as 
well as the activity signals from wrist actigraphy. In addition, we 
aimed to evaluate whether contact-free sleep monitoring can 
be done in real time. Our main objectives were to develop sleep/
wake classification models for the radar data, including real-
time models, and to compare the classification performance of 

the radar with PSG (the gold standard) and actigraphy. Models 
were first applied to a homogenous dataset from young healthy 
adults recorded in a hospital environment, and then to a heter-
ogenous dataset from ambulatory sleep clinic patients. The 
specific objectives for the evaluation were: (1) Estimate clas-
sification performance for sleep-wakefulness detection by ac-
curacy, sensitivity, specificity, and Cohen's kappa statistics using 
both real-time and future-dependent models, and (2) estimate 
agreement between methods for the main sleep outcome vari-
able total sleep time (TST) using Bland–Altman analysis, and 
then similarly for four secondary sleep variables; sleep onset 
latency (SOL), wake after sleep onset (WASO), sleep efficiency 
(SE%), and number of awakenings (NW).

Methods

Data collection

Two sets of data were collected for this study from different 
populations. The study protocol for the randomized cross-over 
trial from which Dataset 1 (DS1) was acquired, and the protocol 
was approved by the Regional Ethical Committee in Trondheim, 
(Central Norway; REK: 2017/916) and is registered on the ISRCTN 
website (reference number 12419665). The study was undertaken 
in accordance with the Revised Declaration of Geneva [17] and 
written informed consent was obtained from all participants. 
The protocol for gathering Dataset 2 (DS2) was approved by the 
Regional Ethical Committee in Trondheim, (Central Norway; 
REK: 2017/309). Written informed consent was obtained from all 
participants.

Both datasets consist of simultaneously collected data from 
PSG, actigraphy, and IR-UWB radar.

PSG
PSG recordings were recorded using Somnomedics Somno HD 
equipment (Somnomedics GmbH, Randersacker, Germany). 
Six EEG electrodes were placed according to the International 
(10–20) system [18]; F3, F4, C3, C4, O1, O2, plus a mastoid ref-
erence left side (M1) for the electrodes on the right side and a 
mastoid reference right side for the left side electrodes (M2); two 
electrooculografic electrodes (EOG) applied 1  cm laterally and, 
respectively, 2 cm above and below the right and left lateral eye 
cantus. EOG-reference electrodes were applied to the left (M1) 
and the right (M2) mastoids. Surface electromyography (EMG) 
was registered from the submental and bilateral anterior tibial 
muscles.

Actigraphy
Phillips Actiwatch (Actiwatch Spectrum, Philips Respironics 
Inc., Murrysville) placed on the nondominant wrist were used 
for both datasets. Automatic scoring algorithms from the manu-
facturer were not used in this work. Instead, binned movement 
data were exported from the actigraphs using Actiware (version 
5.70.1; Philips Respironics Inc., Murrysville, PA), and then treated 
in the same way as the simultaneously recorded radar data. The 
actigraphy and radar data were subjected to identical sleep/
wake classification model development, resulting in models of 
similar form but with different parameters. These models and 
their parameters are reported in their entirety in Supplementary 
Table S1.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab060#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab060#supplementary-data


Heglum et al. | 3

IR-UWB radar 
The radar used was the XeThru model X4M200, a commercially 
available radar sensor developed by Novelda AS. All radar data 
for this work were stored in baseband I/Q [19] form, to enable 
different or improved digital signal processing (DSP) at a later 
date, and then subjected to the pulse-Doppler signal processing 
provided by the manufacturer. Their Respiration_2 profile was 
used, to obtain body movement and respiration rate estimates 
at a rate of 1 Hz. This profile has a detection zone of 0.40–5.00 
m, and a respiration detector range of 8–30 respirations-per-
minute (RPM). A  more detailed description of the radar can 
be found in Supplementary Material, or in the manufacturer’s 
datasheet [20].

Dataset 1

Dataset 1 (DS1) consists of data from twelve healthy participants 
of 20–30 years (5 male). These data were collected as part of a 
randomized cross-over trial meant to evaluate the effect of the 
light conditions in a state-of-the-art acute psychiatric hospital 
unit at St. Olavs Hospital, Trondheim, Norway [21]. All 40 patient 
rooms in this building have radar sensors installed in the ceiling. 
This study was conducted in the last phase of the building con-
struction period before the unit was opened for patient admis-
sions. Prospective participants were eligible for inclusion if their 
habitual sleep/wake cycle was normal; i.e. weekday bedtime 
between 22:30  h and 00:00  h and weekday rise time between 
06:30 h and 08:00 h, with small intraindividual variations (<2 h) 
between weekdays and weekends, and no colour blindness. 
Exclusion criteria were evidence of any current medical or psy-
chological condition, current use of prescription medication(s), 
family history of severe mental illness, current sleep problems, 
night shift work in the preceding 2 years, trans-meridian travel 
in the preceding 2 months, and/or current use of non-prescrip-
tion drugs or illicit substances. From September 23, 2017, to 
October 5, 2017, these participants resided for a total of 10 days 
in the hospital; five consecutive days in each light environment, 
with randomized order of exposure and one day of washout in 
between. Between 08:00 h and 17:00 h participants had to leave 
the unit to follow their normal daily life of work or studies. They 
spent the remaining time in the hospital, and from 18:00 h to 
07:00 h they were confined to their assigned light environment, 
with a set bedtime at 23:00 h every night. Each participant wore 
an Actiwatch set to 15-s epochs every day for the duration of the 
study, also during the daytime hours. Each room had one radar 
sensor mounted in the ceiling, and one placed on a nightstand 
next to the bed. These recorded continuously at 17 frames-per-
second (FPS) for the duration of the study. Each participant 
underwent a total of four nights of PSG; two consecutive nights 
in each light condition.

Dataset 2

Dataset 2 was collected to observe a broad cross-section of 
heterogenous troubled sleepers. From 2017 to 2020, patients 
referred to the Department of Clinical Neurophysiology at St. 
Olavs Hospital in Trondheim, Norway, for overnight sleep exam-
ination for sleep problems of any kind, could be asked to par-
ticipate. The only inclusion criterion was their willingness 
to participate and their informed consent, and there were no 

exclusion criteria. Participants were outfitted with portable PSG 
equipment and sent home for ambulatory sleep monitoring, as 
per standard practice at this department. (Some participants 
were originally referred to as respiratory polygraphy, a sim-
pler examination than PSG. These patients were “upgraded” to 
full PSG upon consenting to participate in this study.) In add-
ition, they were given a Phillips Actiwatch actigraph set to 30-s 
epoch length, and a portable radar sensor configured to record 
baseband data at 300 FPS—this higher framerate was chosen to 
enable a more detailed analysis of these recordings at a later 
date. For the present work, the radar data was downsampled to 
17 FPS and processed in the same way as the radar data from 
DS1. The participants were instructed to place the radar sensor 
on their nightstand (or on a provided camera stand, if they did 
not have a nightstand), and to be alone in their bed on the night 
of the recording.

Data preparation

Each PSG recording was manually scored by a specialist in clin-
ical neurophysiology according to the AASM Manual for the 
Scoring of Sleep and Associated Events, version 2.4 [22], and 
then exported to ASCII-format from the Domino software. 
The raw radar data was processed using software provided by 
Novelda AS to output activity and respiration estimates at 1 Hz. 
Differences in internal clocks for radar, actigraphy, and PSG were 
corrected with an alignment method based on maximum correl-
ation. To match the length of the PSG epochs, 15-s actigraphy ac-
tivity counts from DS1 and 1 Hz radar data were aggregated into 
30-s bins by taking the mean. The three data types output by the 
radar digital signal processing [fast movement, slow movement, 
and respirations per minute (RPM)] were scaled to unify their 
order of magnitude. Further details about data types and prepar-
ations can be found in Supplementary Material.

Sleep/wake classification model development

The inspiration for the sleep/wake classification approach taken 
in this work comes from actigraphy. Of the four most common 
methods for processing wrist actigraphic data from adults, three 
are based on linear-sliding sum models over a time-horizon [7]. 
Activity data is binned into epochs of some specific length, com-
monly 30 s, resulting in a single activity value per epoch. Each 
epoch is then scored as sleep or wake by comparing a weighted 
sum of activity values from some “time horizon,” i.e. a number 
of past, present, and future epochs, to some threshold. These 
three common methods all use the same time horizon; they 
score each epoch in the time series by considering its activity 
value in conjunction with those of the four preceding and two 
succeeding epochs. Only the parameters of the models are dif-
ferent, optimized for their specific datasets and hardware. One 
of the three (Rescored Cole–Kripke) also impose an additional 
layer of post hoc heuristic rules on the output of the initial clas-
sifications, which for this work we will call the Cole–Kripke re-
scoring rules [23, 24].

PSG-scored sleep stages N1, N2, N3, and REM were combined 
into “sleep” and given the value 0, and epochs with the “wake” 
state were given the value 1. DS1 was split equally into training 
and test sets (DS1-train and DS1-test) by assigning the partici-
pants to either at random. With the PSG sleep/wake state as the 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab060#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab060#supplementary-data
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target variable, logistic regression was performed over DS1-train 
to estimate the parameters of linear sliding-sum models. This 
procedure was followed for both activity data exported from the 
actigraphs, and for the radar data. For the radar, each of the three 
data types (fast movement, slow movement, and RPM) were in-
cluded separately in the regression, giving three data points per 
epoch in contrast to the single activity value per epoch used for 
actigraphy. Every combination of horizon length between zero 
(only the present) up to and including ten epochs in either dir-
ection around the present were considered, for a total of 121 
models per sensor. The resulting models output a value between 
zero and one for each epoch, which can be interpreted as “prob-
ability of wake.” A p = 0.5 threshold was used on the continuous 
output values from the regression models to classify each epoch 
as either sleep or wake. Finally, the Cole–Kripke rescoring rules 
[23] were applied. For real-time models, the final two rules, (4) 
and (5), had to be excluded, because they depend on future in-
formation. The rules used in our work are: (1) after at least 4 min 
scored as wake, the next 1 min scored as sleep is rescored wake, 
(2) after at least 10 min scored as wake, the next 3 min scored as 
sleep are rescored wake, and (3) after at least 15 min scored as 
wake, the next 4 min scored as sleep are rescored wake. A more 
detailed description of the model development can be found in 
Supplementary Material.

Classification performance analysis

The classification models were applied to DS1-test, and 
DS2. Epoch-by-epoch classification performance was evalu-
ated against PSG ground truth by calculating overall accuracy, 
sensitivity, and specificity values. Because the data contain 
significantly more epochs of sleep than wake, Cohen's kappa co-
efficients were also calculated to account for the high probability 
of correct classification occurring by chance. Cohen's kappa 
statistic has a range of −1 to 1, where zero indicates agreement 
equivalent to classification by random chance and κ = 1.00 indi-
cates perfect agreement. Universally accepted guidelines of in-
terpretation for values between zero and one do not exist, so for 
the purpose of this work we will adopt the categories from Ref. 
[25]: 0.41 ≤ κ < 0.60 = moderate agreement, 0.61 ≤ κ < 0.80 = sub-
stantial agreement, and 0.81 ≤ κ < 0.99 = near-perfect agreement. 
Forest plots were used to compare the classification perform-
ance statistics of the actigraph to those of the radar devices.

Sleep parameters

Four commonly reported sleep parameters were calculated for 
all sleep/wake classification results: SOL, the duration between 
reported bedtime and objectively estimated sleep onset time; 
TST, the total time spent asleep during a major sleep period; 
WASO, the total time awake between sleep onset and offset; and 
SE, the percentage of time spent asleep during a major sleep 
period. The overall NW during the major sleep period was also 
counted. For calculating SOL, participants reported their bed-
time by pushing a user marker on their PSG equipment. For the 
nights in DS1 for which no PSG was available, SOL was calcu-
lated from the set bedtime at 23:00. For PSG, sleep onset was 
defined as the first 30-s epoch of any sleep stage after reported 
bedtime. For both actigraphy and radar, sleep onset was defined 
as the first epoch of the first three-minute period consecutively 

scored as sleep, as per the definition used in [26]. Sleep offset, i.e. 
wake time, was defined as the first epoch after the final epoch 
scored as sleep. Student's t-tests were performed to test the hy-
pothesis that the mean difference between compared modal-
ities and PSG was zero. Cohen's D was used as an effect-size 
measure, calculated by dividing the difference of the means 
on the pooled standard deviations. The pooled standard devi-
ations were calculated by averaging the square of the standard 
deviations and taking the square root of the result [27]. Bland–
Altman plots were used for visual comparison of agreements 
between modalities, plotted with bias and 95% limits of agree-
ment (LA). The regression approach for nonuniform differences 
was employed to look for proportional bias. When a statistic-
ally significant slope was identified, the regression line was in-
cluded in the Bland–Altman plot, and the R2 value was reported 
[28]. Forest plots were used to compare the parameter estimates 
made with actigraph and radar data, in terms of their absolute 
difference to corresponding PSG parameters. MATLAB (versions 
R2018-R2020) was used for all analyses.

Results
DS1 contains recordings from 12 healthy young adults (mean age 
± SD: 23.0 ± 3.1 years, 5 male). An equipment error in one PSG re-
cording and a malfunctioning ceiling radar sensor left 43 nights 
of triple-registered recordings available for analysis. In total, 126 
nights of double-registered nightstand radar and actigraphy 
data were available, with 117 nights also containing data from 
the ceiling radar. For actigraphy and the nightstand radar, 24 
nights of triple registered data were assigned to DS1-train. For 
the ceiling radar, two of these nights were missing data, leaving 
22 nights. The rest of the data was assigned to DS1-test. DS2 
contains triple recorded PSG, nightstand radar, and actigraphy 
recordings from 28 adult sleep clinic patients (mean age ± SD: 
46.25 ± 13.98 years, 19 male). Of these, 13 had obstructive sleep 
apnea, the rest miscellaneous, and often multiple sleep prob-
lems including excessive daytime sleepiness, headaches, rest-
less leg syndrome, and insomnia. A  summary of the datasets 
can be found in Table 1.

Table 2 shows the epoch-by-epoch classification per-
formance of two models, one real-time and one with the 

Table 1. Datasets summary

Nightstand Ceiling

Healthy volunteers* – training†   
 Radar + actigraphy 63 59
 Radar + actigraphy + PSG§ 24 22
Healthy volunteers – test†   
 Radar + actigraphy 62 58
 Radar + actigraphy + PSG§ 23 21
Patients with sleep disorders‡   
 Radar + PSG + actigraphy 28 0

Number of concurrent nights of recording performed with three types of 

sensors/equipment.

*n = 12, mean age ± SD: 23.0 ± 3.1 years, 5 males.
†The participants were randomly assigned to a training set for model develop-

ment, and a testing set for validation.
‡Ambulatory sleep disorder patients, mean age ± SD: 46.25 ± 13.98 years, 19 

males.
§PSG = polysomnography.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab060#supplementary-data
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four-past-two-future horizon seen in the most common 
actigraphy algorithms, both with the heuristic Cole–Kripke 
rescoring rules applied. When multiple nights were collected 
from each participant in a dataset, values were calculated for 
all epochs from each participant first, then averaged together. 
Confusion matrices showing the total number of correctly and 
incorrectly classified epochs for each model are presented in 
Table 3. Classification performance of other time horizons 
with and without rescoring can be found in Supplementary 
Material. In general, we observed that different time hori-
zons had little effect on model performance beyond a slight 
decrease as the overall horizon length approached zero. The 
rescoring rules generally improved the accuracy, specificity, 
and Cohen's kappa values, at the cost of a slight decrease in 
sensitivity.

For both datasets, the differences between the real-time 
model and the non-real-time model were in the sub-percent 
range for all performance statistics. Across all metrics, the 
models performed better on DS1-test than on DS2. For the DS1-
test, the nightstand radar achieved the best results, followed by 
the ceiling radar, and then by actigraphy, which outperformed 
the ceiling radar in terms of specificity but otherwise achieved 
slightly lower scores. All accuracies were above 92%, all sensi-
tivities above 95%, all specificities above 83%, and all Cohen's 
kappa values were above 0.81. For DS2 the accuracy of actigraphy 
was around 83% compared with around 81% for the radar. Both 
achieved a sensitivity for sleep of approximately 89%, but in spe-
cificity for wake and the Cohen's kappa statistic, actigraphy not-
ably outperformed the nightstand radar, with respectively 74% 
and 0.53 compared with 53% and 0.44.

Sleep variables for the triple-recorded nights for PSG and de-
rived for each sensor for two selected models are shown in Table 
4, along with Cohen's D effect sizes and superscripts to indicate 
parameters significantly different from their PSG counterparts. 
An expanded version of this table also including the p-values 
can be found in Supplementary Table S6. Bland–Altman plots for 
the real-time models can be seen in Figures 1 and 2, with their 
biases and LAs reported in Table 5 along with t-tests on the hy-
pothesis of zero bias.

For the real-time models applied to DS1-test, all TST es-
timates were similar to PSG (Table 4) and without significant 
bias (Table 5). Significant overestimation of SOL by 2.5 and 4.0 
minutes (Cohen's D: 0.41 and 0.63) was found for the night-
stand radar and actigraphy respectively, with no significant bias 
found in SOL for the ceiling radar. NW was significantly under-
estimated by 5.3 and 7.9 discrete awakenings (Cohen's D: −1.09 
and −1.57) for the nightstand and the ceiling radars respectively. 
A  single significant slope was detected, for SE compared be-
tween PSG and ceiling radar (R2: 0.41). This slope is driven en-
tirely by a single outlying data point, and disappears when this 
single point is removed. (The same data point can be observed 
outside of the LAs in WASO for the same comparates, but does 
not create a significant trend for this parameter). For the non-
real-time models, a significant difference to PSG was found for 
the same parameters; nightstand SOL (+2.1 min), actigraph SOL 
(+3.2  min), nightstand NW (−7.8 awakenings), and ceiling NW 
(−9.7 awakenings). Additionally, the non-real-time model signifi-
cantly underestimated NW by 4.8 discrete awakenings (Cohen's 
D: −0.93) for the actigraph. For the same models applied to DS2, 
TST means were almost identical for PSG and nightstand radar 
(Table 4), and bias was not present (Table 5). No significant biases 
were seen in any sleep parameters, but their variations (seen 
in the standard deviations and confidence interval width) were 
quite a bit larger than for the DS1-test. In general, we observed 
good agreement both for TST and the secondary sleep variables.

The estimated sleep parameters for all nights of the DS1-test, 
including those for which PSG was not available, can be seen in 
Table 6. Bland–Altman plots for the real-time model can be seen 
in Figure 3, and the biases and LAs are reported in Table 7. No sig-
nificant differences were found in estimated TST values. A sig-
nificant difference in SOL of 3.2 minutes was found between the 
two radar positions, with the nightstand estimating a longer la-
tency than the ceiling positioned sensor. Significant differences 
were found for both WASO and SE between actigraphy and both 
radar positions, of 16.8 and 11.5 min WASO and 2.6% and 2.1% 
SE, respectively, for the nightstand and the ceiling positions. 
No significant difference was found between the radar posi-
tions for these parameters. Significant differences were found 

Table 2. Classification performance statistics

Model type* Dataset Sensor type/placement
Accuracy  

[%]
Specificity  

[%]
Sensitivity  

[%] Cohen's kappa*100

Four past, two future Healthy volunteers  
test set†

Radar nightstand 94.8 (1.7) 89.8 (7.1) 96.6 (1.6) 86.9 (5.4)
Radar ceiling 93.8 (2.3) 86.3 (7.4) 96.6 (2.1) 84.3 (6.6)
Actigraphy 93.1 (1.2) 85.4 (7.4) 96.0 (2.8) 82.6 (3.2)

Five past, zero future 
(real time)

Healthy volunteers  
test set

Radar nightstand 94.5 (1.6) 89.5 (6.4) 96.3 (1.5) 86.3 (4.9)
Radar ceiling 93.3 (2.4) 85.4 (7.7) 96.3 (1.9) 83.1 (6.8)
Actigraphy 92.7 (1.1) 83.9 (7.7) 96.1 (2.6) 81.5 (3.2)

Four past, two future Patients with sleep 
disorders ‡

Radar nightstand 80.9 (15.7) 53.7 (18.4) 89.5 (16.9) 44.8 (25.6)
Actigraph 83.8 (9.0) 74.3 (20.0) 89.4 (7.3) 53.3 (15.8)

Five past, zero future 
(real time)

Patients with sleep 
disorders

Radar nightstand 80.9 (15.3) 53.4 (18.7) 89.7 (16.5) 44.3 (24.8)
Actigraphy 84.1 (9.0) 74.0 (20.2) 89.9 (6.9) 53.8 (16.2)

Epoch-by-epoch classification performance statistics for two models, both with the heuristic Cole–Kripke rescoring rules applied, compared to PSG§-determined 

sleep/wake. Mean (SD) over the participants in the datasets.

*The models are defined by the number of preceding (past) and succeeding (future) epochs used to score a present epoch.
†n = 12, mean age ± SD: 23.0 ± 3.1 years, 5 male, 4 nights of PSG + actigraphy + two radars per participant. The participants were randomly assigned into a training set 

for model development (n = 24/22 for nightstand/ceiling), and a testing set for validation (n = 23/21 for nightstand/ceiling). Values were calculated for all epochs from 

each participant first, then averaged together.
‡Ambulatory sleep disorder patients. n = 28, mean age ± SD: 46.25 ± 13.98 years, 19 male.
§PSG = polysomnography.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab060#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab060#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab060#supplementary-data
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between all estimates of NW, of 6.1 and 8.3 discrete awakenings 
between actigraphy and the nightstand and ceiling radars, re-
spectively, and of 2.8 discrete awakenings between the two ra-
dars. Significant slopes indicating the presence of proportional 
bias were detected for the WASO compared between actigraph 
and nightstand radar (R2: 0.29), and for TST, WASO, and SE com-
pared between the ceiling and nightstand radars (R2: 0.39, 0.15, 
and 0.36, respectively).

Forest plots for investigation of the comparative performance 
of the actigraph versus the radar, using the real-time model, are 
shown in Figure 4. The first column shows the compared ab-
solute difference between PSG-derived sleep parameters and 
corresponding parameters estimated from the actigraph and 
the radar respectively. The second column shows the differ-
ence in classification performance statistics between actigraph 
and radar. Both columns are plotted as means of the differ-
ences along with 95% confidence intervals. Skewing left of zero 
favours the radar and vice versa for the actigraph to the right. 
For DS1-test in the top two rows, most plotted parameters have 
means either centred or skewing slightly left, with confidence 
intervals enveloping zero. The two exceptions both appear for 

the sleep parameters of the ceiling radar, where SOL falls en-
tirely to the left of the line and NW entirely to the right. For 
DS2 on the bottom row, the confidence intervals are wider and 
the means skewing more to the right. All sleep parameters en-
velop zero in their confidence intervals, but for the classification 
parameters, the confidence intervals of both Cohen's kappa and 
specificity fall entirely to the right of the line.

Temporal raster plots can be generated to visualize and 
summarize the patient's stay at the hospital. Figure 5 shows an 
example for a single participant from DS1, generated from the 
ceiling-mounted radar. The probability estimate output from the 
real-time model has been plotted as a line, and the sleep/wake 
classification result is indicated by the background colour.

Discussion
Our main results are: (1) Both nightstand and ceiling-mounted 
radars showed excellent to good agreement with PSG for sleep 
detection, quite comparable to actigraphy. (2) The performance 
differences between real-time and non-real-time models were 

Table 3. Confusion matrices With four past and two future epochs included in the model

Healthy volunteers  
test set*

Radar nightstand Radar ceiling Actigraphy

Wake Sleep Wake Sleep Wake Sleep

PSG† Wake 7489 803 6551 1027 6961 1098
Sleep 708 19 644 667 17 877 845 19 505

TPR/FNR‡ 0.97/0.03 0.96/0.04 0.96/0.04
FPR/TNR§ 0.10/0.90 0.14/0.86 0.14/0.86

Patients with sleep 
disorders||

Radar nightstand Actigraphy

Wake Sleep Wake Sleep

PSG Wake 3515 3070 4381 2204
Sleep 2354 19 123 2352 19 125

TPR/FNR 0.89/0.11 0.89/0.11
FPR/TNR 0.47/0.53 0.33/0.67

With five past and zero future epochs included in the model

Healthy volunteers  
test set

Radar nightstand Radar ceiling Actigraphy

Wake Sleep Wake Sleep Wake Sleep

PSG Wake 7465 827 6479 1099 6841 1220
Sleep 756 19 596 717 17 827 829 19 521

TPR/FNR 0.96/0.04 0.96/0.04 0.96/0.04
FPR/TNR 0.10/0.90 0.15/0.85 0.15/0.85

Patients with sleep 
disorders

Radar nightstand Actigraphy

Wake Sleep Wake Sleep

PSG Wake 3483 3102 4350 2235
Sleep 2309 19 168 2253 19 224

TPR/FNR 0.89/0.11 0.90/0.10
FPR/TNR 0.47/0.53 0.34/0.66

Confusion matrices of epoch-by-epoch classification performance for two selected models, both with the heuristic Cole–Kripke rescoring rules applied, over two 

datasets. Numbers on the main diagonals of the 2 × 2 matrices represent correctly classified epochs.

*n = 12, mean age ± SD: 23.0 ± 3.1 years, 5 male, 4 nights of PSG + actigraphy + two radars per participant. The participants were randomly assigned into a training set 

for model development (n = 24/22 for nightstand/ceiling), and a testing set for validation (n = 23/21 for nightstand/ceiling).
†PSG, Polysomnography.
‡TPR, true positive rate. FNR, false negative rate.
§FPR, false positive rate. TNR, true negative rate.
||Ambulatory sleep disorder patients. n = 28, mean age ± SD: 46.25 ± 13.98 years, 19 males.
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very small. (3) Reliable estimates could be achieved for several 
standard sleep parameters like TST, SOL, SE%, NW, and WASO. 
(4) For healthy subjects recorded in a hospital ward environ-
ment, an agreement was generally excellent with a small es-
timated LA. Wider LA was observed for sleep-disorder patients 
using a nightstand radar in their home bedrooms; comparable 
with but somewhat larger than LA for actigraphy for the same 
population. In addition, both actigraphy and radar may tend to 
overestimate SOL and underestimate nightly awakenings.

For the young healthy sleepers in DS1, the epoch-by-epoch 
classification results of our models showed high accuracy and 
sensitivity for both radar sensor placements and the wrist 
actigraph data, as well as remarkably high specificities and 
Cohen's kappa values. A lower agreement was observed for the 
ambulatory sleep-disorder patients in DS2. However, these re-
sults are still well within the range of performance commonly 
reported by previous studies that evaluate actigraphy against 
PSG over various populations; sensitivities and accuracies for 

actigraphy tend to lie in the 80%–90% range, with corresponding 
specificities rarely above 60%, often around 50%, and sometimes 
even below 30% [7, 10, 26, 29–31].

In general, the real-time models performed slightly worse 
than the non-real-time models. However, this performance loss 
is a small cost compared to the benefits of being able to provide 
an immediate estimate of sleep/wake state. For DS1, the night-
stand radar achieved the best overall classification results (larger 
specificity and kappa values). However, since the differences be-
tween radar placements were small, a ceiling-embedded radar 
might still be preferable to a nightstand mount because it com-
bines greater ease-of-use and flexibility with good performance.

Actigraphy was more specific than nightstand radar in the 
sleep-disorder patients of DS2. For the sleep parameters, the ra-
dars and actigraphy compared with PSG for DS2 showed an ex-
cellent similarity of TST, WASO, and SE%. Radars and actigraphy 
tended to overestimate SOL and to underestimate NW. 
Comparing the modalities with each other resulted in relative 

Table 4. Sleep parameters

Healthy volunteers test set*

Model type† Variable‡ PSG§ (n = 23)

Nightstand radar 
(n = 23) Ceiling radar (n = 21) Actigraphy (n = 23)

Mean (SD) Cohen's D Mean (SD) Cohen's D Mean (SD) Cohen's D

Four past, two future TST [min] 434.4 (18.2) 437.4 (17.2) 0.17 438.3 (22.6) 0.24 433.2 (20.1) −0.06
SOL [min] 10.5 (6.2) 12.6 (6.4)¶ 0.33 11.0 (6.0) −0.01 13.7 (6.6)¶ 0.5
WASO [min] 17.3 (11.2) 15.1 (13.1) −0.18 17.5 (17.8) −0.05 19.3 (17.3) 0.13
SE [%] 94.0 (2.6) 94.1 (2.9) 0.01 93.9 (4.3) 0.06 93.0 (4.0) −0.31
NW [num] 17.6 (4.7) 9.8 (3.9)# −1.8 8.0 (4.7) # −2.12 12.8 (5.5)¶ −0.93

Five past, zero future (real time) TST [min] 434.4 (18.2) 436.9 (16.4) 0.15 437.3 (21.7) 0.2 433.1 (19.3) −0.07
SOL [min] 10.5 (6.2) 13.0 (6.0)¶ 0.41 12.4 (6.4) 0.21 14.5 (6.5)¶ 0.63
WASO [min] 17.3 (11.2) 15.8 (12.1) −0.13 17.7 (17.0) −0.04 19.2 (15.8) 0.14
SE [%] 94.0 (2.6) 93.9 (2.6) −0.07 93.6 (4.2) −0.03 92.8 (3.8) −0.37
NW [num] 17.6 (4.7) 12.3 (4.9)# −1.09 10.0 (5.3)# −1.57 15.2 (5.7) −0.46

Patients with sleep disorders||

Model type Variable

PSG (n = 28)
Nightstand radar 
(n = 28) Actigraph (n = 28)

 Mean (SD) Cohen's D Mean (SD) Cohen's D

Four past, two future TST [min] 386.7 (73.3) 386.5 (85.2) 0  372.0 (59.3) −0.22
SOL [min] 13.0 (14.9) 10.0 (12.4) −0.22 14.2 (16.1) 0.07
WASO [min] 61.3 (55.7) 64.9 (77.8) 0.05 74.0 (42.6) 0.26
SE [%] 84.2 (12.2) 84.7 (16.1) 0.03 81.6 (9.5) −0.24
NW [num] 24.6 (13.2) 19.3 (14.0) −0.39 21.6 (10.5) −0.25

Five past, zero future (realtime) TST [min] 386.7 (73.3) 387.2 (85.3) 0.01 374.4 (58.2) −0.19
SOL [min] 13.0 (14.9) 10.3 (12.2) −0.2 15.4 (18.1) 0.14
WASO [min] 61.3 (55.7) 61.9 (80.8) 0.01 71.2 (39.2) 0.2
SE [%] 84.2 (12.2) 85.5 (16.2) 0.09 82.0 (9.0) −0.2
NW [num] 24.6 (13.2) 23.1 (15.5) −0.1 23.9 (11.5) −0.05

Sleep parameters extracted from manually scored hypnograms (PSG) and from the sleep/wake state sequences resulting from the application of two selected clas-

sification models to radar and actigraphy data. Sleep onset latency was calculated from a user-marker input. The significant difference found from paired-sample 

Student's t-tests of each model/sensor compared to their corresponding PSG recordings are indicated with superscripts, and the standardized effect sizes are re-

ported by Cohen's D.

*n = 12, mean age ± SD: 23.0 ± 3.1 years, 5 male, 4 nights of PSG + actigraphy + two radars per participant. The participants were randomly assigned into a training set 

for model development (n = 24/22 for nightstand/ceiling), and a testing set for validation (n = 23/21 for nightstand/ceiling).
†The models are defined by the number of preceding (past) and succeeding (future) epochs used to score a present epoch.
‡ SOL, Sleep Onset Latency; TST, Total Sleep Time; WASO, Wake After Sleep Onset; SE, Sleep Efficiency; NW, Number of awakenings.
§PSG, Polysomnography (sleep parameters scored manually, independent of models).
||Ambulatory sleep disorder patients. n = 28, mean age ± SD: 46.25 ± 13.98 years, 19 male.
¶p < 0.05 Student's t-test, compared to PSG.
#p < 0.001.



8 | SLEEPJ, 2021, Vol. 44, No. 8

biases on-par with or smaller than those seen in the literature 
comparing different actigraphy algorithms to each other [7, 31]. 
For DS2, no statistically significant biases were observed in the 
estimation of sleep parameters. However, the higher standard 
deviations and wider 95% confidence intervals, and 95% limits 
of agreement in the Bland–Altman plots indicate more uncer-
tainty about the estimates for individual subjects recorded at 
home. The reasons for the large deviations in both directions for 
TST, WASO, and SE in few ambulatory home recordings should 
be investigated further, and some possibilities will be discussed 
in the following paragraphs.

The performances of the radars and the actigraph are com-
pared directly in the forest plots shown in Figure 4. While non-
inferiority margins were not prospectively defined for this work 
(a limitation which is discussed below), this figure shows that 
most estimated upper 95% confidence interval limits did not 
exceed hypothetical (but reasonable) non-inferiority margins 
like 20 minutes for TST and 5 minutes for SOL. Such an ana-
lysis would have resulted in conclusions of noninferiority for 
SOL in all three groups and for TST in healthy volunteers, while 
noninferiority in TST could not have been claimed for patients 
since the upper right margin of the confidence interval exceeds 
20 minutes. In summary, the large majority of the estimated 
95% confidence intervals for sleep and classification param-
eters showed no difference between radar and actigraphy. There 

were four exceptions, all for patients with sleep disorders and all 
skewing in favour of the actigraph: TST, WASO (which is closely 
related to TST), Cohen's kappa, and specificity.

The discrepancies in results between our two datasets are 
not unexpected; it is notably more difficult to achieve high 
classification results and good sleep parameter estimates over 
a heterogenous set of sleep-disordered patients than over a 
homogenous set of healthy young volunteers [30]. Subjects who 
lie quietly but awake in bed for long periods of time pose a chal-
lenge to movement-based classifiers, as do subjects with exag-
gerated movement during sleep. The radar measures movement 
from the whole body and includes estimated respiration fre-
quency in its classification models. Consequently, unless one 
can identify and adjust for sleep-disorder specific movements, 
it is reasonable to expect that conditions like obstructive sleep 
apnoea (OSA) and restless legs syndrome will cause epoch 
misclassifications with the current model. It is possible that 
closer inspection of the probability estimate curves, i.e. the pre-
classification model outputs, could be helpful. Whereas a simple 
p = 0.5 classification threshold (with Cole–Kripke rescoring) was 
sufficient for a population of healthy normal sleepers, a more 
nuanced approach could be preferable for groups where the 
level of certainty is lower. Implementing the option of manually 
correcting classification decisions is another avenue that could 
be explored, as is the use of adaptive classification thresholds.

Figure 1. Bland–Altman plots of sleep variables of the test set of healthy volunteers, for the real-time models that score the present epoch by considering it and five 

past epochs. p-values from Student's t-test on the hypothesis of the bias being zero. A single significant trend (pslope < 0.01) was detected and included with its corres-

ponding R squared value. This trend is driven by a single outlying data point. n = 12, mean age ± SD: 23.0 ± 3.1 years, 5 male, 4 nights of PSG + actigraphy + two radars 

per participant. The participants were randomly assigned into a training set for model development (n = 24/22 for nightstand/ceiling), and a testing set for validation 

(n = 23/21 for nightstand/ceiling). PSG, polysomnography; SOL, sleep onset latency; TST, total sleep time; WASO, wake after sleep onset; SE, sleep efficiency.
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A few notes should also be considered when comparing the 
two datasets considered in this study. Not only is DS1 composed 
of data from the same demographic as the data on which the 
classification models were trained; the environment for the 
training set and the test set was also controlled and identical. 
These factors are both highly beneficial to classification. In con-
trast, DS2 was recorded by participants sleeping in their own 
homes, and they were responsible for mounting the radar sensor 
on their own. Environmental factors could not be controlled be-
yond trusting that the participants abided by the requirement of 
sleeping alone in their beds, and although the digital signal pro-
cessing done by the radar attempts to compensate for distance 
to the target, it is possible that inconsistencies in the sensor 
placement for this dataset had a detrimental influence on the 
classification performance. This might to some degree explain 
why the performance difference between the radar and the 
actigraph was larger for DS2 than for DS1. Further work would 

be necessary to validate the degree of environmental control 
needed for optimal results from the radar classifier.

A notable limitation to the present study is that the valid-
ation does not include an in-hospital psychiatric population. 
Sleep in these populations is disrupted and does not necessarily 
reflect either of the datasets studied in this work. Proceeding 
with a study of how our method performs in this setting is a 
natural next step. Furthermore, the datasets examined in the 
present study do not lend themselves to a thorough examin-
ation of possible dependencies of results on factors like age and 
sex. Future sample selection should be designed following the 
current recommended guidelines on the development and val-
idation of sleep devices [32].

There are also some limitations to our statistical analyses. 
Bland–Altman plots were used to illustrate the differences be-
tween modalities. However, these have not taken into account 
that there are uncertainties in the limits of agreement that are 

Figure 2. Bland–Altman plots of sleep variables of patients with sleep disorders, for the real-time models that score the present epoch by considering it and five past 

epochs. p-values from Student's t-test on the hypothesis of the bias being zero. n = 28, mean age ± SD: 46.25 ± 13.98 years, 19 male. PSG, polysomnography; SOL, sleep 

onset latency; TST, total sleep time; WASO, Wake After Sleep Onset; SE, sleep efficiency.
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difficult to estimate on datasets without more samples [28]. 
Furthermore, looking at Figures 2 and 3 we observe that there 
may also be some non-proportional relationships between dif-
ference and magnitude; the samples might tend to spread out as 
TST and %SE decreases, and as WASO increases. A logarithmic 
transformation prior to plotting could manage this dependency, 

however since this was not done in comparable studies, it has 
not been done here [7, 26, 28, 33]. Proportional bias was found 
only for 5 of 32 B-A plots, and this linearity may seem to be 
mostly driven by rather few outlying observations. Finally, 
DS1 lacked a user-marker for bedtime for the non-PSG nights. 
Calculating sleep onset latency from the set bedtime rather than 
from a user-marker is not ideal.

Another limitation was the lack of a pre-planned non-
inferiority analysis comparing actigraphy and radar [34, 35]. 
However, there is surprisingly little information and, to our 
knowledge, no published consensus about the clinically rele-
vant “minimal important difference” (MID) for actigraphic 
sleep parameters. Studies on actigraphic validity rarely report 
test–retest (e.g. between-day) differences necessary for the com-
putation of the distribution-based “one standard error of meas-
urement” MID proxy [36–38]. More work is needed to establish a 
consensus for non-inferiority margins and MIDs for actigraphic 
sleep parameters.

Furthermore, the data from the radar are rich, and the pre-
sent work has only considered a small subset of what might 
be its full potential. In recent years, significant work has been 
done to develop processing techniques for IR-UWB radar data 
for non-invasive remote health monitoring [39]. The technology 
has been used to detect and analyse sleep-disordered breathing 
[40–42], sleep posture recognition [43], and sleep stage classi-
fication [44–47]. O'Hare et.al. [48] compares the sleep assess-
ment performance of two radar-based devices and actigraphy 
to PSG in a group of twenty healthy subjects. Like us, they ob-
served basically equivalent performance of radar devices and 
actigraphy for this group. Their reported epoch-by-epoch classi-
fication performance was lower than ours (overall accuracies of 
85%–86%, Cohen's kappa values of 0.51–0.52), and they observed 
a statistically significant bias to overestimating sleep time and 
underestimating WASO and SOL which contrasts our observa-
tion of SOL being significantly overestimated. In Pallin et.al. [49], 
one of these radar devices was found to have similar accuracy to 

Table 6. Sleep parameters estimated with a real-time model over all 
nights in the test set of healthy volunteers*

Sleep parameter† [units]

Mean (SD‡)

Actigraphy 
(n = 63)

Nightstand 
(n = 63)

Ceiling 
(n = 58)

TST [min] 431.8 (31.5) 434.2 (26.4) 432.1 (40.2)
SO after 23:00 h [min] 18.2 (14.9) 21.0 (18.7) 17.7 (17.8)
WASO [min] 37.5 (37.3) 20.6 (24.4) 27.0 (34.6)
SE [%] 88.7 (6.8) 91.3 (5.5) 90.7 (8.5)
NW [num] 20.5 (9.0) 14.4 (7.6) 11.9 (7.1)

Sleep parameters extracted from the sleep/wake state sequences resulting 

from the application of a real-time classification model that includes infor-

mation from five past and zero future epochs, for all nights in the DS1-test 

(including the ones without consecutive PSG§ recordings). Since no user marker 

was available for the nights without PSG, sleep onset latency was calculated 

from the set bedtime at 23:00 h.

*n = 12, mean age ± SD: 23.0 ± 3.1 years, 5 male, 11 nights of actigraphy + two 

radars per participant. The participants were randomly assigned into a training 

set for model development (n = 63/59 for nightstand/ceiling), and a testing set 

for validation (n = 63/58 for nightstand/ceiling).
†TST, Total Sleep Time; SOL, Sleep Onset Latency; WASO, Wake After Sleep 

Onset; SE, Sleep Efficiency; NW, Number of awakenings.
‡SD, standard deviation.
§PSG, Polysomnography.

Table 5. Sleep variables from real-time models, compared to PSG*

Healthy volunteers test set†

Variable [units]‡

Overall bias (95% CI)  
[P-value]

95% Limits of 
Agreement

TST [min]
Radar nightstand −2.5 (−6.7, 1.7) [0.23] [−21.7, 16.6]
Radar ceiling −4.1 (−10.2, 2.0) [0.17] [−30.3, 22.0]
Actigraphy 1.3 (−5.3, 7.9) [0.69] [−28.7, 31.3]
SOL [min]
Radar nightstand −2.5 (−4.3, −0.7) [0.01] [−10.8, 5.8]
Radar ceiling −1.3 (−3.3, 0.7) [0.18] [−9.8, 7.2]
Actigraphy −4.0 (−7.5, −0.6) [0.02] [−19.5, 11.4]
WASO [min]
Radar nightstand 1.5 (−1.0, 4.1) [0.22] [−9.9, 13.0]
Radar ceiling 0.6 (−5.5, 6.6) [0.85] [−25.4, 26.6]
Actigraphy −1.9 (−6.4, 2.6) [0.39] [−22.3, 18.5]
SE [%]
Radar nightstand 0.2 (−0.5, 0.9) [0.58] [−3.0, 3.3]
Radar ceiling 0.1 (−1.2, 1.4) [0.87] [−5.5, 5.7]
Actigraphy 1.2 (−0.2, 2.6) [0.08] [−5.0, 7.4]
NW [num]
Radar nightstand 5.3 (3.2, 7.3) [<0.001] [−3.9, 14.5]
Radar ceiling 7.9 (5.7, 10.1) [<0.001] [−1.4, 17.2]
Actigraph 2.4 (−0.3, 5.1) [0.08] [−9.9, 14.7]

Patients with sleep disorders§

Variable [units]
Overall bias (95% CI)  
[P-value]

95% Limits of 
Agreement

TST [min]
Radar nightstand −0.5 (−34.9, 34.0) [0.98] [−174.7, 173.7]
Actigraphy 12.3 (−12.3, 36.9) [0.31] [−112.0, 136.7]
SOL [min]
Radar nightstand 2.8 (−1.3, 6.9) [0.18] [−18.0, 23.6]
Actigraphy −2.4 (−7.9, 3.1) [0.38] [−30.3, 25.5]
WASO [min]
Radar nightstand −0.5 (−34.5, 33.5) [0.98] [−172.4, 171.3]
Actigraphy −9.8 (−33.4, 13.7) [0.40] [−128.8, 109.2]
SE [%]
Radar nightstand −1.2 (−9.0, 6.5) [0.74] [−40.2, 37.7]
Actigraphy 2.2 (−3.4, 7.8) [0.43] [−26.3, 30.7]
NW [num]
Radar nightstand 1.5 (−5.2, 8.2) [0.65] [−32.2, 35.2]
Actigraphy 0.6 (−4.8, 6.1) [0.81] [−26.9, 28.1]

Positive values of bias indicate underestimation compared to PSG (p-values 

from Student's t-test for the null-hypothesis that the bias is zero). Limits of 

Agreement given as [bias −1.96*SD, bias +1.96*SD]; SD, standard deviation for 

paired differences.

*PSG, polysomnography
†n = 12, mean age ± SD: 23.0 ± 3.1 years, 5 male, 4 nights of PSG + actigraphy 

+ two radars per participant. The participants were randomly assigned into 

a training set for model development (n = 24/22 for nightstand/ceiling), and a 

testing set for validation (n = 23/21 for nightstand/ceiling).
‡TST, Total Sleep Time; SOL, Sleep Onset Latency; WASO, Wake After Sleep 

Onset; SE, Sleep Efficiency; NW, Number of awakenings
§Ambulatory sleep disorder patients. n = 28, mean age ± SD: 46.25 ± 13.98 years, 

19 male.
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wrist actigraphy for sleep/wake determination in subjects with 
OSA, with lower sensitivity (86% compared to 94%) and, notably, 
higher specificity (52% for the radar sensor compared to 34% for 
actigraphy) and superior estimation of TST, especially at higher 
apnoea–hypopnea indices. Zaffaroni et al. [50] and Crinion et al. 
[51] evaluate the same device specifically as a screening tool 
for OSA, concluding that it is useful particularly for confirming 
more severe cases. More work is needed to evaluate our radar 
sensor in the setting of sleep-disordered breathing, but the im-
plication of this in terms of a psychiatric hospital setting is 
particularly interesting; it indicates a potential for screening of 
sleep-disordered breathing in a patient population where this 
traditionally has been challenging.

Interest in non-contact sleep detection and assessment has 
been growing in popularity over the past decade, and many 
other methods exist that can be used in ways comparable to the 
radar. Under-mattress or under-bed sensors have been shown 
capable of sleep/wake discrimination [52, 53], respiration rate 
detection [54], and detection of sleep-disordered breathing 
[55]. The choice of which sensor to use will depend on the cir-
cumstances: Nagatomo et al. [56] compares an under-mattress 
sensor for sleep measurement to PSG in eleven critically ill 
patients in an intensive care unit (ICU) (achieving agreement, 
sensitivity, and specificity of 68.4%, 90.1%, and 38.7% respect-
ively). In such a hectic environment, activity in the room might 

confound a remote-mounted radar sensor, so an under-mattress 
sensor might be more reliable. On the other hand, an under-
mattress system will still require physical sensors and wiring 
close to the patient, and will only be able to provide measure-
ments while the patient is in their bed. Thus, in a psychiatric 
hospital setting, a sensor mounted permanently in the ceiling 
might be preferable.

Infrared camera technology is another tool that has been in-
vestigated in this context [57]. The Oxehealth system uses in-
frared camera technology in combination with computer vision, 
signal processing, and AI techniques, and has been installed 
in a psychiatric ward; their work shows that “digitally assisted 
nursing observation” has potential in terms of improving patient 
and staff experience at night [58]. However, the use of camera 
monitoring in such a sensitive environment is potentially prob-
lematic. A  ceiling-mounted radar sensor could be capable of 
providing much of the same functionality as a camera-based 
system, while preserving patient privacy to a greater degree, 
as it is much more difficult to directly identify individuals from 
such data.

In summary, radar technology could be used to obtain ob-
jective sleep and activity data from certain patient groups from 
whom it has previously been difficult or even impossible to at-
tain on such a large scale. Since the radar can be embedded 
in a hospital ceiling or placed on a nightstand for home use, 

Figure 3. Bland–Altman plots comparing the actigraph and the two radar positions for the test set of healthy volunteers. p-values from Student's t-test on the hypoth-

esis of the bias being zero. Regression lines with corresponding R squared values are included in those subplots wherein a significant (pslope < 0.01) trend was detected. 

n = 12, mean age ± SD: 23.0 ± 3.1 years, 5 male, 11 nights of actigraphy + two radars per participant. The participants were randomly assigned to a training set for model 

development (n = 63/59 for nightstand/ceiling), and a testing set for validation (n = 63/58 for nightstand/ceiling). SOL, sleep onset latency; TST, total sleep time; WASO, 

wake after sleep onset; SE, sleep efficiency.
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long-term and entirely unobtrusive assessment of sleep in a 
very wide range of clinical cohorts are possible [59]. In a psy-
chiatric hospital setting, a tool like this could be used to provide 
night staff with information about the patients' current sleep/
wake state, e.g. as displayed on monitors in the staff rooms or 
sent to hand-held devices, which in turn could improve patient 
safety at night, reduce the number of nocturnal awakenings due 

to disturbance from night staff, and lead to more efficient use 
of limited staff resources. Actigraphy-generated raster plots of 
the type shown in Figure 5 are known to be very useful in visu-
ally depicting changing periodicities associated with circadian 
dysrhythmia, and they can provide patients with easy to under-
stand graphical displays that may help them to understand 
diagnostic decisions and evaluate their own response to treat-
ment [60]. Radar-generated plots of this type have the potential 
to provide many of the same benefits without any potential in-
convenience to the patient.

Conclusions
Our results indicate that our movement-based models can 
be used with radar data to achieve sleep/wake classification 
results on par with those normally seen for actigraphy. Our 
data also supports that the sensor can be used in real-time. 
Estimates of sleep parameters show little to no bias, although 
the wide limits of the agreement particularly for the clinical 
population warn that these still should be interpreted with 
care. Although our method should be studied further and im-
proved, both to account for various clinical sleep-disorder 
patient groups and for the heterogeneity in environmental 
factors of ambulatory home studies, our results show that a 
non-contact real-time sleep and activity sensor is a real possi-
bility. Accordingly, we believe that a radar-based contact-free 
sensor has great potential as a supplementary tool in psychi-
atric ward monitoring and other settings where contact-free 
sleep monitoring would be advantageous. Such a solution has 
the potential to change clinical practice in selected fields, 
improving decision making and care in hospital and home 
settings, as well as providing a promising new tool for 
researchers.
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Table 7. Sleep variables from real-time models, compared to each 
other

Healthy volunteers test set*

Variable [units]†

Overall bias (95% CI)  
[P-value]

95% Limits of 
Agreement

TST [min]
Actigraphy to radar 

nightstand
−2.4 (−8.1, 3.3) [0.40] [−46.5, 41.6]

Actigraph to radar 
ceiling

−0.8 (−10.1, 8.6) [0.87] [−69.6, 68.1]

Radars ceiling to 
nightstand

−1.0 (−6.8, 4.7) [0.72] [−43.4, 41.3]

SOL [min] 
Actigraphy to radar 

nightstand
−2.8 (−6.2, 0.7) [0.11] [−29.4, 23.8]

Actigraphy to radar 
ceiling

0.1 (−2.5, 2.7) [0.95] [−18.9, 19.1]

Radars ceiling to 
nightstand

−3.2 (−6.0, −0.3) [0.03] [−24.3, 18.0]

WASO [min]
Actigraphy to radar 

nightstand
16.8 (10.2, 23.4) [<0.001] [−34.2, 67.9]

Actigraphy to radar 
ceiling

11.5 (1.5, 21.4) [0.03] [−62.1, 85.0]

Radars ceiling to 
nightstand

5.8 (−1.3, 13.0) [0.11] [−47.2, 58.9]

SE [%]
Actigraphy to radar 

nightstand
−2.6 (−4.0, −1.2) [<0.001] [−13.6, 8.4]

Actigraphy to radar 
ceiling

−2.1 (−4.3, 0.1) [0.06] [−18.2, 14.0]

Radars ceiling to 
nightstand

−0.5 (−1.8, 0.8) [0.43] [−10.1, 9.1]

NW [num]
Actigraphy to radar 

nightstand
6.1 (4.1, 8.1) [<0.001] [−9.3, 21.5]

Actigraphy to radar 
ceiling

8.3 (6.3, 10.4) [<0.001] [−6.7, 23.3]

Radars ceiling to 
nightstand

−2.8 (−4.5, −1.1) [0.01] [−15.2, 9.6]

Sleep parameters extracted from the sleep/wake state sequences resulting 

from the application of a real-time classification model that includes infor-

mation from five past and zero future epochs, for all nights in the DS1-test 

(including the ones without consecutive PSG‡ recordings). Since no user marker 

was available for the nights without PSG, sleep onset latency was calculated 

from the set bedtime at 23:00 h.

Positive values of bias indicate underestimation by the second sensor rela-

tive to the first (p-values from Student's t-test for the null-hypothesis that the 

bias is zero). Limits of Agreement given as [bias −1.96*SD, bias +1.96*SD]; SD, 

standard deviation for paired differences.

 *n = 12, mean age ± SD: 23.0 ± 3.1 years, 5 male, 11 nights of actigraphy + two 

radars per participant. The participants were randomly assigned into a training 

set for model development (n = 63/59 for nightstand/ceiling), and a testing set 

for validation (n = 63/58 for nightstand/ceiling).
†SOL, Sleep Onset Latency; TST, Total Sleep Time; WASO, Wake After Sleep 

Onset; SE, Sleep Efficiency; NW, Number of awakenings.
‡PSG, polysomnography.
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Figure 4. Forest plots comparing the performance of the radar to that of actigraphy, using the real-time models that score the present epoch by considering it and 

five past epochs. Means and 95% confidence intervals of the differences. Skewing to the left of zero favours the radar. Skewing to the right favours the actigraph. From 

this figure, it can be inferred that hypothetical non-inferiority margins equal to 20 min for TST and 5 min for SOL would have resulted in conclusions of noninferiority 

for SOL in all three groups and for TST in healthy volunteers, while noninferiority could not have been claimed for patients since the upper right margin for the CI 

exceeds 20 min. PSG, polysomnography; SOL, sleep onset latency; TST, total sleep time; WASO, wake after sleep onset; SE, sleep efficiency; NW, number of awakenings.

Figure 5. Temporal raster plot generated by the ceiling-mounted radar sensor for a single healthy volunteer. The probability estimate output from the past-five-future-

zero regression model is plotted as a line. Each epoch is classified as sleep/wake by comparing the probability estimate to a threshold of p = 0.5 and then re-scoring with 

the Cole–Kripke rules, and the resulting classification is represented by blue (wake) and red (sleep) sections in the raster plot. For reference, this participant underwent 

PSG on September 28th and 29th, and on October 4th and 5th, achieving a mean (±SD) epoch-by-epoch classification accuracy against PSG sleep/wake of 93.3 (±0.46) 

percent with corresponding Cohen's kappa values of 0.85 (±0.005) over those days.
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