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Quantitative volumetric brain MRI measurement is important in research applications, but translating it into patient care is challenging.

We explore the incorporation of clinical automated quantitative MRI measurements in statistical models predicting outcomes of surgery

for temporal lobe epilepsy. Four hundred and thirty-five patients with drug-resistant epilepsy who underwent temporal lobe surgery at

Cleveland Clinic, Mayo Clinic and University of Campinas were studied. We obtained volumetric measurements from the pre-operative

T1-weighted MRI using NeuroQuant, a Food and Drug Administration approved software package. We created sets of statistical models

to predict the probability of complete seizure-freedom or an Engel score of I at the last follow-up. The cohort was randomly split into

training and testing sets, with a ratio of 7:3. Model discrimination was assessed using the concordance statistic (C-statistic). We com-

pared four sets of models and selected the one with the highest concordance index. Volumetric differences in pre-surgical MRI located

predominantly in the frontocentral and temporal regions were associated with poorer outcomes. The addition of volumetric measure-

ments to the model with clinical variables alone increased the model’s C-statistic from 0.58 to 0.70 (right-sided surgery) and from 0.61

to 0.66 (left-sided surgery) for complete seizure freedom and from 0.62 to 0.67 (right-sided surgery) and from 0.68 to 0.73 (left-sided

surgery) for an Engel I outcome score. 57% of patients with extra-temporal abnormalities were seizure-free at last follow-up, compared

to 68% of those with no such abnormalities (P-value¼ 0.02). Adding quantitative MRI data increases the performance of a model devel-

oped to predict post-operative seizure outcomes. The distribution of the regions of interest included in the final model supports the no-

tion that focal epilepsies are network disorders and that subtle cortical volume loss outside the surgical site influences seizure outcome.
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INTRODUCTION
Surgery is usually the most effective treatment for drug-

resistant focal epilepsies.1,2 Despite the extensive literature

on epilepsy surgery, predicting the likelihood of postoper-

ative seizure freedom for a given patient remains chal-

lenging.3,4 A nomogram to predict individual surgical

outcomes using basic clinical variables5 was developed

and validated by our group with modest accuracy (C-sta-

tistics of 0.6). Since brain MRI is a critical tool to local-

ize the underlying epileptic lesion and the network of

brain damage beyond the seizure focus,6,7 we hypothesize

that the inclusion of quantitative MRI (qMRI) data may

enhance the model’s accuracy.

Studies on volumetric measurements of the hippocam-

pus enhanced our ability to detect signs of hippocampus

atrophy on MRI and by doing so, revolutionized tem-

poral lobe epilepsy (TLE) surgery. Volumetric measure-

ment of brain structures is a long-standing research tool

to detect MRI abnormalities that may not be readily

identified by visual analysis.8 Studies on TLE surgery

using different neuroimaging techniques have demon-

strated that structural abnormalities in brain regions out-

side the surgical margins influence postoperative seizure

outcomes.8–11 However, the translation of this imaging

research knowledge into routine clinical practice has

remained elusive, limiting its ultimate clinical impact.

The development of automatic segmentation algorithms

enables volumetric brain measurement in clinical practice. We

explore here the prognostic value of quantitative volumetric

MRI measurements in the context of temporal lobe surgery,

using NeuroQuant, an Food and Drug Administration

approved software (CorTechs Labs, San Diego, CA, USA)

that performs automatic volumetric measurements, providing

percentile volume data of brain regions referenced against an

age and gender-matched normative cohort.12

We hypothesize that subtle structural evidence of epileptic

network pathology extending beyond the temporal lobe

reduces the odds of seizure freedom after surgery. If this is

correct, qMRI measured in the context of routine clinical
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practice could be leveraged to enhance individualized seizure

outcome prediction prior to TLE surgery. Given the

advanced analytical tools, the epilepsy community should

explore the incorporation of volumetric measurements into

routine clinical care.

MATERIALS AND
METHODS

Patient selection

In this multicentre retrospective study, we selected

patients who underwent temporal lobe surgery for epi-

lepsy (n¼ 653). We excluded patients with multilobar

resections (n¼ 86), prior brain surgeries (n¼ 44), post-op-

erative events of unclear nature (n¼ 22), and patients

who did not have an available pre-operative high-reso-

lution 3D T1-weighted MRI (n¼ 66). The final cohort

included 435 patients treated at Cleveland Clinic, USA

(n¼ 289) Mayo Clinic, USA (n¼ 57) and University of

Campinas, Brazil (n¼ 89) from 2010 to 2018.

Demographic and clinical data were collected from

medical records. All patients underwent a comprehensive

pre-surgical assessment, including clinical history and

video-EEG, and with magnetoencephalography, nuclear

imaging with fluorodeoxyglucose positron emission tom-

ography and/or single-photon emission tomography when

indicated. Visual MRI analysis was performed by a neu-

roradiologist specialized in epilepsy who was blinded to

post-surgical seizure outcomes.

The following potential seizure outcome predictors were

considered: pre-operative seizure frequency, age at epilepsy

onset, age at surgery, duration of epilepsy, sex, aetiology,

side of surgery, presence of generalized tonic-clonic seizures,

MRI abnormalities and type of surgery. Aetiology was

defined by pathology or MRI findings (when pathology

results were not available). These outcome predictors were

similar to the ones used in the generation of our already

published epilepsy surgery nomogram.5

Seizure outcomes

The primary outcome was defined by seizure control at

last follow-up. Acute seizures were defined as seizures

occurring within the first month after surgery and were

not considered as seizure recurrence unless they persisted

beyond the acute post-operative phase. Two separate

analyses were done: one defining seizure control as com-

plete postoperative seizure freedom; and one defining it

as maintaining an Engel score13 of Ia or Ib (allowing for

some postoperative seizures but eventual seizure control

by the last follow-up).

Quantitative MRI

The pre-operative 3D T1-weighted high-resolution MRIs

were de-identified and sent to Neuroquant for quantita-

tive analysis. The software calculates the volume of 71

brain regions providing the left, right and total volume of

each region.

For these analyses, we excluded the following brain

regions: brainstem, cerebellum, choroid plexus and indi-

vidual ventricles (the total ventricular volume was

included in the analysis), which resulted in 58 regions

and intracranial volume measured in percentiles (a total

of 175 measurements: left, right and asymmetry index).

The percentile results compare the volumes of the differ-

ent brain regions against an age and gender-matched nor-

mative cohort. NeuroQuant’s normative database is built

on a population-based sample data set collected from sev-

eral thousand subjects from 3 to 100 years of age with

an equivalence of gender.

Neuroquant uses the percentage of intracranial volume

difference between left and right volumes divided by the

mean to calculate the asymmetry index. This value is

then compared to the normative database, and results are

provided in percentile. When interpreting asymmetry val-

ues as percentiles, the closer the value is to 50, the

smaller the difference between left and right volumes. If

the asymmetry value measured in percentile is between 1

and 49, the left side is smaller than right, and if the

value is between 51 and 100, the right side is smaller.

We analysed right- and left-sided surgeries separately to

account for structural and functional inter-hemispheric

differences.14,15

Surgical Lacuna

To evaluate whether the ipsilateral temporal regions

included in the models were resected or not, we reviewed

all available post-operative MRIs (354 patients, including

144 on the right side and 210 on the left side).

Anatomical sub-regions relevant to the model predictive

performance were classified as being resected or not (par-

tial resections were included in the resection group).

Statistical analysis

Demographics and clinical data

Statistical analysis was run for the right side and the left

side of the surgery separately. For each side of surgery,

the patients’ collected information collected was summar-

ized as the mean and standard deviation for continuous

variables, and as counts and percentage for all categorical

variables.

A two-sample t-test was performed for comparing con-

tinuous variables by outcomes, while categorical variables

were analysed by the Chi-square test. Fisher’s Exact test

was used when one or more of the cells had an expected

frequency of five or less. The Bonferroni correction pro-

cedure was applied to account for multiple comparisons.
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We used the complete-case analysis to address missing

data.

qMRI: variable selection procedure

The statistical method used is illustrated in Fig. 1. Due to

the high number of variables, a selection procedure was

performed. For the qMRI analysis, we used the volume

of different brain regions measured in percentiles.

Variables at P< 0.15 on a two-sample t-test were pre-

selected as potential predictor variables. Correlation ana-

lysis of the predictors was conducted to avoid multi-col-

linearity in a regression model.

Both backward elimination using Akaike’s information

criterion (AIC)16 as a selection criteria, and random forest

selection methods were performed. For the backward elim-

ination method, we started with a model that included all

variables and calculated the AIC value. The AIC is a

measure of the relative goodness of fit for a specific set of

data, which is used to perform model comparisons. Lower

AIC indicates a better model. By removing one variable at

a time from the initial model, we created new models with

new AIC values. The model with the lowest AIC was

selected. The same procedure was then repeatedly

performed in the newer models until we had a final model

with the lowest AIC value. The variables selected in this

model will be those used for the analysis. Random forest

variable selection ranks explanatory (independent) varia-

bles using the random forest score of importance (i.e. large

values are ranked more important than low values).

Random forest computes how much each variable

decreases the node impurity (e.g. potential for misclassifi-

cation). The most important variable is the one that

decreases the impurity the most. The final importance of a

variable is the average of the impurity decrease for each

variable across all the trees. Two sets of predictors were

selected after the backward elimination method and ran-

dom forest selection method.

Development of models to predict seizure outcome

using clinical and qMRI data

To develop predictive models, we created four models

applied to the right- and left-sided surgeries with outcomes

being either seizure free or Engel I at last follow-up (Fig. 1).

• Model 1: we used the backward method to pre-select

the variables and performed a logistic regression.

Figure 1 Statistical analysis: flowchart illustrating model development and process of model selection.
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• Model 2: we used random forest to pre-select the vari-

ables and performed a logistic regression.
• Model 3: we pre-selected variables using the backward

method and performed a random forest regression.
• Model 4: we pre-selected variables using a random

forest selection method and performed a random for-

est regression.

Compared to the logistic regression, random forest regres-

sion does not assume the model has a linear relationship,

and it utilizes ensemble learning. Random forest regression

takes random samples, forms many decision trees, and then

averages out the leaf nodes to get a more precise model.

We selected these two modelling methodologies because lo-

gistic regression is the most classical prediction model meth-

odology (a benchmark method) and random forest

modelling has been shown to be one of the most reliable

machine learning approaches outperforming other machine

learning methods17 such as support vector machines18–20

when the sample size is moderate or small.

The concordance index of each model was calculated.

The concordance index is used to compare the goodness

of fit of logistic regression models.3

Development of models to predict seizure outcome

using clinical data only

To evaluate the impact of qMRI on the model’s perform-

ance, we also created models including only clinical pre-

dictors applied to the right- and left-sided surgeries with

outcomes being either seizure free or Engel I at last fol-

low-up. We used logistic regression and random forest re-

gression to create the models and the concordance index

to evaluate performance.

Testing dataset

The entire patient dataset served as both development

and validation cohorts. To adjust the concordance index,

the whole cohort was randomly split into training and

testing sets, with 70% used for training and 30% for

testing. Using the training dataset, we performed the ori-

ginal regression to the model outcome as a function of

the predictors selected. The model’s performance was

assessed on the testing dataset. This process was repeated

100 times with different random seeds, and the mean

and 95% confidence limit of the area under the curve

was calculated.

We opted for the bootstrap method instead of the trad-

itional k-fold method to account for the heterogeneity of

the different cohorts regarding type of surgery and epi-

lepsy aetiology.

Final model

The concordance index calculated for the testing dataset

was used as a measure of the predictive accuracy of the

model. The respective C-indices were compared to each

other, and the model with the highest concordance index

was selected as the final model.

All analyses were performed using R studio software. The

level of statistical significance was set at P< 0.05 (two-

tailed). To describe the cohort, we used the median (inter-

quartile range) for numeric variables, and counts (%) for

categorical data. Kruskal–Wallis and Fisher’s Exact tests

were used to test for univariate associations of numeric and

categorical variables with the treatment, respectively. Lastly,

we analysed whether the presence of one or more extra-

temporal abnormalities in the extra-temporal regions of

interest identified by the final model correlated with seizure

outcomes (we defined abnormality as volumes less than 5%

compared to the normative population21,22).

Graphic visualization

For the graphic visualization of these results, the signifi-

cant regions of interest included in the final models were

identified on a 3D MRI brain atlas: Neuromorphometrics

(http://www.neuromorphometrics.com/), and the t-values

were displayed using a colour scale to highlight the

selected areas, with cool colours representing negative t-

values and hot colours positive t-values.

Standard protocol approvals,
registrations and patient consent

The Cleveland Clinic Institutional Review Board

approved this study and waived the requirement for indi-

vidual informed consent. All data from participating sites

(Mayo Clinic, USA and University of Campinas, Brazil)

were de-identified of all patient health information.

Data availability statement

The data that support the findings of this study are available

from the corresponding author, LJ, upon reasonable request.

RESULTS

Patient characteristics

A total of 435 patients were included in this cohort.

Median follow-up time post-surgery was 34 months

(25th/75th, 17/60) with a maximum follow-up of

116 months. Tables 1 and 2 display summary statistics

for seizure freedom and Engel I outcomes at the last fol-

low-up, respectively. The initially investigated variables

are displayed in Tables 1 and 2.

Comparing different models

We used different techniques to create models to predict the

probability of being seizure-free and the probability of an

Engel I at last follow-up according to the side of surgery.

Models including only clinical variables were also created

for comparison. Table 3 displays the c-indices of these dif-

ferent models. After comparing the respective c-indices to

each other, we selected Model 1 as our final model: The
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logistic regression model, including clinical variables using

the backward elimination method as a selection procedure

(adjusted concordance index) (Table 3).

When we evaluated models with ‘clinical predictors

only’, we chose those created using a logistic regression

as the final model based on the overall c-indices.

The 95% confidence intervals displayed in Table 3

demonstrate that the adjusted c-indexes from the final

models with and without qMRI data (highlighted in grey)

were significantly different.

The variables identified by the final models as outcome

predictors are displayed in Tables 4 and 5. The graphic

visualization of these results is shown in Fig. 2.

Predictors of surgical outcome in
RIGHT-sided surgeries

Complete seizure freedom versus seizure

recurrence

In patients with right-sided temporal lobe resection, smaller

cortical volumes in the ipsilateral transverse temporal

(P¼ 0.021), entorhinal (P¼ 0.021) and pericalcarine cortices

(P¼ 0.029), and larger volumes in the contralateral parietal

region (P¼ 0.019) were associated with failure of postoper-

ative seizure freedom (Fig. 2A).

When evaluating asymmetry findings, the group with

recurrent seizures had smaller volumes in the contralat-

eral nucleus accumbens (P¼ 0.004) and paracentral re-

gion (P¼ 0.04) (Table 4).

Engel I seizure outcome versus Engel II–IV

In the right-sided surgery group, a higher pre-operative

seizure frequency (P¼ 0.014), surgery sparing the hippo-

campus (P¼ 0.009) and aetiology: other (p0.045) pre-

dicted Engel II–IV outcome. Smaller volumes of the

ipsilateral entorhinal (P¼ 0.033) and contralateral perical-

carine cortex (P¼ 0.026), larger volumes of the contralat-

eral primary motor area (P¼ 0.004) (Fig. 2B) also

predicted Engel II–IV outcomes (Table 4).

Predictors of the surgical outcome

in LEFT-sided surgeries

The areas included in the model were different when sur-

gery was performed on the left side.

Table 1 Summary statistics of the cohort (seizure-free versus not seizure-free outcome)

Post-operative outcome

Overall Not seizure-free Seizure-free

(N 5 435) (N 5 172) (N 5 263)

Variables N Statistics n Statistics n Statistics P-value*

Mean monthly pre-op sz

freq

434 16.4 6 34.8 171 18.0 6 38.5 263 15.3 6 32.3 0.84a

Age at epilepsy onset 435 18.2 6 15.1 172 19.1 6 15.4 263 17.6 6 15.0 0.64a

Age at surgery 435 37.4 6 15.2 172 38.6 6 14.9 263 36.6 6 15.4 0.36a

Epilepsy duration 435 19.3 6 14.8 172 19.6 6 15.4 263 19.0 6 14.4 1.00a

Sex 435 172 263 1.00b

Female 218 (50.1) 89 (51.7) 129 (49.0)

Male 217 (49.9) 83 (48.3) 134 (51.0)

Aetiology 435 172 263 <0.001b

MCD 15 (3.4) 4 2.3) 11 (4.2)

MTS 198 (45.5) 62 (36.0) 136 (51.7)

Tumour 40 (9.2) 11 (6.4) 29 (11.0)

Other 182 (41.8) 95 (55.2) 87 (33.1)

Surgery side 435 172 263 1.00b

Left 246 (56.6) 99 (57.6) 147(55.9)

Right 189 (43.4) 73 (42.4) 116(44.1)

MRI 434 172 262 0.13b

Abnormal 361 (83.2) 136 (79.1) 225(85.9)

Normal 73 (16.8) 36 (20.9) 37(14.1)

Presence of GTC seizures 428 169 259 0.008b

No 82 (19.2) 21 (12.4) 61(23.6)

Yes 346 (80.8) 148 (87.6) 198(76.4)

Type of surgery 435 172 263

AH 81 (18.6) 25 (14.5) 56 (21.3) 0.28b

Standard TL 264 (60.7) 106 (61.6) 158 (60.1)

Sparing the HC 90 (20.7) 41 (23.8) 49 (21.3)

Statistics presented as mean 6 SD or N (column %); P-values.
aTwo-sample t-test.
bPearson’s chi-square test.

AH ¼ amygdalohippocampectomy; GTC ¼ generalized tonic-clonic; HC ¼ hippocampus; MCD ¼ malformation of cortical development; MRI ¼ magnetic resonance image; MTS ¼
mesial temporal sclerosis; Pre-op sz freq ¼ pre-operative seizure frequency; TL ¼ temporal lobectomy.

*P-values are adjusted using the Bonferroni correction method.
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Complete seizure freedom versus seizure

recurrence

In patients with left-sided temporal lobe resection, history

of generalized tonic-clonic seizures (P¼ 0.011), smaller

cortical volumes in the contralateral middle frontal region

(P¼ 0.033) and the degree of asymmetry in the middle

frontal region (P¼ 0.033), with the contralateral side

being smaller, predicted seizure recurrence (Fig. 2C).

Engel I seizure outcome versus Engel II–IV

In the left-sided surgery group, predictors of Engel II–IV

were smaller volumes of the contralateral pars orbitalis

(P¼ 0.016) (Fig. 2D), asymmetry of the middle frontal re-

gion, with the side contralateral to the surgery smaller

(P¼ 0.004), asymmetry of the occipital lobe (P¼ 0.023),

inferior parietal region (P¼ 0.042) and cerebral white

matter hypointensities (P¼ 0.046), with the ipsilateral

side being smaller (Table 5).

Surgical Lacuna

In the left-sided surgery group, the ipsilateral transverse

temporal gyrus was the only temporal region included in

the model to predict Engel I outcome. Only 9/210

(4.3%) had that structure resected or partially resected.

In the right-sided surgery group, the percentage of

patients who had the following ipsilateral temporal

regions resected is as follows: parahippocampal gyrus

(133/144, 92.4%), entorhinal cortex (133/144, 92.4%)

middle temporal gyrus (129/144, 89.6%) and transverse

temporal gyrus (8/144, 5.6%).

We then evaluated whether the resection of these areas

was associated with surgical outcome, none was

(Table 6).

Extra-temporal volume abnormalities

56.6% of patients with one or more abnormal regions of

interest (bolded in Tables 4 and 5) were seizure-free at

last follow-up as opposed to 68.0% of those with no

Table 2 Summary statistics of the cohort (Engel I versus II–IV outcome)

Post-operative outcome

Overall II–IV I

(N 5 435) (N 5 134) (N 5 301)

Factor N Statistics n Statistics n Statistics P-value*

Mean monthly pre-op sz

freq

434 16.4 6 34.8 134 20.1 6 42.0 300 14.7 6 31.1 0.26a

Age at epilepsy onset 435 18.2 6 15.1 134 19.1 6 15.3 301 17.8 6 15.1 0.80a

Age at surgery 435 37.4 6 15.2 134 37.1 6 15.2 301 37.5 6 15.3 1.00a

Epilepsy duration 435 19.3 6 14.8 134 18.1 6 14.6 301 19.8 6 14.8 0.52a

Sex 435 134 301 1.00b

Female 218 (50.1) 70 (52.2) 148 (49.2)

Male 217 (49.9) 64 (47.8) 153 (50.8)

Aetiology 435 134 301 <0.001b

MCD 15 (3.4) 3 (2.2) 12 (4.0)

MTS 198 (45.5) 41 (30.6) 157 (52.2)

Tumour 40 (9.2) 7 (5.2) 33 (11.0)

Other 182 (41.8) 83 (61.9) 99 (32.9)

Surgery side 435 134 301 1.00b

Left 246 (56.6) 78 (58.2) 168 (55.8)

Right 189 (43.4) 56 (41.8) 133 (44.2)

MRI 434 134 300 0.018b

Abnormal 361 (83.2) 102 (76.1) 259 (86.3)

Normal 73 (16.8) 32 (23.9) 41 (13.7)

Presence of GTC

seizures

428 131 297 0.12c

No 82 (19.2) 18 (13.7) 64 (21.5)

Yes 346 (80.8) 113 (86.3) 233 (78.5)

Type of surgery 435 134 301 0.004c

AH 81 (18.62) 14 (10.45) 67 (22.26)

Standard TL 264 (60.69) 82 (61.19) 182 (60.47)

Sparing the HC 90 (20.69) 38 (28.36) 52 (17.28)

Statistics presented as mean 6 SD or N (column %); P-values
aTwo-sample t-test.
bPearson’s chi-square test.

AH ¼ amygdalohippocampectomy; GTC ¼ generalized tonic-clonic; HC ¼ hippocampus; MCD ¼ malformation of cortical development; MRI ¼ magnetic resonance image; MTS ¼
mesial temporal sclerosis; Pre-op sz freq ¼ pre-operative seizure frequency; TL ¼ temporal lobectomy.

*P-values are adjusted using the Bonferroni correction method.
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abnormalities in any of these extra-temporal regions (P-

value¼ 0.02).

DISCUSSION
Despite significant advances in the evaluation of patients

undergoing pre-surgical evaluation, our ability to predict

surgical outcomes remains suboptimal.3,4 In the present

study, we investigated if qMRI measurements could help

develop a model to predict seizure outcome after TLE

surgery.5

The model

Since there is no clear consensus on the best statistical

method to apply in the development of tools to predict

outcomes, we compared models using the combination of

two different selection methods (backward and random

forest) and two different regressions (logistic regression

and random forest). The logistic regression using the

backward elimination method as a selection procedure

had the highest c-statistics and was selected as the final

model (Table 3). One of the strengths of this study is

that we not only compared the importance of the quanti-

tative and clinical variables in predicting surgical outcome

but also explored different methods of conducting the

statistical analysis.

We studied right- and left-sided surgeries separately to

account for structural and functional interhemispheric dif-

ferences.14,15 Studies using different neuroimaging techni-

ques demonstrated that left TLE is usually associated

with more diffuse and widespread changes compared to

right TLE.6,15,23,24 In our study, volume differences were

better predictors of outcome on the right-sided models

compared to the left-sided, where asymmetry differences

seemed to be better predictors. The ‘floor effect’ could

explain this difference. Since the right-sided TLE seems to

be a more unilateral disease, the presence of volume dif-

ferences as predictors stands out as compared to left-

sided TLE. Another possible contributor is the younger

age at onset of epilepsy in left TLE as compared to the

right TLE as demonstrated in a large multicentre study.6

If the left and right TLE groups were similar, we

would expect a mirror effect, with the same structures

being identified by the model. The fact that the structures

were different reinforces the hypothesis that left and right

TLE behave differently. Our results are, therefore, in

agreement with the literature suggesting the left- and

right-sided TLE should be viewed as aetiological and

pathologically distinct entities with distinct outcome pre-

dictors.14,15,23,25 We should also consider the possibility

that the lack of mirroring effect could be artificial, due

to overfitting of the lateralized models or under powering

thus failing to detect the same signals in each model. A

Table 3 Comparison between different models

qMRI 1 clinical predictors Clinical predictors only

Description Model Full Model C-index (CI) Adjusted C-index (CI) Full model C-index

(CI)

Adjusted C-index

(CI)

Seizure free (yes ver-

sus no) right-sided

model

1 0.829 (0.77–0.89) 0.703 (0.69–0.72) 0.672 (0.59–0.75)

(logistic regression)

0.582 (0.57–0.59)

2 0.788 (0.72–0.86) 0.659 (0.65–0.67)

3 0.701 (0.62–0.78) 0.675 (0.66–0.69) 0.598 (0.52–0.68)

(random forest

regression)

0.586 (0.58–0.60)

4 0.710 (0.63–0.79) 0.689 (0.68–0.70)

Seizure free (yes ver-

sus no) left-sided

model

1 0.762 (0.70–0.82) 0.664 (065–0.68) 0.680 (0.61–0.75)

(logistic regression)

0.605 (0.59–0.62)

2 0.740 (0.68–0.80) 0.642 (0.63–0.65)

3 0.660 (0.59–0.73) 0.647 (0.64–0.66) 0.574 (0.50–0.65)

(random forest

regression)

0.571 (0.56–0.58)

4 0.616 (0.54–0.69) 0.614 (0.60–0.61)

Engel I versus II–IV

right-sided model

1 0.784 (0.71–0.86) 0.666 (0.65–0.68) 0.701 (0.62–0.78)

(logistic regression)

0.623 (0.61–0.64)

2 0.723 (0.64–0.81) 0.630 (0.61–0.65)

3 0.594 (0.50–0.69) 0.588 (0.57–0.60) 0.620 (0.54–0.71)

(random forest

regression)

0.594 (0.58–0.61)

4 0.619 (0.53–0.71) 0.611 (0.60–0.62)

Engel I versus II–IV

left-sided model

1 0.821 (0.77–0.88) 0.729 (0.72–0.74) 0.733 (0.67–0.80)

(logistic regression)

0.676 (0.67–0.69)

2 0.813 (0.76–0.87) 0.722 (0.71–0.73)

3 0.701 (0.63–0.78) 0.686 (0.68–0.70) 0.654 (0.58–0.73)

(random forest

regression)

0.651 (0.64–0.66)

4 0.727 (0.66–0.80) 0.715 (0.71–0.72)

Adjusted C-index: concordance index adjusted using a random split method.

Models

1. Backward selection method, AIC as selection criteria—Logistic regression using selected variables.

2. Random Forest selection method—Logistic regression using selected variables.

3. Backward selection method—Random Forest regression using selected variables.

4. Random Forest selection method—Random Forest regression using selected variables.

CI ¼ 95% confidence intervals.
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large sample size is always intuitively desired for classifi-

cation or regression studies, and a larger sample size the-

oretically can minimize the empirical risk. Cui and

Gong26 conducted a comprehensive study on sample size

effects for building prediction models in neuroimage stud-

ies. They showed greater improvements in the accuracy

and stability of the prediction when the sample size is

increased from an initially small sample size, whereas

smaller improvements are observed when the sample size

is increased from an initially large sample size. According

to their findings, the average accuracy and stability of the

prediction appear to plateau at sample sizes of 200–300,

regardless of the algorithm. Therefore, a minimum sample

size of 200 is recommended for machine learning regres-

sion prediction. Our study included 435 subjects, and the

samples for building each of the sub-models were around

200. Even though we always desire larger sample sizes,

compared to prior studies, we describe a cohort with a

relatively reasonable size. Our sample may not fully rep-

resent the entire spectrum of the population, therefore

limiting the generalizability of the predicted results to cer-

tain independent sample sets.

By adding the qMRI data to the model, we were able

to increase the c-statistics further from 0.58 to 0.70

(right-sided surgery) and from 0.61 to 0.66 (left-sided

surgery) for complete seizure freedom. For Engel I score

prediction, the C-statistics increased from 0.62 to 0.67

(right-sided surgery) and from 0.68 to 0.73 (left-sided

surgery). The models created in this study using clinical

predictors only had similar c-statistics values compared to

our previously published nomogram (the C-statistics for

complete seizure freedom was 0.6, and for Engel I score

0.61). Even though the increase in the C-index was statis-

tically significant, assessing the clinical significance of this

enhancement is a nuanced exercise. Similar studies in

other fields considered comparable c-statistic enhance-

ments as an improvement in the model’s performance. In

lung cancer research, Mayo Clinic’s Solitary Pulmonary

Nodule Malignancy Risk model was the well-known

benchmark model for lung cancer prediction. Reid et al.

developed improved models to help characterize

Pulmonary Nodules considered high enough risk by a

clinician to recommend a biopsy. In an independent sam-

ple used for validation, c-index for Reid’s model was

Table 5 Left-sided surgeries and predictors of surgical outcome

Variables included in the model Seizure free (yes versus no) Engel I versus II–IV

Adjusted C: 0.664 Adjusted C: 0.729

Not sz

free

(n 5 99)

sz free

(n 5 147)

P-value coef Engel

II–IV

(n 5 78)

Engel I

(n 5 168)

P-value coef

Clinical variables Preop sz freq 18.0 6 38.8 18.9 6 39.3 0.90 0.001 19.5 6 41.6 18.1 6 37.8 0.67 �0.002

Gender Male 50(50.5) 77(52.4) 0.63 �0.154

Epilepsy duration 18.3 6 15.2 19.0 6 15.0 0.92 �0.001

GTCS Yes 85(86.7) 106(73.1) 0.01 �0.070 66(85.7) 125(75.3) 0.08 �0.815

Type of surgery Sparing 29 (29.29) 39 (26.53) 0.09 1.161 27 (34.62) 41 (24.40) 0.59 �0.415

Resection 56 (56.57) 73 (49.66) 0.35 0.528 44 (56.41) 85 (50.60) 0.48 �0.476

MRI Normal 21 (21.21) 19 (12.93) 0.56 0.263 19 (24.36) 21 (12.50) 0.44 0.385

Aetiology MTS 35(35.4) 74(50.3) 0.82 �6.913 21(26.9) 88(52.4) 0.80 �7.934

Tumor 5(5.1) 18(12.2) 0.81 �7.350 3(3.8) 20(11.9) 0.82 �7.165

Other 59(59.6) 51(34.7) 0.79 �8.407 54(69.2) 56(33.3) 0.76 �9.408

qMRI-specific regions Mean volume (percentile) Mean volume (percentile)

Right hemispheric

regions

Right middle frontal 45.5 6 29.4 56.5 6 29.1 0.03 0.017

Right premotor 50.0 6 29.5 56.2 6 29.1 0.17 �0.011

Right parahippocampal 32.6 6 29.1 39.4 6 30.2 0.07 0.010 32.0 6 27.8 38.9 6 30.7 0.11 0.010

Right putamen 67.5 6 27.2 60.4 6 30.6 0.11 �0.009 69.4 6 25.5 60.4 6 30.8 0.11 �0.010

Right pars orbitalis 34.4 6 31.9 42.3 6 30.2 0.02 0.014

Left hemispheric

regions

Left pallidum 15.1 6 23.0 23.9 6 29.7 0.08 0.013 63.9 6 27.1 56.3 6 31.6 0.72 0.003

Left lateral orbitofrontal 53.9 6 33.3 45.1 6 32.5 0.39 �0.005

Left transverse temporal 55.6 6 31.3 61.6 6 29.7 0.06 0.011

qMRI-asymmetry index Mean percentile Mean percentile

Asymmetry index

percentile

Anterior cingulate Asym 59.5 6 29.2 51.9 6 32.0 0.18 �0.009

Ventral diencephalon Asym 35.4 6 32.3 41.8 6 30.8 0.07 0.009

Middle frontal Asym 59.2 6 29.3 49.5 6 30.9 0.03 0.017 62.8 6 27.9 49.0 6 30.9 0.004 �0.017

Medial parietal Asym 37.9 6 31.4 45.7 6 33.4 0.11 0.009

Occipital lobe Asym 44.9 6 29.3 37.7 6 29.1 0.02 �0.014

Inferior parietal Asym 41.3 6 29.1 48.0 6 31.7 0.04 0.012

CWMH Asym 42.4 6 31.6 51.3 6 35.1 0.05 0.010

Statistics presented as mean 6 SD or N (column %). Bolded p-values are statistically significant.

Asym ¼ asymmetry; coef ¼ model’s coefficient; CWMH ¼ cerebral white matter hypointensities; GTC ¼ generalized tonic-clonic seizures; MTS ¼ mesial temporal sclerosis; Pre-

op sz freq ¼ pre-operative seizure frequency; P-values: model’s P-value; qMRI ¼ quantitative magnetic resonance image.
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0.67 compared with 0.63 for the Mayo Clinic model,

and is preferred as offering improved clinical utility.27

We believe any enhancement in the model’s performance

is important, especially considering the resources needed

to generate this increase in the c-statistic in our study are

relatively minor: Neuroquant is commercially available,

Food and Drug Administration approved, and user

friendly, so implementing it does not necessitate the typ-

ical major investments required to build a research imag-

ing program within an epilepsy surgery centre.

Given the availability of clinical software packages for

automated volume segmentation and measurements, our

Figure 2 The heatmap represents the t statistics* of the univariate analysis and displays the structures that were identified

by the model as outcome predictors. (A) Failure of postoperative seizure control for right-sided temporal lobe surgeries associated

with smaller volumes of the transverse temporal, pericalcarine and entorhinal cortex in the right (ipsilateral) hemisphere, and with larger

volumes of medial parietal in the left (contralateral) hemisphere. Seizure recurrence also associated with asymmetry of nucleus accumbens

and paracentral regions, with the left side (contralateral hemisphere) smaller than the right. (B) Failure of postoperative seizure control for

left-sided temporal lobe surgeries associated with smaller volumes of the right middle frontal region in the right (contralateral) hemisphere,

and with asymmetry of middle frontal gyri, with the right side (contralateral hemisphere) smaller than the left. (C) Worse outcomes (Engel II–

IV) for right-sided temporal lobe surgeries associated with smaller volumes of the entorhinal cortex in the right (ipsilateral) hemisphere, and

with smaller volumes of the pericalcarine cortex and with larger volumes of the primary motor cortex in the left (contralateral) hemisphere.

(D) Worse outcomes (Engel II–IV) for left-sided temporal lobe surgeries associated with smaller volumes of the pars orbitalis in the right

(contralateral) hemisphere and asymmetry of the occipital lobe, and inferior parietal region with the left side (ipsilateral) hemisphere smaller

than the right and asymmetry of middle frontal region with the right side (contralateral hemisphere) smaller than the left. * t-statistics

represented in colour bars: cool colours negative t-values and hot colours positive t values.
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study provides now a new tool that could be incorpo-

rated in routine clinical practice to enhance surgical out-

come prediction.

Regions of interest

Volumetric differences located predominantly in the ipsi-

and contra-lateral fronto-central and temporal regions

were associated with worse outcomes. The comparison

between regions included in our model with that

described in the literature revealed some interesting simi-

larities. The Enhancing Neuro Imaging Genetics through

Meta-Analysis-epilepsy study compared patients with epi-

lepsy and controls, looking for areas with reduced vol-

ume 6 using freesurfer. Even though Neuroquant is a

different tool, its analysis procedure is similar to the one

performed by freesurfer with comparable results.28 Even

though the Enhancing Neuro Imaging Genetics through

Meta-Analysis-epilepsy study aimed to look for brain

regions related to epilepsy regardless of seizure outcome,

in general, many areas identified by our model as out-

come predictors overlap with the ones reported by

Enhancing Neuro Imaging Genetics through Meta-

Analysis-epilepsy. The areas also overlap with other stud-

ies that reported progressive atrophy in the ipsilateral

temporopolar and central regions and contralateral orbi-

tofrontal, insular, and angular regions in TLE.29 A more

rapid progression of atrophy was seen in the frontocen-

tral and parietal regions in patients with longer duration

of disease.29

Studies using similar morphometric techniques, includ-

ing voxel-based morphometry, surface-shape analysis and

cortical thickness, also reported an association between

surgical outcome and morphometric changes in extrahip-

pocampal structures8 like the entorhinal cortex,30 tempor-

opolar and insular cortices,11 parahippocampal region,31

thalamotemporal structure32 and whole-brain extrahippo-

campal structures.10,33

Given many regions identified by our model as out-

come predictors overlap with regions described in previ-

ous studies rejects the assumption that these areas might

have been selected by chance. Our findings reinforce the

involvement of these areas in the pathophysiology of

TLE, explaining their relevance in predicting surgical out-

come. Resections of the ipsilateral temporal lobe struc-

tures identified by this model were not associated with

seizure outcome. A limitation of this sub-analysis was the

uneven distribution of cases, with some of the evaluated

structures being routinely removed and others rarely

resected. For example, some structures, like the transverse

gyrus, are rarely resected, making it difficult to analyse

the role of this region in surgical outcomes. This limita-

tion might have influenced our results, explaining why,

even though these variables were predictive of outcome

in the model, they were not associated with overall seiz-

ure freedom in the surgical lacuna analysis. Future studies

focusing on the exact extent of the resection are needed

to better address this relationship. Because we do not ac-

quire post-operative MRIs routinely, many patients had

missing data. This limitation might have led to a selection

bias that needs to be considered when evaluating the

results.

One unexpected result was the fact that the ipsilateral

hippocampal volume had no predictive value for tem-

poral lobe surgery outcome. One explanation could be

the floor effect, in other words, since the ipsilateral

hippocampus was already atrophic, the range of volume

variability was limited restricting our ability to differenti-

ate subgroups. If we analyse the subgroup of patients

with hippocampal sclerosis, the median hippocampal vol-

ume percentile (which could range from 1 to 100) was 1

(interquartile range 1–11) on the left-sided surgery group

and 1 interquartile range (1–12) on the right-sided group,

confirming the floor effect. Even though unexpected, this

finding is in agreement with other studies that could not

find the association between hippocampal volume and

surgical outcome.8 Furthermore, because the qMRI data

were evaluated in conjunction with clinical data, we hy-

pothesize that the presence of hippocampal sclerosis

might have removed the additional information that hip-

pocampal volumes might have provided.

Table 6 Seizure outcome and resection of the ipsilateral temporal regions included in the model

Variables included in the model Surgical outcome

Resected/partially resected

qMRI-specific regions Not sz free (n 5 55) sz free (n 5 89) P-value

Right sided-surgery Right parahippocampal 49/55 (89.1%) 84/89 (94.4%) 0.33a

Right middle temporal 48/55 (87.3%) 81/89 (94.4%) 0.58a

Right transverse temporal 6/55 (10.9%) 2/89 (2.25%) 0.54a

Right entorhinal cortex 49/55 (89.1%) 84/89 (94.4%) 0.33a

qMRI-specific regions Engel II–IV (n¼ 68) Engel I (n¼ 142) P-value

Left sided-surgery Left transverse temporal 4/68 (6.9%) 5/142 (3.5%) 0.48a

Statistics presented as N (column %); P-values.
aFisher exact test.

qMRI ¼ quantitative MRI; sz ¼ seizure.
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Epilepsy network as an outcome
predictor

We tried to delineate the weight of each brain region

included in the model in the definition of surgical results.

However, we could not find a linear relationship. Instead,

we found a more widespread pattern of atrophy, including

areas that are likely important for outcome prediction, in-

dependent of the reduced cortical volumes being ipsi- or

contra-lateral to the surgical site. The broad distribution of

these regions of interest within and outside of the temporal

lobe supports the current notion that focal epilepsies are in

fact focal network disorders7,23,34–36 and the notion that

the presence of damage and dysfunction outside of the sur-

gical focus is relevant for the outcome.6,29 Volumetric dif-

ferences in regions outside the surgical site probably mirror

changes in the epileptic network and could work, for that

reason, as a biomarker for surgical outcome.37 The correl-

ation between the regions selected by the model and seiz-

ure outcome showed that patients with one or more

abnormal regions had better outcomes, reinforcing the hy-

pothesis that the more abnormal the network, the worse

the outcome. Further studies will be necessary to define the

exact functional connection between these areas.

Clinical translation

Different techniques have been applied to several neuroi-

maging applications to improve the accuracy of predictive

models.38 However, the translation from research findings

into clinical care still requires improvement. We chose

Neuroquant as a tool for MRI volumetry as it is Food

and Drug Administration approved, clinically available,

and practical. It performs an automated analysis, has a

user-friendly interface, and promptly provides the volu-

metric results. Another benefit of Neuroquant is that it

accepts high-resolution 3D images acquired using differ-

ent MRI protocols. One limitation of this technique is

that the software is not free of charge.

The novelty of this work is that the development of

this preliminary model moves us one step forward to-

wards the translation of research findings into a possible

clinically meaningful and practical tool to be used by any

institution, and not only by dedicated research centres.

Although our findings need further confirmation, our

results are robust. The data come from three different

epilepsy centres, and our findings are consistent with pre-

viously published results. Our results also emphasize the

need for statistical models to account for the complex re-

lationship between quantitative measurement and surgical

outcomes, and encourage the use of qMRI measurement

to enhance our ability to predict surgical outcomes.

Study limitations

The initial inclusion of most regions of interest provided

by Neuroquant is both a limitation and an advantage.

The limitation is that we included, at first, a high number

of regions of interest. To overcome this issue, we per-

formed a pre-selection of the most important predictive

variables before the construction of the model. By doing

so, we avoided a selection bias.

The creation of an online risk calculator would facili-

tate the introduction of our findings into clinical practice.

However, the development of clinically useful calculators,

based on models with multiple and complex variables, is

challenging. Our results show that quantitative data can

be used to improve the prediction of surgical outcome,

however, new studies focused on automatic import of big

data, visualization tools and innovative prediction meth-

ods are necessary to improve the usefulness of this tool.

Further improvements are needed for this tool to be

ready for general clinical deployment, such as additional

external validation, and applications in diverse epileptic

pathologies.

Even though we are comparing this model’s perform-

ance to the previously published nomogram’s,5 it is im-

portant to highlight that our study included only patients

with temporal lobe resection, while the nomogram also

included extra-temporal cases (32% of the development

cohort).

Since we use regression models with a multitude of fea-

tures, there is a potential for overfitting when calculating

the full model c-index. To overcome this issue, we use

the adjusted c-index.

Conclusion
Our study demonstrates the prognostic value of qMRI in

the context of brain surgery for drug-resistant TLE and

provides a path for translation of sophisticated epilepsy

imaging research into clinical application. The MRI volu-

metric measurements likely represent an intermediate

quantitative trait that influences the surgical result. It is

likely not the individual variable per se that defines the

outcome, but the interplay among them. The volume of

each region of interest may be a deconstruction of the

endophenotype MRI,39 meaning that even though we

assessed the areas selected by the model, the interpret-

ation of the individual regions of interest should be done

with caution. Regardless of the reason, the combination

of variables ended up enhancing the performance of the

model compared to our previous Nomogram.5 The mod-

els presented here provide an individualized prediction of

surgical outcome with potentially clinically meaningful

use.
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