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Abstract: Waterborne contaminants were monitored in 69 tributaries of the Laurentian Great Lakes in 2010 and 2014 using
semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). A risk‐based screening
approach was used to prioritize chemicals and chemical mixtures, identify sites at greatest risk for biological impacts, and identify
potential hazards to monitor at those sites. Analyses included 185 chemicals (143 detected) including polycyclic aromatic
hydrocarbons (PAHs), legacy and current‐use pesticides, fire retardants, pharmaceuticals, and fragrances. Hazard quotients were
calculated by dividing detected concentrations by biological effect concentrations reported in the ECOTOX Knowledgebase
(toxicity quotients) or ToxCast database (exposure–activity ratios [EARs]). Mixture effects were estimated by summation of EAR
values for chemicals that influence ToxCast assays with common gene targets. Nineteen chemicals—atrazine, N,N‐
diethyltoluamide, di(2‐ethylhexyl)phthalate, dl‐menthol, galaxolide, p‐tert‐octylphenol, 3 organochlorine pesticides, 3 PAHs, 4
pharmaceuticals, and 3 phosphate flame retardants—had toxicity quotients >0.1 or EARs for individual chemicals >10–3 at 10% or
more of the sites monitored. An additional 4 chemicals (tributyl phosphate, triethyl citrate, benz[a]anthracene, and benzo[b]
fluoranthene) were present in mixtures with EARs >10–3. To evaluate potential apical effects and biological endpoints to monitor
in exposed wildlife, in vitro bioactivity data were compared to adverse outcome pathway gene ontology information. Endpoints
and effects associated with endocrine disruption, alterations in xenobiotic metabolism, and potentially neuronal development
would be relevant to monitor at the priority sites. The EAR threshold exceedance for many chemical classes was correlated with
urban land cover and wastewater effluent influence, whereas herbicides and fire retardants were also correlated to agricultural
land cover. Environ Toxicol Chem 2021;40:2165–2182. Published 2021. This article is a U.S. Government work and is in the public
domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Keywords: Contaminants of emerging concern; Screening and prioritization; ToxCast; Complex mixtures; Great Lakes
Restoration Initiative

INTRODUCTION
The Laurentian Great Lakes basin and associated tributaries

include watersheds that range from relatively pristine forests
and wetlands to agricultural areas, industrial centers, and urban
environments. Sources within each of these land‐use areas can
contribute a suite of chemical contaminants to streams, posing
a potential threat to aquatic biota and other wildlife. Research
on tributaries of the Great Lakes has confirmed that
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contaminants are present in water samples (Baldwin et al. 2016;
Elliot et al. 2017), fish tissues (Choy et al. 2017), freshwater
mussels (Kimbrough et al. 2018), and tissues of terrestrial and
avian wildlife that reside nearby (Custer et al. 2016; Kraus et al.
2017; Walters et al. 2018).

Understanding the potential impacts of these contaminants
on exposed Great Lakes fish and wildlife and the ecosystem
services they provide is a significant challenge. Reliable in-
formation (e.g., water quality benchmarks from the US Envi-
ronmental Protection Agency [USEPA] or Canadian Council of
Ministers of the Environment) to identify concentrations that
pose a potential ecological hazard is available for only a frac-
tion of the chemicals that are included in the monitoring pro-
grams (Tang et al. 2013; Baldwin et al. 2016). Where
established water quality benchmarks are lacking, the peer‐
reviewed literature can be a source of toxicity information.
However, it can be very time‐intensive to conduct detailed
chemical‐specific literature searches and compile the results
considering such factors as the different species tested, end-
points examined, and durations of exposure. The USEPA's
ECOTOX Knowledgebase (US Environmental Protection
Agency n.d.) offers a tractable alternative to de novo literature
search and assembly. As of June 2020, the ECOTOX knowl-
edgebase had captured information on over 12 000 chemicals
from over 50 000 peer‐reviewed studies and 13 000 species
(US Environmental Protection Agency n.d.). As such, ECOTOX
can be a useful and efficient source for gathering toxicity in-
formation that can help put detected levels of chemical con-
centrations into context for prioritization purposes.

Another emerging source of toxicity information comes
from high‐throughput screening (HTS) programs like the
ToxCast and Tox21 programs, hereafter referred to as ToxCast
(Dix et al. 2007; Kavlock et al. 2012; Tice et al. 2013). The
ToxCast program includes information on biological activities
for several hundred HTS assays that characterize a range of cell
responses and approximately 300 signaling pathways (Kavlock
et al. 2012; Tice et al. 2013) for >9000 chemicals. Summary
metrics, such as the activity concentration at cutoff (ACC), that
estimate consistent measures of bioactivity among the different
chemicals have been used as estimates of toxicological po-
tency in relation to specific biological targets or pathways.
Consequently, consideration of a ratio between exposure
concentrations detected in the environment and ACCs in var-
ious ToxCast assays (exposure–activity ratios [EARs]) provides a
means for prioritizing chemicals based on both their concen-
tration and relative potency to interact with specific biological
targets (Blackwell et al. 2017, 2019; Elliott et al. 2018; Bradley
et al. 2019, 2020; Corsi et al. 2019).

Although EARs can be calculated for any measured chem-
ical concentration, prioritization can be improved by obtaining
samples that are more representative of an organism's ex-
posure over time. Traditional discrete (i.e., grab) sampling
methods are well established but only provide information on a
single point in time. A rigorous discrete sampling scheme ca-
pable of capturing some of the inherent variability in the oc-
currence and concentration of chemicals in the water can be
both logistically and financially prohibitive. Other techniques

such as autosamplers can address some of the temporal as-
pects of sample collection, but these instruments are expensive
and can have specific infrastructural needs, limiting their ap-
plicability in monitoring programs with numerous study loca-
tions. Passive sampling technologies can overcome the
limitations of these methods. Passive samplers sample chem-
icals from the dissolved phase in the water column continuously
over a period of weeks to months (Huckins et al. 2006). Often,
samples from passive samplers represent much larger volumes
of water sampled (tens to hundreds of liters of water) than
could be obtained by traditional methods (Huckins et al. 2006;
Alvarez 2010). This can result in the measurement of chemicals
at considerably lower but still biologically relevant concen-
trations than would be possible with a common water sample
of 1 L or less (Kolpin et al. 2013; Van Metre et al. 2017).
However, the practical volume passive samplers can also be
limited by the size (sorptive volume) of device that can be
deployed (Kahl et al. 2014).

Obtaining samples which are relevant to the exposure of
organisms is a challenge for ecotoxicologists (Huckins et al.
2006). Samplers such as the semipermeable membrane device
(SPMD) and the polar organic chemical integrative sampler
(POCIS) can provide data on the time‐weighted average con-
centration of select chemicals in the water column, which can
be a reasonable estimate of an organism's exposure to dis-
solved chemicals (Huckins et al. 2006). Extracts from SPMDs
and POCIS have frequently been screened by in vitro (e.g.,
estrogen assays, ethoxyresorufin‐O‐deethylase (EROD), Mi-
crotox, vitellogenin induction, Ames, and effects‐directed
analysis studies) and in vivo (e.g., tadpole development, fish
injections) tests to identify biological effects related to ex-
posure to a chemical or mixture of chemicals (Parrott and Tillitt
1997; Petty et al. 2000; Bridges et al. 2004; Johnson et al.
2004; Rastall et al. 2004; Vermeirssen et al. 2005; Alvarez et al.
2008, 2013; Brennan et al. 2020).

The present study utilized SPMDs and POCIS deployed at
69 Great Lakes tributary sites in 2010 and 2014 to estimate
long‐term biologically relevant concentrations of waterborne
contaminants. Exposure data from targeted chemical analyses
were compared with effect concentrations derived from toxicity
data from the ECOTOX knowledgebase and/or HTS results
from ToxCast through the toxEval R package to prioritize in-
dividual chemicals and chemical mixtures, identify sites with a
higher risk for biological impact, and identify apical adverse
effects that are plausibly linked to the biological pathways likely
to be impacted.

MATERIALS AND METHODS
Site selection and field sampling

The SPMDs and POCIS were codeployed for 26 to 36 d
between September and November of 2010 and for 26 to 60 d
between April and July of 2014 to provide a time‐weighted
average of dissolved concentrations of select organic con-
taminants. Sixty‐nine sites encompassing tributaries along the
US side of each of the Great Lakes across the states of Indiana,
Michigan, Minnesota, New York, Ohio, and Wisconsin, which
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account for >70% of the flow from the US side of the Great
Lakes, were selected (Baldwin et al. 2016). Sites were colocated
with existing National Monitoring Network for US Coastal
Waters sites and included watersheds with at least one
wastewater‐treatment plant (Baldwin et al. 2016). Sites were
selected to represent a wide range of land cover attributes,
including 0.4 to 99% urban land cover, 0 to 91% agricultural
land cover, and 0.1 to 66.6% forested land cover (Figure 1;
Supplemental Data, Table SI‐1). Fifty‐five sites were sampled in
2010, and 37 sites were sampled in 2014. Of the 69 sites
sampled across both periods, 32 were unique to 2010 and 14
were unique to 2014 (23 sites in common between years).

Passive samplers
Passive sampler construction. For each deployment, SPMD
and POCIS passive samplers were constructed at the US Geo-
logical Survey, Columbia Environmental Research Center (CERC),
according to established protocols (Alvarez et al. 2008). For
each site, a protective deployment canister was prepared con-
taining 2 SPMDs and 3 POCIS. The SPMDs were spiked with a
mixture of performance reference compounds (PRCs) including
phenanthrene‐d10, pyrene‐d10, and polychlorinated biphenyl (PCB)
congeners 14, 29, and 50. Dibenz[a,h]anthracene‐d14 was included
in the PRC mixture as a photolysis marker to measure the potential
photodegradation of sequestered polycyclic aromatic hydro-
carbons (PAHs) during the field deployment. For deployment, the
passive samplers were removed from their sealed shipping

containers, secured to a post at approximately 1 foot above the
streambed, and left in place for 26 to 60d. Passive samplers were
removed after deployment and shipped overnight to CERC for
processing.

Sampler processing and analysis. Following the field de-
ployment, the SPMDs were processed and analyzed for organo-
chlorine pesticides, total PCBs, polybrominated diphenyl ether
(PBDE) flame retardants, and PAHs. The POCIS were analyzed for
a suite of organic wastewater‐related chemicals (OWCs) including
herbicides, insecticides, pharmaceuticals, fragrances, plasticizers,
surfactants, antimicrobial disinfectants, and flame retardants. In
total, 185 chemicals were targeted for analysis between the
SPMD and POCIS (Supplemental Data, Table SI‐2).

Methods for processing and analyzing SPMDs and
POCIS have been previously reported (Alvarez et al. 2008,
2009, 2014, 2021; Supplemental Data). Briefly, analytes of in-
terest were recovered from the SPMDs using a dialysis process
and then fractionated to isolate the chemicals from potential
interferences using a combination of size exclusion chroma-
tography and various gravity flow adsorptive column separa-
tions. The organochlorine pesticides, PCBs, and PBDEs were
analyzed using gas chromatography with electron capture; and
the PAHs were analyzed using gas chromatography/mass
spectrometry (GC/MS; Alvarez et al. 2008, 2009). The OWCs
were extracted from the POCIS sorbent prior to analysis using
GC/MS (Alvarez et al. 2009, 2014). Time‐weighted average
water concentrations of chemicals were estimated from

FIGURE 1: Map of sample sites and associated land cover. Identification of site codes is presented in Figure 4 and in Supplemental Data, Table SI‐1.
Map base layers derived from Department of Agriculture and Agri‐Food Canada 2020; Homer et al. 2015; Instituto Nacional de Estadística Geografia
e Informática et al. 2006a, 2006b; Steeves and Nebert 1994; US Department of Agriculture–Natural Resources Conservation Service et al. 2009.
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residues measured in the SPMD and POCIS using uptake
models (Huckins et al. 2006; Alvarez 2010) and either ex-
perimentally or theoretically derived sampling rates (Rs; Sup-
plemental Data, Table SI‐2).

Quality control. For each deployment, a series of field blanks,
representing a minimum of 10% of the study sites, were prepared
and shipped with the samplers. Fabrication blanks for both SPMD
and POCIS were stored at <–20 °C in the laboratory. All blanks
were processed concurrently with the field‐deployed samplers.
To the extent possible, matrix spikes were used to determine
method performance for the targeted chemicals. The PRC data
from the fabrication and field blank SPMDs were used in the
calculation of the estimated water concentrations to reduce bias
due to recoveries of PRCs during processing (Alvarez 2010).

With a few exceptions, detections of analytes in the blanks
were sporadic, generally not detected at all or below the
lowest instrumental calibration level. The most common
chemicals measured in blanks included phthalates, phenan-
threne, fluoranthene, and pyrene. Detection of chemicals in the
blanks was accounted for in the determination of method de-
tection (MDL) and quantitation levels (MQL), where the MDL is
equal to the mean plus 3 times the standard deviation (SD) of
the blank concentrations, and the MQL is the mean plus
10 times the SD of the blank concentrations (Keith 1991;
Supplemental Data). This approach adjusted the data for any
potential blank contamination and analytical sensitivities. A
field replicate was deployed at one site in 2010 and 3 sites in
2014. The mean relative percent differences between repli-
cates at each site ranged from 26 to 107%. Differences be-
tween replicate values were not unexpected because each
replicate was an individual sampler deployed within the same
general vicinity within a site but potentially experienced dif-
ferent environmental conditions which could have affected
chemical availability and uptake. In some cases, the larger

percentage differences could be attributed to increased
error of measurements very close to the analytical detection
limits.

ToxCast screening values
Results from Ver 3.2 of the ToxCast database (US Environmental

Protection Agency 2020) were used to identify biological activities
associated with chemicals detected from the passive samplers and
estimate their relative potencies on an assay‐specific basis. The
ToxCast program evaluates individual chemicals for interactions
with, or effects on, cells, proteins, DNA, RNA, mitochondria, re-
ceptors, enzymes, and so on (Judson et al. 2009). Methods for the
use of ToxCast data and choice of appropriate ToxCast assays for
evaluating potential biological effects of chemicals measured in
water quality samples followed previously published techniques
(Blackwell et al. 2017; Corsi et al. 2019) and are described briefly in
the present study. Assays used in this analysis were chosen from
the original list of ToxCast assays based on consideration of data
quality remarks, examination of dose–assay response curves, re-
dundancy of ToxCast information, and the nature of the assays and
the associated reliability/quality for detecting gain or loss of signal.
This process reduced the original 740 assays available for meas-
ured chemicals to 321 assays considered to be appropriate and
used in this analysis. Additional details on the rationale for assay
inclusion or exclusion and a list of the final assays are provided in
the Supplemental Data, text and Tables SI‐3 and SI‐4.

The ToxCast data analysis pipeline computes several sum-
mary metrics modeled from chemical dose–assay response
curves. For the present study, the ACC was chosen for com-
parison with estimated water concentrations, similar to pre-
vious efforts (Blackwell et al. 2017; Fay et al. 2018; Corsi et al.
2019). More thorough descriptions of its derivation are pro-
vided elsewhere (Judson et al. 2009; Filer et al. 2016) and
summarized in the Supplemental Data.

FIGURE 2: Chemicals with information from ToxCast and ECOTOX used in the present study from passive samplers deployed at 69 sites within
62 tributaries of the Great Lakes, in 2010 and 2014. Number of chemicals represented in each category is shown in parentheses. PAH= polycyclic
aromatic hydrocarbon; WW=wastewater; OC= organochlorine; PBDE= polybrominated diphenyl ether; PCB= polychlorinated biphenyl.
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Of the 143 chemicals detected in the tributary passive
samplers, 112 (78%) were represented in ToxCast (i.e., tested in
at least one ToxCast assay), and 100 had measurable effects
(i.e., at least one active “hit call”) within the range of concen-
trations tested and met the inclusion criteria (Figure 2). The
number of assays with measurable effects per chemical varied
from 1 to 94 (Supplemental Data, Table SI‐2).

Response endpoints archived in the ECOTOX Knowledge-
base were also used for comparison to concentrations of
measured contaminants. The Chemical Abstract Service
number was entered on the search page for each of the
chemicals that were detected, and aquatic endpoints were
retrieved. Endpoints that were reported as “exposure type”
aquatic, static, flow‐through, renewal, lentic, and lotic were
considered. Data were further reduced by selecting relevant
endpoints that excluded accumulation studies, excluded tests
on formulations rather than the active ingredient, included only
values reported as aquatic concentrations for freshwater as-
says, and excluded results that were reported as not statistically
significant. The remaining endpoints were categorized into
2 groups based on the reported “effects” attribute: group 1
included apical or ecologically relevant endpoints that are most
commonly used in formal hazard assessment (effect=
reproduction, mortality, growth, development, population, and
behavior), and group 2 included other measures of bioactivity
(effect= avoidance, biochemistry, cell[s], ecosystem process,
enzymes, feeding behavior, genetic[s], histology, hormone[s],
immunological, injury, intoxication, morphology, multiple, or
physiology). Several endpoints were excluded because results
were anomalously low (several orders of magnitude lower than
other endpoints). These included studies with the ECOTOX
Knowledgebase reference numbers 11628, 11170, 168095,
171681, 67566, and 157699. Information on references for in-
dividual studies is available from the data retrieval process
described and review of the columns titled “Reference
Number,” “Author,” “Title,” “Source,” and “Publication Year.”

Of the 143 chemicals detected in the tributary passive
samplers, 106 (74%) were represented in ECOTOX, 89 of which
were also represented in ToxCast and 23 that were not
(Figure 2). A total of 20 777 endpoints were represented after
applying the inclusion criteria described (Supplemental Data,
Table SI‐5). The number of endpoints per chemical varied from
1 to 941 (Supplemental Data, Table SI‐6).

Data analysis procedures
Screening for potential pathway‐based effects. Techniques
used in this analysis follow those used in previous research
(Blackwell et al. 2017; Corsi et al. 2019). An abbreviated de-
scription of these techniques is as follows. The potential bio-
logical relevance of detected chemicals was screened by
comparing effect concentrations in ToxCast to measured chem-
ical concentrations using EAR values as the quotient of the
measured concentration and the ACC for each chemical–assay
combination (Equation 1).

C
EAR

w M
ACC for chemical assay pair  M

=
(μ )

− (μ )
(1)

The EAR is analogous to a hazard quotient, but rather than
relying on a concentration at which adverse health effects like
impaired survival, growth, or reproduction are detected, the
concentration required to elicit a response in a pathway‐based
assay is used. An EAR>1 indicates that the measured con-
centration in a water sample was greater than the ACC in the
assay medium. Results were examined using several different
EAR summations that represented individual chemicals and
chemical mixtures. Each summation was used to address a
different question. For example, multiple assays may have
relevant information for individual chemicals. In these cases,
the sum of EAR values from all assays for an individual chemical
in a given sample (EARchem) was used to help screen and pri-
oritize chemicals by potential for biological effect (Equation 2).

When there was more than one sample per site (23 of the 69
monitoring sites), EARSiteChem was determined as the maximum
EARchem per site and used to compare among sites (Equation 3).
Both EARchem and EARSiteChem were used for ranking and pri-
oritizing among chemicals for a given sample with regard to their
potential to elicit a biological effect.

EAR EAR ichem ∑= [ ] (2)

EAR maximum EAR jSiteChem chem= ( )[ ] (3)

In Equations 2 and 3, i represents assays relevant for each in-
dividual chemical and j represents samples collected at the
selected site.

As an indication of the potential for effects from prescribed
chemical classes (e.g., pesticides, pharmaceuticals, and PAHs)
and to compare among different classes at individual sites,
EARClass was computed as the sum of EARchem values for all
chemicals within a given class for each sample (Equation 4).

EAR EAR iClass ∑= [ ] (4)

In Equation 4, i represents chemicals within a class for each
sample.

The EARchem, EARSiteChem, and EARClass values do not dis-
criminate by biological pathways but provide a summation of
all potential effects evaluated in ToxCast. This approach pro-
vided a conservative estimate of the cumulative EAR for
chemicals that influence multiple pathways that may or may not
act in an additive fashion. An alternate approach focused on
effects to individual biological pathways and included the
evaluation of chemical mixtures: the sum of EAR values for each
assay endpoint across all chemicals (EARMixture) for a given
sample was computed (Equation 5). The EARMixture value pro-
vided an estimate of potential cumulative bioactivity for an
individual assay from a mixture of chemicals, assuming addi-
tivity of effects. This was consistent with previous use of
EARMixture for individual assays (Blackwell et al. 2017; Corsi
et al. 2019) and is analogous to a “toxic unit” approach for
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summing adverse effects for similar‐acting chemicals present in
complex mixtures (Nirmalakhandan et al. 1994). When there
was more than one sample per site, EARSiteMixture was de-
termined as the maximum EARMixture per site and used to
compare among sites (Equation 6).

EAR EAR iMixture ∑= [ ] (5)

EAR maximum EAR jSiteMixture Mixture= ( )[ ] (6)

In Equations 5 and 6, i represents chemicals associated with
individual assays and j represents samples collected at the
selected site.

The frequency of occurrence of chemicals among sites and
the exceedance of EAR thresholds were then used to help
prioritize chemicals, ToxCast assays, and chemical mixtures to
identify a manageable number of situations for which there is
potential for adverse impacts.

Previous evaluations of chemicals that may be of concern
biologically by using EAR values as well as toxicity quotients
(TQ; Equation 7) were conducted based on water quality
benchmarks established by agencies such as the USEPA and
the Canadian Council of Ministers of the Environment (Corsi
et al. 2019).

TQ
Measured concentration in sample  g L

endpoint concentration  g L
=

(μ / )

(μ / )
(7)

In that previous study, an EAR value of 10–3 resulted in a similar
list of chemicals of concern when using a toxicity quotient
threshold of 0.1 (measured concentration= 10% of the water
quality benchmark). A toxicity quotient threshold of 0.1 is also
used for the present study as a conservative approach con-
sidering that the measured concentrations do not represent the
full variability in concentrations that are present in monitored
streams. In the present study, there were 83 chemicals where
information was available for both ToxCast and ECOTOX.
Comparing the threshold concentrations for these
2 methods (ACC values × 10–3 and ECOTOX benchmark con-
centrations × 0.1) indicated that the EAR method was more
conservative for 34 of these chemicals and that the toxicity
quotient method was more conservative for 49 chemicals.
There was wide variability between these 2 benchmark sources:
the 95th and 5th percentiles of the ratio of EAR to toxicity
quotient threshold concentrations were 9.6 × 10–4 and
4.9 × 102, respectively. This variability is not unexpected:
ToxCast is based on in vitro assay results, whereas many of the
ECOTOX results are based on apical results from in vivo
testing. This comparison did not result in information that
warranted a change in ToxCast threshold values, so the pre-
viously established EAR threshold of 10–3 was used as a
threshold in the present study as well. Exceedance of this EAR
threshold was used to identify sites that had potential for
monitored chemicals to have a biological impact, and the
number of sites with EAR threshold exceedance was used for
ranking and prioritization of chemicals. Individual chemicals
were identified as a priority when EARSiteChem exceeded 10–3 at
10% or more of the monitored sites, and chemical mixtures

were identified as a priority when EARSiteMixture exceeded 10–3

at 10% or more of sites.
For chemical concentrations reported as below the level of

detection, EAR values were assumed to be zero. To test the
potential impact of this, EAR values were computed as a ratio
of the detection limit for each compound and all available ACC
values (Supplemental Data, Figure SI‐1). The EAR values from
the minimum ACC for each compound varied from <10–8 to
0.257 and were >10–3 for 17 compounds. This suggests that
concentrations below the analytical detection limits could still
elicit a significant biological effect and that EAR values may be
underestimated in these instances. Hence, chemical analyses
with lower detection levels would be needed to evaluate
whether presence of these chemicals may be of concern. The
addition of passive samplers helps address analytical detection
limit issues because the sample collected is integrated over
time, resulting in an increased mass of chemical available for
detection than may be possible with a traditional grab sample.

Water chemistry data were also screened to assess their
potential for adverse effects by comparing endpoint‐specific
effect concentrations from the ECOTOX Knowledgebase to
measured chemical concentrations using toxicity quotient values
as the quotient of the measured concentration and the bio-
logical effect concentrations estimated for the various endpoints
(Equation 7). The lowest effect concentration for each of the
ECOTOX groups for each chemical was used in the final toxicity
quotient determination. Individual chemicals were identified as a
priority when toxicity quotient exceeded 0.1 at 10% or more of
the monitored sites. Results from ECOTOX group 1 were sum-
marized separately from those of ECOTOX group 2.

The Wilcoxon rank sum test was used to compute
correlations between major land uses within the watersheds
and EAR values for chemicals and chemical classes, with the
significance level evaluated at p= 0.05. Computations and
analyses were primarily carried out using the functionality of
the R package toxEval (De Cicco et al. 2018) with additional
custom calculations and visualizations developed using
R packages within the tidyverse family of packages (Wickham
et al. 2019) and base R functionality (R Development Core
Team 2019).

Potential for adverse effects. Most biochemical responses
associated with assays represented in ToxCast do not directly
translate to endpoints commonly considered in ecological risk
assessments (i.e., impacts on survival, growth, reproduction,
etc.). Two approaches were used to gain insight into potential
adverse outcomes and biological pathways: the adverse out-
come pathway (AOP) and functional annotations associated
with ToxCast assay gene targets. The AOP framework has
previously been used in assessment of water quality data to
help interpret the significance of EAR results for estimation of
potential ecological impact (Corsi et al. 2019; Ankley et al.
2021) and is briefly described in the present study. The ToxCast
assays have been mapped to corresponding key events and
molecular initiating events in AOPs defined in the AOP‐Wiki
(Fay et al. 2018; Pittman et al. 2018; Society for the Advance-
ment of Adverse Outcome Pathways 2018; Corsi et al. 2019).
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The complete ToxCast‐AOP mapping has been published
(Corsi et al. 2019). The subset of ToxCast assays associated
with chemicals and chemical mixtures for the present study was
associated with AOPs using the ToxCast‐AOP mapping to
provide insight into potential adverse outcomes from exposure
to the monitored chemicals, and a list of these AOPs is
provided in Supplemental Data, Table SI‐7.

Where relevant, gene targets associated with each ToxCast
target are identified as part of the assay annotations
(US Environmental Protection Agency 2020). Functional anno-
tations for gene targets of interest were obtained from the
Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID), Ver 6.8 (Huang et al. 2009a, 2009b). Official
gene symbols were entered, and a functional annotation search
was performed for each gene. Because our primary aim was to
draw inference regarding potential apical effects associated
with perturbation of the molecular target or pathway probed in
each assay, we focused on select annotation fields considered
most informative for this purpose. First, given that ToxCast
gene targets are intended to be human‐relevant, we consid-
ered Kyoto Encyclopedia of Genes Genomes (KEGG) pathways
and Online Mendelian Inheritance in Man (OMIM) disease an-
notations for Homo sapiens. In cases where KEGG and OMIM
annotations were not available, biological process gene on-
tology terms for fish species were considered. This functional
annotation‐based approach was applied to genes associated
with ToxCast assays for which chemical mixtures (EARMixture) or
individual chemicals (EARchem/SiteChem) yielded EARs >10–3 at
10% or more of monitored sites.

RESULTS AND DISCUSSION
Chemical occurrence

A total of 185 individual chemicals, grouped into 19 classes
by their primary use, were analyzed in extracts from the passive
samplers deployed in 2010 and 2014 (Supplemental Data,
Table SI‐2; Alvarez et al. 2021). These chemicals included
legacy (organochlorine) and current‐use pesticides, PAHs,
PCBs, fire retardants, pharmaceuticals, and other chemicals
related to rural, urban, and industrial waste discharges.

Of the 185 chemicals measured, 143 were detected at least
once (Figure 3; Supplemental Data, Table SI‐2). These
chemicals were widely distributed, with 111 (60%) present in
at least 10% of the sites. Forty‐six chemicals (25%) were de-
tected at >50% of the sites. The most frequently detected
class was PAH, with a mean of 17 of the 33 PAHs detected
(maximum of 29) at any given site. Chrysene, fluoranthene,
phenanthrene, and pyrene were the most prevalent of the
PAHs, with mean time‐weighted average concentrations of
10, 20, 6.1, and 19 ng/L, respectively. Total PCBs were
detected at 48% of the sites, with a mean concentration of
25 ng/L (range < 0.19–750 ng/L). Organochlorine pesticides
were measured with a mean of 7 of 32 chemicals
detected (23%) across the sites. Endosulfan‐II, lindane,
p,p′‐dichlorodiphenyldichloroethylene (p,p′‐DDE), and
pentachloroanisole had some of the highest mean concen-
trations at 1.1, 0.54, 0.43, and 0.42 ng/L, respectively.

Pentachloroanisole was detected at 81% of the sites. Atrazine
was detected at 57% of the sites at a mean concentration of
350 ng/L. Organophosphate‐based alternative fire retardants
(OPFRs) and PBDEs were widely distributed across the sites,
with detection of up to 5 of the 6 OPFRs and 7 of the 9 PBDEs.
Tris(1‐chloro‐2‐propyl)phosphate (TCPP) and PBDE‐47 (2,2′,4,
4′‐tetrabromodiphenyl ether) were the most widely detected
fire retardants, with mean concentrations of 360 and 0.46 ng/
L, respectively. A 2015 study observed a similar distribution of
PBDEs and OPFRs in whole water samples collected in 5
tributaries of Lake Michigan (Guo et al. 2017). Pharmaceutical
compounds were detected with less frequency, with a mean
of 8 out of 59 chemicals detected at any given site. Carba-
mazepine (anticonvulsant, 75%), venlafaxine (antidepressant,
55%), citalopram (antidepressant, 49%), and sulfamethoxazole
(antibiotic, 48%) were the most commonly detected pharma-
ceutical compounds (Supplemental Data, Table SI‐2). A
concurrent sampling effort was performed that included col-
lection of discrete samples at the passive sampling sites in
2010 (Baldwin et al. 2016). Commonalities exist between
frequency of chemicals detected in passive and discrete
samples. In both cases, several PAHs, including fluoranthene,
phenanthrene, and pyrene, and the insect repellant N,N‐
diethyltoluamide (DEET) were detected in >57% of the sam-
ples collected.

Previously, POCIS have been used to sample along the
Canadian side of Lake Ontario during the summer of 2006 and
the summer and fall of 2008 at sites near wastewater‐treatment
outfalls (Li et al. 2010; Helm et al. 2012). There were several
pharmaceuticals in common between the present study and
work by Helm et al. (2012) and Li et al. (2010). A comparison of
the estimated water concentrations between the 3 studies re-
vealed similar to lower concentrations reported by Helm et al.
and Li et al. compared to the present study (Supplemental
Data, Table SI‐2). For example, carbamazepine concentrations
were estimated from not detected to 5.4 ng/L and from 0.84 to
16.3 ng/L by Helm et al. (2012) and Li et al. (2010), respectively,
compared to the estimated range of 0.12 to 150 ng/L in the
present study. This result is expected considering that the Lake
Ontario sampling sites were typically in open water, where di-
lution would be expected to reduce concentrations, in com-
parison to tributary samples in the present study. Metcalfe et al.
(2019) used POCIS in May to June of 2016 to sample for pes-
ticides in 18 watersheds within the Great Lakes basin of On-
tario, Canada; and atrazine was detected in 100% of the
samples at concentrations >500 ng/L, which is within the range
(4.1–4100 ng/L) detected in the present study (Supplemental
Data, Table SI‐2).

Complex mixtures of organic contaminants are entering the
Great Lakes as evident by an average of 41 chemical detections
per site (range 0–89 detections across all sites). For watersheds
with >15% urban land cover (10 sites), there was an average of
82 chemicals detected. For watersheds with >40% agricultural
land cover, there was an average of 63 chemicals detected
(25 sites); and for sites with <15% urban and <40% agricultural
land cover (34 sites), there was an average of 20 chemicals
detected.
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A B C D

FIGURE 3: Concentrations and potential for biological effects of organic compounds analyzed in passive samplers deployed at 69 sites within 62
tributaries of the Great Lakes, in 2010 and 2014. (A) Exposure–activity ratios (EARs) using ToxCast activity concentration at cutoff for screening of
potential pathway‐based bioactivity from detected chemicals. (B–D) Toxicity quotients computed using effect concentrations from the ECOTOX
knowledgebase for effects commonly used in hazard assessment (B, group 1) and other effects (C, group 2) and (D) concentrations of monitored
chemicals. Compounds are grouped by chemical class and ordered by largest to smallest median EAR. Boxplots represent only sites where
chemicals were detected. Compounds that were not detected are not included. Sites, number of sampling locations with detections of each
chemical. Boxes, 25th to 75th percentiles; dark line, median; whiskers, data within 1.5 × the interquartile range (IQR); circles, values outside 1.5 × the
IQR; vertical dashed lines indicate EAR threshold value of 10–3 (A) or toxicity quotient of 10–1 (B,C). HHCB= 1,3,4,6,7,8‐hexahydro‐4,6,6,7,8,8‐
hexamethylcyclopenta [g]‐2‐benzopyran; AHTN= 7‐acetyl‐1,1,3,4,4,6‐hexamethyltetrahydronaphthalene; PCB= polychlorinated biphenyl;
DDT= dichlorodiphenyltrichloroethane; DDE= dichlorodiphenyldichloroethylene; DDD= dichlorodiphenyldichlorethane; PBDE= polybrominated
diphenyl ether; OC= organochlorine; PAH= polycyclic aromatic hydrocarbon; WW=wastewater.
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Risk‐based prioritization
Comparison of chemical concentrations detected with var-

ious sources of toxicological point of departure data were used
to incorporate consideration of biological potency into the
prioritization and interpretation of results (Table 1 and
Figure 3). The EAR values were computed to consider the
chemicals with regard to their established pathway‐based bi-
oactivity (Figure 3). Summations by chemical (EARchem) ex-
ceeded 10–3 at 45 sites. Twenty‐nine chemicals had
EARchem> 10–3 in at least one sample, and 10 chemicals had
EARchem> 10–3 at 10% or more of sites monitored. These 10
chemicals were atrazine, benzo[k]fluoranthene, indeno[1,2,3‐
cd]pyrene, p‐tert‐octylphenol, tris(2‐butoxyethyl) phosphate
(TBEP), TCPP, tris(1,3‐dichloro‐2‐propyl) phosphate (TDCPP), di
(2‐ethylhexyl)phthalate (DEHP), caffeine, and dl‐menthol. It
should be noted that an EAR> 10–3 does not necessarily in-
dicate that an adverse effect is likely, only that the chemical has
some demonstrated capacity to elicit a pathway‐based bio-
logical response at a similar concentration, in vitro.

Literature‐derived toxicity data for 106 of the detected
chemicals were represented in ECOTOX and used in the
computation of toxicity quotient values. Eleven chemicals had
toxicity quotient >0.1 at 10% or more of the monitored sites.
Ten of these were represented by group 1 endpoints with clear

regulatory/ecological relevance, whereas 8 were represented
by group 2 endpoints, with 7 common among the 2 groups
(Table 1 and Figure 3). Chemicals with toxicity quotient >0.1 at
10% or more of the monitored sites were atrazine, DEET,
chlorpyrifos, carbamazepine, tramadol, venlafaxine, and DEHP
for both groups; dieldrin, p,p′‐DDE, and pyrene for only group
1; and galaxolide for only group 2.

Two of the group 1 and group 2 priority chemicals also had
EARchem> 10–3 at 10% or more of sites monitored (atrazine,
DEHP), 6 did not have EARchem> 10–3 at 10% or more of sites
monitored (pyrene, carbamazepine, chlorpyrifos, DEET, diel-
drin, and p,p′‐DDE), and 3 were not represented with ToxCast
EAR values (galaxolide, tramadol, and venlafaxine).

The ECOTOX Knowledgebase includes endpoints for testing
of chemical formulations as well as the active ingredients. End-
points from formulation testing were not included in the analysis
because only the active ingredient was measured for the present
study without other formulation components. In addition,
fate and transport properties may vary among formulation
components, introducing uncertainty to an assumption of
co‐occurrence of all formulation components in stream samples.
The inclusion of formulation endpoints in this analysis
would have added 3 chemicals with toxicity quotient >0.1 at
>10% of sites, including benzo[a]pyrene, p‐tert‐octylphenol,

TABLE 1: Chemicals detected in passive samplers from Great Lakes tributaries that were identified to have potential for ecological hazard by
exposure–activity ratios from ToxCast endpoints as individual chemicals or as components of chemical mixtures or by toxicity quotients from
ECOTOX endpoints as individual chemicals

Number of sites exceeding
EAR or TQ threshold

Sites ToxCast ECOTOX

Chemical use class Chemical name Monitored Individual Mixtures Group 1 Group 2

Detergent metabolites p‐tert‐Octylphenol 69 11 7 2 1
Fire retardant TBEP 69 18 10 0 0
Fire retardant TCPP 69 19 10 0 0
Fire retardant TDCPP 69 19 10 1 1
Fire retardant Tributyl phosphate 69 4 10 0 0
Flavor/fragrance Galaxolide (HHCB) 69 — — 1 34
Food Additive/plasticizer Triethyl citrate 69 0 7 — —

Herbicide Atrazine 69 27 23 39 39
Insecticide DEET 69 6 18 18 18
OC pesticides Chlorpyrifos 69 0 0 24 24
OC pesticides Dieldrin 69 0 0 15 0
OC pesticides p,p′‐DDE 69 0 0 13 1
PAHs Benz[a]anthracene 69 1 15 0 —

PAHs Benzo[b]fluoranthene 69 2 17 0 0
PAHs Benzo[k]fluoranthene 69 19 17 0 —

PAHs Indeno[1,2,3‐cd]pyrene 69 16 15 — —

PAHs Pyrene 69 1 1 29 0
Pharmaceuticals Caffeine 69 10 9 0 0
Pharmaceuticals Carbamazepine 69 1 1 14 28
Pharmaceuticals Tramadol 36 — — 10 10
Pharmaceuticals Venlafaxine 69 — — 11 11
Plasticizer DEHP 69 26 10 38 38
WW dl‐Menthol 69 9 9 0 —

EAR= exposure–activity ratio; TQ= toxicity quotient; OC= organochlorine; PAH= polycyclic aromatic hydrocarbon; TBEP= tris(2‐butoxyethyl) phosphate; TCPP=
tris(2‐chloroisopropyl)phosphate; TDCPP= tris(1,3‐dichloro‐2‐propyl)phosphate; HHCB= 1,3,4,6,7,8‐hexahydro‐4,6,6,7,8,8‐hexamethylcyclopenta [g]‐2‐benzopyran;
DEET=N,N‐diethyltoluamide; DDE= dichlorodiphenyldichloroethylene; DEHP= di(2‐ethylhexyl)phthalate; WW=wastewater.
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sulfamethoxazole, and total PCBs. Of these chemicals, sulfa-
methoxazole is the only one that has not historically been widely
recognized to be of potential concern to ecological systems.
Sulfamethoxazole is a commonly used antibiotic that is typically
administered in combination with trimethoprim (Jick and Derby
1995). Manufacture and use of PCBs are banned in the United
States, but PCBs remain present in water and sediment within
the Great Lakes (Hornbuckle et al. 2006; Kannan et al. 2006).
Para‐tert‐octylphenol is a degradation product of octylphenol
ethoxylate surfactants that are banned for many applications in
Europe. Benzo[a]pyrene is one of a suite of PAHs commonly
detected in Great Lakes tributaries at concentrations of concern
for aquatic life (Simcik and Offenberg 2006; Baldwin et al. 2016).

Consideration of EAR and toxicity quotient values rather
than concentrations alone provided substantial insight into
potential biological effects among chemicals within like
chemical classes. For example, ranking of chemicals within the
pharmaceutical class by concentration would result in a very
different order than when ranked by EAR values (e.g., di-
phenhydramine, albuterol, methadone, and thiabendazole;
Figure 3A and B). Likewise, median individual PAH concen-
trations tended to be within an order of magnitude of other
PAHs, as did median individual organochlorine pesticide con-
centrations; but EAR values varied more than 3 orders of
magnitude within these chemical classes.

Cumulative EAR values by chemical category (EARClass) were
used to provide an indication of the spatial distribution, relative
magnitude, and chemical diversity of potential influence from
the combination of chemicals at individual sites (Figure 4;
Supplemental Data, Figure SI‐2). Elevated EARClass values were
present most commonly from samples collected in tributaries
located in the southern portion of Lake Michigan (M6–M23)
and the tributaries from southern Lake Huron (Saginaw River,
H6) through western Lake Erie (E1–E13). There was a wide di-
versity in the different chemical classes that contributed EARs
and their relative contributions at any given site. For example,
detergent metabolites, flavors and fragrances, PAHs, herbi-
cides, fire retardants, insecticides, and pharmaceutical com-
pounds all had substantial contributions at multiple sites; but
the relative contribution among chemical classes varied con-
siderably among sites (Figure 4). Positive correlations were
present between the number of sites with EARClass> 10–3 and
major land cover categories (as percentage of watershed) for
7 classes of contaminants (Figure 4, embedded table). All
7 chemical classes were correlated with the percentage of
urban land cover in the watershed. Herbicides, fire retardants,
and pharmaceutical compounds had additional correlations
with agricultural land cover.

The EARClass values for some chemical classes were primarily
influenced by contributions from only one individual chemical,
and multiple chemicals contributed for other chemical classes
(Supplemental Data, Figure SI‐2A–D). For example, a single
compound was responsible for the majority of EARClass con-
tributions in chemical classes, including herbicides, detergent
metabolites, pharmaceutical compounds, plasticizers, and
wastewater compounds (atrazine, 4‐tert‐octylphenol, carba-
mazepine, and DEHP, respectively). Multiple chemicals in a

given chemical class contributed substantially to EARs for
other sites, including insecticides, fire retardants, and PAHs
(Supplemental Data, Figure SI‐2A–D).

Of the 10 individual chemicals that exceeded an EAR
threshold of 10–3 at 10% or more of the sites (Table 1), the EAR
threshold exceedance was found to be significantly correlated
with urban land cover and with distance‐weighted wastewater
effluent as a fraction of annual streamflow. Significant correla-
tions with land used for crops were also present for atrazine,
DEHP, TDCPP, TBEP, and TCPP; and an additional significant
correlation with land used for pasture/hay was present for
atrazine and DEHP (Figure 4). Although a correlation between
atrazine and land used for crops is a logical result, it is not as
obvious why DEHP, TDCPP, TBEP, and TCPP are correlated to
land used for crops. Possible sources of these contaminants
could be treated wastewater or sludge applications as fertilizer
(Pedersen et al. 2005; Lamastra et al. 2018) or, in the case of
DEHP, plastic films used in agricultural applications (Zhao et al.
2017). Also, DEHP is susceptible to atmospheric transport in
both gaseous and particulate‐bound forms (Xie et al. 2007;
Zhen et al. 2019). Zeng et al. (2008) reported elevated con-
centrations of phthalates in agricultural soils outside urban
centers, with concentrations decreasing with distance from
urban centers.

Relationships of chemical and chemical class concentrations
in water samples with land cover attributes are not uncommon
given that the location of many sources is typically associated
with specific land uses. These types of relationships have been
demonstrated in previous studies of Great Lakes tributaries
where regression relationships were developed for con-
taminants such as PAHs, flavors/fragrances, dyes/pigments, and
pharmaceutical compounds using different types of urban land
use prevalence such as impervious surface, wastewater ef-
fluent, population density, or general urban land cover as
predictors (Baldwin et al. 2016; Kiesling et al. 2019). Regression
relationships for herbicides commonly had the strongest rela-
tionships with agricultural land use attributes. In addition,
measures of ecological integrity of streams (e.g., fish and
macroinvertebrate indices) have been related to watershed
land cover (Moore and Palmer 2005; Scott 2006; Clapcott et al.
2012). The present study attempts to provide a link between
these 2 types of studies by considering both relative biological
potency of detected contaminants and subsequent relation to
land cover characteristics.

Biological outcomes of concern
Chemical– and chemical mixture–ToxCast assay pairs that

contributed >1% to the total EARmixture at sites that exceeded
the EAR threshold of 10–3 were identified to gain insights into
the types of biological effects that may be of concern at pri-
oritized locations (Table 2). Only one chemical was included as
part of a mixture that was not included as an individual
chemical (triethyl citrate; Table 1). Where available, ToxCast
assays were mapped to AOPs that would be relevant for
chemicals acting via the pathway or mechanism considered in
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FIGURE 4: Maximum exposure–activity ratios (EARs) by chemical class computed from passive sampler chemistry data from 69 Great Lakes
tributary sites collected in 2010 and 2014 for chemicals included in the ToxCast database. An “X” in the embedded table indicates major land cover
within the watersheds that were significantly correlated with exceedance of an EAR threshold of 10–3 for chemical classes. Chemical classes not
represented in the table did not have significant correlations. “Map Name” shows reference locations included on the map in Figure 1; “# Chems”
shows number of chemicals with computed EAR values.
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TABLE 2: Adverse outcome pathways (AOPs) and functional gene annotations relevant to ToxCast assays associated with chemical mixtures and
individual chemicals with exposure activity ratios >10–3 at 10% or more of monitored sitesa

Gene: assay: chemical/mixture AOPs: overview Functional annotationsb
No.
sites

AR:
ACEA_AR_antagonist_80hr:
dl‐Menthol

Five AOPs under developmentc;
developmental and reproductive
toxicity; mammals

[1: Oocyte meiosis, pathways in cancer, prostate
cancer]; [2: prostate cancer, susceptibility to;
androgen insensitivity; hypospadias 1, X‐linked;
androgen insensitivity, partial, with or without
breast cancer; spinal and bulbar muscular
atrophy of Kennedy]; [3: Danio rerio:
transcription, DNA‐templated; regulation of
transcription, DNA‐templated; steroid
hormone–mediated signaling pathway].

9

AHR:
ATG_Ahr_CIS_up:
Benz[a]anthracene, indeno[1,2,3‐cd]
pyrene

Three OECD‐endorsed AOPsd; 3 AOPs
open for citatione; 2 AOPs under
developmentc; early–life stage
mortality; hepatic steatosis; liver
tumors; uroporphyria; developmental
toxicity

[1: Response to xenobiotic stimulus]; [3: Oryzias
latipes: transcription, DNA‐
templated; regulation of transcription, DNA‐
templated]

17

AHR:
TOX21_AhR_LUC_Agonist:
Benzo[b]fluoranthene, benzo[k]
fluoranthene

Three OECD‐endorsed AOPsd; 3 AOPs
open for citatione; 2 AOPs under
developmentc; early–life stage
mortality; hepatic steatosis; liver
tumors; uroporphyria; developmental
toxicity

[1: Response to xenobiotic stimulus]; [3: Oryzias
latipes: transcription, DNA‐
templated; regulation of transcription, DNA‐
templated]

17

CYP1A2:
CLD_CYP1A2_24hr: Atrazine

Two OECD‐endorsed AOPsf; one AOP
open for citationg; early–life stage
mortality; liver tumors; uroporphyria

[1: Steroid hormone biosynthesis, caffeine
metabolism, tryptophan metabolism, linoleic
acid metabolism, retinol metabolism,
metabolism of xenobiotics by cytochrome
P450, drug metabolism by cytochrome P450,
metabolic pathways, chemical carcinogenesis]

11

CYP19A1:
NVS_ADME_hCYP19A1: DEHP

One OECD‐endorsed AOPh; one AOP
open for citationi; 2 AOPs under
developmentc; impaired fertility,
reproductive dysfunction, male‐biased
sexual differentiation

[1: Steroid hormone biosynthesis, metabolic
pathways, ovarian steroidogenesis]; [2:
aromatase excess syndrome, aromatase
deficiency]

10

CYP2B6:
CLD_CYP2B6_24hr: Atrazine;
CLD_CYP2B6_6hr: Atrazine, DEET

Not applicable [1: Arachidonic acid metabolism, retinol
metabolism, metabolism of xenobiotics by
cytochrome P450, drug metabolism by
cytochrome P450, metabolic pathways]; [2:
efavirenz central nervous system toxicity,
susceptibility to and poor metabolism of]

10;
18

ESR1:
ACEA_ER_80hr:
TBEP, p‐tert‐octylphenol,
triethyl citrate

Six AOPs under developmentc,j;
developmental and reproductive
toxicity; increased cancer risk

[1: Estrogen signaling pathway, prolactin
signaling pathway, thyroid hormone signaling
pathway, endocrine and other factor–regulated
calcium reabsorption, proteoglycans in cancer];
[2: breast cancer; migraine, susceptibility to;
myocardial infarction, susceptibility to;
estrogen resistance; atherosclerosis,
susceptibility to; HDL response to hormone
replacement, augmented]; [3: Danio rerio:
transcription, DNA‐templated; regulation of
transcription, DNA‐templated; response to
xenobiotic stimulus; response to estradiol;
steroid hormone–mediated signaling pathway;
response to estrogen; posterior lateral line
neuromast primordium migration; cellular
response to estrogen stimulus]

7

ESR1, ESR2:
CEETOX_H295R_ESTRONE_up:
Atrazine

Not applicable [1: Estrogen signaling pathway, prolactin
signaling pathway, thyroid hormone signaling
pathway, endocrine and other factor–regulated
calcium reabsorption, proteoglycans in cancer];
[2: breast cancer; migraine, susceptibility to;
myocardial infarction, susceptibility to;
estrogen resistance; atherosclerosis,
susceptibility to; HDL response to hormone
replacement, augmented]; [3: Danio rerio:

16

(Continued )
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the assay. Among the 14 prioritized assay responses, AOPs
were available for 8 (Table 2). Pathway or disease annotations
were available for 10 of the relevant gene targets (Table 2).
Overall, considering AOPs and the 3 types of functional an-
notations, at least some indication of the biological context/
relevance of the assay target was obtained for all 14 prioritized
assay responses. Sites where these mixtures occur were pri-
marily located in the southern half of Lake Michigan and from
Lake St. Clair to western Lake Erie (Supplemental Data, Figure
SI‐3). The predominant land cover category at these sites was
urban or agriculture or a combination of the 2.

Several of the prioritized assay responses relate to endo-
crine disruption including antagonism of the androgen re-
ceptor (ACEA_AR_antagonist_80hr); agonism of the estrogen
receptor (ACEA_ER_80hr); inhibition of cyp19a1 (aromatase;
NVS_ENZ_hPDE19A1), a key enzyme in the steroid biosyn-
thesis pathway; and increased in vitro production of estrone
(CEETOX_H295R_ESTRONE_up; Table 2). Multiple AOPs out-
lining plausible connections between these activities and po-
tential to cause reproductive and developmental toxicity in
vertebrates have been established. Although some of the

AOPs are in early stages of development and lack a full as-
sembly of supporting evidence, concern over chemicals that
may interact with estrogen signaling, androgen signaling, and/
or steroid biosynthesis is well established, as reflected by
chemical safety legislation that provides special consideration
to chemicals that exhibit these types of activities (e.g., US Food
Quality Protection Act 1996; European 7th Environmental Ac-
tion Program; Plant Protection Products Regulation [EC 1107/
2009]; Biocidal Products Legislation [EU 528/2012]; Registra-
tion, Evaluation, Authorisation and Chemicals [EC 1907/2006];
Canada Chemicals Management Plan). The majority of these
AOPs are focused on human health outcomes; but based on
key events included in several of these AOPs, measurements
of AR‐dependent (e.g., spiggin; Jolly et al. 2006;
Pottinger et al. 2013) and ER‐dependent (e.g., vitellogenin)
gene expression, steroid hormone concentrations, and/or cir-
culating vitellogenin protein concentrations could be useful for
determining if activities associated with these AOPs are being
observed at the study sites.

A second group of prioritized assay responses relates to re-
sponses to xenobiotic stimulus and xenobiotic metabolism. Both

TABLE 2: (Continued )

Gene: assay: chemical/mixture AOPs: overview Functional annotationsb
No.
sites

transcription, DNA‐templated; regulation of
transcription, DNA‐templated; response to
xenobiotic stimulus; response to estradiol;
steroid hormone–mediated signaling pathway;
response to estrogen; posterior lateral line
neuromast primordium migration; cellular
response to estrogen stimulus]

NR1I2:
ATG_PXR_TRANS_up: Atrazine, TCPP,
TDCPP; ATG_PXRE_CIS_up:
Atrazine, DEHP, TBEP, TCPP
TDCPP

One AOPj; hepatic steatosis [3: Danio rerio: transcription, DNA‐
templated; regulation of transcription, DNA‐
templated; transcription from RNA polymerase
II promoter; response to toxic
substance; steroid hormone–mediated
signaling pathway]

7; 8

PDE4A:
NVS_ENZ_hPDE4A1: Atrazine

Not applicable [1: Purine metabolism, cAMP signaling pathway,
morphine addiction]; [3: Danio rerio: signal
transduction]

23

SOX1:
ATG_Sox_CIS_up: Caffeine

Not applicable [3: Oryzias latipes: regulation of transcription,
DNA‐templated; nervous system development;
positive regulation of sequence‐specific DNA
binding transcription factor activity]

9

TSPO:
NVS_MP_hPBR:
DEHP, TBEP, tributyl phosphate,
TCPP, TDCPP

Not applicable [1: Neuroactive ligand–receptor interaction,
HTLV‐I infection]; [3: Danio rerio: primitive
erythrocyte differentiation]

10

aToxCast assay name; AOP overview provides a listing of relevant AOPs from the AOP‐Wiki and an overview of associated apical outcomes; official gene symbol for gene
target associated with ToxCast assays; functional gene annotations from DAVID 6.8.
bAnnotation sources [1: Kyoto Encyclopedia of Genes and Genomes pathways (Homo sapiens)]; [2: Online Mendelian Inheritance in Man Disease (Homo sapiens)]; [3: GO
Biological Process for a representative fish species]. If not listed for a given annotation source, no annotations were available for that source.
caopwiki.org.
dhttps://aopwiki.org/aops/21; https://aopwiki.org/aops/131; https://aopwiki.org/aops/150.
ehttps://aopwiki.org/aops/41; https://aopwiki.org/aops/43; https://aopwiki.org/aops/57.
fhttps://aopwiki.org/aops/131; https://aopwiki.org/aops/21.
ghttps://aopwiki.org/aops/41.
hhttps://aopwiki.org/aops/25.
ihttps://aopwiki.org; https://aopwiki.org/aops/167; https://aopwiki.org/aops/146; https://aopwiki.org/aops/200; https://aopwiki.org/aops/29.
jhttps://aopwiki.org/aops/60.
DEHP= di(2‐ethylhexyl)phthalate; DEET=N,N‐diethyltoluamide; TBEP= tris(2‐butoxyethyl) phosphate; TCPP= tris(2‐chloroisopropyl)phosphate; TDCPP= tris(1,3‐
dichloro‐2‐propyl)phosphate; OECD=Organisation for Economic Co‐operation and Development; HTLV‐I human T‐cell lymphotropic virus type 1.
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the aryl hydrocarbon receptor (AhR; ATG_Ahr_CIS_up;
TOX21_AhR_LUC_Agonist) and pregnane X receptor (PXR;
ATG_PXR_TRANS_up; ATG_PXRE_CIS_up) are transcription fac-
tors that bind a wide range of organic contaminants and activate
transcription of phase 1 metabolizing enzymes (Waxman 1999;
Xu et al. 2005). Cytochrome P450s 1A (CLD_CYP1A2_24hr) and
2B6 (CLD_CYP2B6_24hr; CLD_CYP2B6_6hr) are 2 examples of
inducible phase 1 enzymes. Thus, not surprisingly, a robust re-
sponse of the xenobiotic metabolism machinery to exposures to
several of the chemicals detected via passive sampling can be
expected. Although in principle this can be viewed as an adap-
tive response that aids removal of contaminants from the ex-
posed organisms, persistent activation of such systems can lead
to a range of adverse outcomes. There are multiple well‐
developed AOPs linking AhR activation to adverse effects like
early–life stage mortality in fish, developmental toxicity, and a
variety of adverse effects on the liver including fat accumulation
and/or tumor formation (Table 2). Activation of the AhR is known
to cause induction of CYP1A isoforms; consequently, many of the
AOPs established for AhR activation are also relevant to CYP1A
activity (Table 2). Based on key events described for these AOPs,
increased expression of cyclooxygenase 2, decreased expression
of vascular endothelial growth factor in larval fish, as well as liver
histopathology are potential biomarkers of effect that could be
used to probe whether AhR active compounds are likely eliciting
adverse effects in field‐exposed organisms. In the case of PXR
activation, the links to adversity are not as well established. Al-
though there is one AOP suggesting a link to hepatic steatosis,
the weight of evidence supporting this proposed AOP has not
yet been provided, and gene annotations provided little addi-
tional insight beyond the known role of PXR as a transcription
factor involved in xenobiotic response (Table 2). No AOPs were
available for CYP2B6, but KEGG pathway annotations indicate a
role in arachidonic acid and retinol metabolism, in addition to
biotransformation of steroids and xenobiotics (Table 2). Targeted
metabolomics focused on selected arachidonic acid and retinoic
acid derivatives may provide additional insight into whether
potential CYP2B6 induction associated with contaminants like
atrazine and DEET may have some subtle physiological impacts
on exposed fish or wildlife. However, even if detected, the
significance would be difficult to interpret without additional
experimentation.

For the remainder of the prioritized assay responses, clear links
to adverse effects have not been proposed or documented in the
AOP‐Wiki (Table 2). In the case of PDE4A (NVS_ENZ_hPDE4A1),
annotations indicate little more than a potential role in cAMP‐
mediated signal transduction. Likewise, annotations for the
translocator protein provide little biological insight beyond po-
tential roles in neuronal signaling or differentiation of red blood
cells. In the case of Sox1 (ATG_Sox_CIS_up), gene target anno-
tations point to a role in transcriptional regulation in association
with development of the nervous system. Consequently, some-
thing like a fish embryo‐larval test may be a fairly rapid and in-
expensive way to determine whether prioritized chemicals may
cause adverse effects on neural development. Indeed, Rodriguez
et al. (2014) demonstrated that caffeine exposure can cause a
range of neurobehavioral effects in zebrafish embryos and that

longer exposures can cause irreversible malformations and or
mortality. However, it should be noted that these effects were
documented at concentrations ≥5mM (≈970mg/L), more than
6 orders of magnitude greater than those detected in Great Lakes
tributaries. This is just one example to illustrate that although
EARs provide an effective means to consider both relative am-
bient concentrations and relative biological potency when pri-
oritizing contaminants of concern, neither an EAR >10–3 nor the
linkage of an assay response with an AOP should be considered
definitive evidence for adverse effects. In essence, AOPs explain
how a particular biological interaction/activity can cause an ad-
verse effect. For most AOPs, we do not have sufficient quantita-
tive understanding to define the exact duration and magnitude of
activity at a molecular initiating event or subsequent key events
that are required to drive the pathway to its adverse outcome.
Consequently, linkage of an EAR‐prioritized assay response with
an AOP or with a specific biological target or pathway via func-
tional annotations is meant to guide additional monitoring and
experimentation that can confirm or reject the potential for effects
in the field. It is not, in and of itself, evidence that adverse effects
are occurring or necessarily will occur under environmentally re-
alistic exposure scenarios.

Biological relevance of passive sampler data
Passive samplers have been widely used as surrogates for

determining the exposure of contaminants to organisms.
Chemicals detected in passive samplers were accumulated
from the dissolved phase (not bound to particulate or sus-
pended matter) in the water column into the sampler via dif-
fusion and partitioning processes analogous to the uptake of
chemicals by aquatic organisms (Huckins et al. 2006). Similar
uptake between SPMDs and organisms has been demon-
strated by comparing PCB congeners between SPMDs and
brown trout (Salmo trutta) as well as chlorinated pesticides in
SPMDs and mussels (Meadows et al. 1998; Sabaliūas et al.
1998). Comparisons between organisms and POCIS are not as
indicative of actual exposure because many of the chemicals
that sorb to POCIS material may not bioaccumulate in organ-
isms as a result of their low log octanol–water partition co-
efficient values.

Determining exposure from passive samplers has been ac-
complished through the identification and quantitation of
sampled chemicals and the screening of these chemicals with
in vitro and in vivo bioassays. The combination of passive
samplers and bioassays potentially provides information on the
relative toxicological significance of exposure to chemicals
present in the environment (Huckins et al. 2006). Typically, this
measure of exposure is accomplished by directly screening the
extract from a passive sampler by a bioassay test. For the
present study, a different approach was taken where, instead of
testing an extract by one bioassay at a time, measured chem-
ical concentrations were compared to effect concentrations in
ToxCast. This approach allowed for the estimation of potential
biological effects across a broader range of endpoints than was
practical from in vitro or in vivo testing methods.
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Additional complexity arises when considering the bio-
logical effects of chemical mixtures. In vivo and in vitro anal-
yses to examine biological activities resulting from mixtures
are becoming more common, but there is much to learn about
the effects of mixtures (Schoenfuss et al. 2016). When chem-
ical monitoring data are available, established water quality
benchmarks are useful for evaluation of single chemicals; but
predicting the cumulative biological effects of mixtures using
this information can be problematic. Methods for combining
estimated effects from multiple chemicals depend on how the
chemicals interact with biological systems and the mode of
action for each individual chemical (Altenburger et al. 2015).
Because many HTS techniques used in ToxCast focus on
specific biological signaling pathways, cumulative bioactivity
from co‐occurring chemicals has been estimated using a
summation of effects from individual chemicals that act on the
same pathway (Blackwell et al. 2017, 2019; Corsi et al. 2019).
Combining analytical results from passive samplers in the
present study with EAR analysis techniques allowed an esti-
mation of mixture effects by ToxCast assay. Mapping of the
associated gene targets from ToxCast assays to AOPs and/or
functional annotations associated with ToxCast gene targets
(Supplemental Data, Table SI‐8) extended this information to
help infer plausible biological effects from exposure to the
detected mixtures and suggest assays and endpoints that
might be useful for effects‐based monitoring of mixture
impacts.

Despite the wealth of information gathered from the com-
bination of passive samplers, ToxCast, and the ECOTOX
Knowledgebase, this approach does have limitations. Unlike a
discrete sample in which all chemicals present in the water are
collected, passive samplers sample a specific range of chemicals
determined by their physicochemical properties. This was par-
tially addressed by using the SPMD and POCIS together, each
sampling a different range of chemical properties and hydro-
phobicities. Another limitation can be the ability to estimate the
time‐weighted average water concentration of sampled chem-
icals. For the SPMD, well‐established models exist to conduct
time‐weighted average water concentration estimates, whereas
for the POCIS, this estimation is limited to those chemicals for
which there have been experimentally derived sampling rates
(Alvarez 2010). Another limitation with the POCIS is the lack
of a universal PRC approach to account for site‐specific envi-
ronmental conditions which could affect chemical sampling.
However, differences in flow effects between sites and
experimentally derived sampling rates are expected to be
minimized by baffling effects of the protective deployment
canisters which house the POCIS. A review by Harman et al.
(2012) reported several studies which showed that POCIS sam-
pling rates varied by less than a factor of 2 over a range of flow
regimes for many pharmaceuticals and other chemicals of
emerging concern. ToxCast has the limitation that not all
chemicals analyzed are represented in its database. ToxCast is
also dependent on the quality of data generated from in vitro
assays. Chemicals that are highly hydrophobic, such as many
sampled by the SPMD, are known to bioaccumulate in organ-
isms and can be highly toxic. However, their hydrophobic nature

may cause these chemicals to partition onto the plastic surfaces
of multiwell test plates used in HTS assays instead of being
solubilized by hydrophilic assay media, resulting in an under-
estimation of the potential toxicity of a chemical at a certain
concentration (Gellert and Stommel 1999; Armitage et al. 2014).
Models to address issues related to chemical partitioning be-
tween assay cells, medium constituents, and test systems have
been developed (Fischer et al. 2017); but such corrections are
not widely used or implemented into the EAR approach.
Regardless of these limitations, the combination of passive
sampling and ToxCast in the present study provided a chemical
prioritization strategy that considers both environmental
concentration and toxicological potency.

CONCLUSIONS
Evaluation techniques to prioritize chemicals, sites, and bio-

logical effects, including the use of the ToxCast HTS database
and the ECOTOX Knowledgebase, provided the means for
screening‐level assessments. Of the 185 chemicals monitored
during the present study, 23 chemicals in 8 chemical use classes
were identified as top candidates for further investigation
through consideration of relative environmental occurrence/
concentrations and their relative biological potency (Table 2).
Atrazine, several PAHs, organophosphorus flame retardants, and
DEHP all exceeded EAR and toxicity quotient thresholds at a
large proportion of the study sites. Across the study sites, trib-
utaries of Lakes Michigan and Erie had by far the highest num-
bers of chemicals detected, numbers of chemical classes
represented, and calculated EARs for the chemical classes. Many
of these tributaries were heavily impacted by chemicals related
to urban and industrial wastewaters. The use of passive samplers
to provide long‐term (approximately 1 mo) time‐weighted mean
concentrations to simulate biological uptake provided relevant
monitoring results for these assessments. Mapping ToxCast
assay gene targets to AOPs and functional annotations provided
additional insight into potential for ecological effects and im-
portantly aided the identification of endpoints that can be useful
for hypothesis‐driven hazard verification or monitoring. By in-
corporating the data from ToxCast as well as literature‐derived
toxicity data from the ECOTOX knowledgebase, it is feasible to
expand a risk‐based prioritization beyond the chemicals for
which traditional water quality benchmarks are available.
Overall, results can be used to inform resource managers about
specific chemicals that may be of concern in monitored water-
sheds and help focus resources on compounds with the greatest
potential to be problematic, based on available data. Where
hazards associated with specific sites or chemicals are con-
firmed, similar pathway‐based biological effects can be used to
evaluate the success of management strategies in reducing or
eliminating the impacts.

Supplemental Data—The Supplemental Data are available on
the Wiley Online Library at https://doi.org/10.1002/etc.5118.

Acknowledgment—The authors gratefully acknowledge the
many individuals involved in sample collection: B. Hayhurst, B.

Passive sampling and ToxCast identify chemicals of concern—Environmental Toxicology and Chemistry, 2021;40:2165–2182 2179

wileyonlinelibrary.com/ETC Published 2021

https://doi.org/10.1002/etc.5118


Fisher, S. Kula, C. Huitger, C. Silcox, E. Dobrowolski, M.
Hardebeck, J. Duris, A. Totten, R. Jodoin, E. Dantoin, D.
Housner, J. Larson, and N. Viñas. Efforts for the construction,
processing, and analysis of the passive samplers by S. Perkins
and V. Schroeder are greatly appreciated. Assistance with
compiling land cover data and the site map by M. Nott, L.
Lenoch, and M. Pronscinske were also greatly appreciated. The
authors thank those involved in programmatic support, including
E. Smith and E. Murphy from the US Environmental Protection
Agency and K. Richards, D. Sullivan, and C. Peters from the US
Geological Survey. Support for the present study was provided
by the Great Lakes Restoration Initiative through the US
Environmental Protection Agency's Great Lakes National
Program Office under agreement number DW‐014‐92453901.

Disclaimer—Any use of trade, product, or firm names is for
descriptive purposes only and does not imply endorsement by
the US government. The paper has been reviewed and
approved for publication in accordance with US Geological
Survey and US Environmental Protection Agency require-
ments. The findings and conclusions in this article are those
of the author(s) and do not necessarily represent the views of
the US Environmental Protection Agency.

Author Contributions Statement—D. Alvarez, S. Corsi, L. De
Cicco, and A. Baldwin conceived and designed the field study;
D. Alvarez conducted the chemical analyses; S. Corsi and L. De
Cicco performed the toxicity database assessments; D.
Villeneuve provided expert technical assistance and interpre-
tation of the toxicity assessments; D. Alvarez, S. Corsi, L. De
Ciccco, and D. Villeneuve contributed to writing different parts
of the manuscript; and A. Baldwin provided review.

Data Availability Statement—Full chemical data for the
present study can be assessed in a US Geological Survey
Data Release (Alvarez et al. 2021). Data, associated metadata,
and calculation tools are also available from the corresponding
author (dalvarez@usgs.gov).

REFERENCES
Altenburger R, Ait‐Aissa S, Antczak P, Backhaus T, Barceló D, Seiler T‐B,

Brion F, Busch W, Chipman K, de Alda ML, de Aragão Umbuzeiro G,
Escher BI, Falciani F, Faust M, Focks A, Hilscherova K, Hollender J,
Hollert H, Jäger F, Janke A, Kortenkamp A, Krauss M, Lemkine G,
Munthe J, Neumann S, Schymanski EL, Scrimshaw M, Segner H,
Slobodnik J, Smedes F, Kughathas S, Teodorovic I, Tindall AJ, Tollefsen
KE, Walz K‐H, Williams TD, Van den Brink PJ, van Gils J, Vrana B, Zhang
X, Brack W. 2015. Future water quality monitoring—Adapting tools to
deal with mixtures of pollutants in water resource management. Sci Total
Environ 512–513:540–551.

Alvarez DA. 2010. Guidelines for the use of the semipermeable membrane
device (SPMD) and the polar organic chemical integrative sampler
(POCIS) in environmental monitoring studies: Techniques and methods
1–D4. US Geological Survey, Reston, VA. [cited 2020 September 20].
Available from: http://pubs.usgs.gov/tm/tm1d4/

Alvarez DA, Corsi SR, DeCicco LA. 2021. Reconnaissance of chemicals of
potential biological concern in tributaries of the Great Lakes using
passive samplers in 2010 and 2014. USGS Data Release. [cited 2020
September 1]. Available from: https://doi.org/10.5066/P9F5FFZX

Alvarez DA, Cranor WL, Perkins SD, Clark RC, Smith SB. 2008. Chemical and
toxicological assessment of organic contaminants in surface water using
passive samplers. J Environ Qual 37:1024–1033.

Alvarez DA, Cranor WL, Perkins SD, Schroeder VL, Iwanowicz LR, Clark RC,
Guy CP, Pinkney AE, Blazer VS, Mullican JE. 2009. Reproductive health
of bass in the Potomac, USA drainage: Part 2. Seasonal occurrence of
persistent and emerging organic contaminants. Environ Toxicol Chem
28:1084–1095.

Alvarez DA, Maruya KA, Dodder NG, Lao W, Furlong ET, Smalling KL. 2014.
Occurrence of contaminants of emerging concern along the California
coast (2009–2010) using passive sampling devices. Mar Pollut Bull
81:347–354.

Alvarez DA, Shappell NW, Billey LO, Bermudez DS, Wilson VS, Kolpin DW,
Perkins SD, Evans N, Foreman WT, Gray JL, Shipitalo MJ, Meyer MT.
2013. Bioassay of estrogenicity and chemical analyses of estrogens in
streams across the United States associated with livestock operations.
Water Res 47:3347–3363.

Ankley GT, Berninger JP, Blackwell BR, Cavallin JE, Collette TW, Ekman DR,
Fay KA, Feifarek DJ, Jensen KM, Kahl MD, Mosley JD, Poole ST,
Randolph EC, Rearick D, Schroeder AL, Swintek J, Villeneuve DL. 2021.
Pathway‐based approaches for assessing biological hazards of complex
mixtures of contaminants: A case study in the Maumee River. Environ
Toxicol Chem 40:1098–1122.

Armitage JM, Wania F, Arnot JA. 2014. Application of mass balance models
and the chemical activity concept to facilitate the use of in vitro toxicity
data for risk assessment. Environ Sci Technol 48:9770–9779.

Baldwin AK, Corsi SR, De Cicco LA, Lenaker PL, Lutz MA, Sullivan DJ,
Richards KD. 2016. Organic contaminants in Great Lakes tributaries:
Prevalence and potential aquatic toxicity. Sci Total Environ
554–555:42–52.

Blackwell BR, Ankley GT, Bradley PM, Houck KA, Makarov SS, Medvedev
AV, Swintek J, Villeneuve DL. 2019. Potential toxicity of complex mix-
tures in surface waters from a nationwide survey of United States
streams: Identifying in vitro bioactivities and causative chemicals.
Environ Sci Technol 53:973–983.

Blackwell BR, Ankley GT, Corsi SR, DeCicco LA, Houck KA, Judson RS, Li S,
Martin MT, Murphy E, Schroeder AL, Smith ER, Swinteck J, Villeneuve
DL. 2017. An “EAR” on environmental surveillance and monitoring: A
case study on the use of exposure–activity ratios (EARs) to prioritize
sites, chemicals, and bioactivities of concern in Great Lakes waters.
Environ Sci Technol 51:8713–8724.

Bradley PM, Argos M, Kolpin DW, Meppelink SM, Romanok KM, Smalling
KL, Focazio MJ, Allen JM, Dietze JE, Devito MJ, Donovan AR, Evans N,
Givens CE, Gray JL, Higgins CP, Hladik ML, Iwanowicz LE, Journey CA,
Lane RF, Laughrey ZR, Loftin KA, McCleskey RB, McDonough CA,
Medlock‐Kakaley E, Meyer MT, Putz AR, Richardson SD, Stark AE, Weis
CP, Wilson VS, Zehraoui A. 2020. Mixed organic and inorganic tapwater
exposures and potential effects in greater Chicago area, USA. Sci Total
Environ 719:137236.

Bradley PM, Journey CA, Berninger JP, Button DT, Clark JM, Corsi SR,
DeCicco LA, Hopkins KG, Huffman BJ, Nakagaki N, Norman JE, Nowell
LR, Qi SK, Van Metre PC, Waite IR. 2019. Mixed‐chemical exposure and
predicted effects potential in wadeable southeastern USA streams. Sci
Total Environ 655:70–83.

Brennan JC, Gale RW, Alvarez DA, Berninger JP, Leet JK, Li Y, Wagner T,
Tillitt DE. 2020. Factors affecting sampling strategies for design of an
effects‐directed analysis for endocrine‐active chemicals. Environ Toxicol
Chem 39:1309–1324.

Bridges CM, Little EE, Gardiner DM, Petty JD, Huckins JN. 2004. Assessing
the toxicity of teratogenicity of pond water in north‐central Minnesota to
amphibians. Environ Sci Pollut Res 11:233–239.

Choy SJ, Annis ML, Banda JA, Bowman SR, Brigham ME, Elliott SM, Gefell
DJ, Jankowski MD, Jorgenson ZG, Lee KE, Moore JN, Tucker WA.
2017. Contaminants of emerging concern in the Great Lakes basin: A
report on sediment, water, and fish tissue chemistry collected in
2010–2012. Biological Technical Publication BTP‐R3017‐2013. US Fish
and Wildlife Service, Washington, DC. [cited 2020 September 1].
Available from: https://digitalmedia.fws.gov/digital/collection/
document/id/2192/

Clapcott JE, Collier KJ, Death RG, Goodwin EO, Harding JS, Kelly D,
Leathwick JR, Young RG. 2012. Quantifying relationships between land‐
use gradients and structural and functional indicators of stream eco-
logical integrity. Freshw Biol 57:74–90.

2180 Environmental Toxicology and Chemistry, 2021;40:2165–2182—D.A. Alvarez et al.

Published 2021 wileyonlinelibrary.com/ETC

mailto:dalvarez@usgs.gov
http://pubs.usgs.gov/tm/tm1d4/
https://doi.org/10.5066/P9F5FFZX
https://digitalmedia.fws.gov/digital/collection/document/id/2192/
https://digitalmedia.fws.gov/digital/collection/document/id/2192/


Corsi SR, De Cicco LA, Villeneuve DL, Blackwell BR, Fay KA, Ankley GT,
Baldwin AK. 2019. Prioritizing chemicals of ecological concern in Great
Lakes tributaries using high‐throughput screening data and adverse
outcome pathways. Sci Total Environ 686:995–1009.

Custer CM, Custer TW, Dummer PM, Goldberg D, Franson JC. 2016.
Concentrations and spatial patterns of organic contaminants in tree
swallow (Tachycineta bicolor) eggs at United States and binational Great
Lakes areas of concern, 2010–2015. Environ Toxicol Chem 35:
3071–3092.

De Cicco LA, Corsi SR, Villeneuve DL, Blackwell BR, Ankley GT. 2018. tox-
Eval: Evaluation of measured concentration data using the ToxCast
high‐throughput screening database or a user‐defined set of concen-
tration benchmarks. R package, Ver 1.1.0. [cited 2020 July 15]. Available
from: https://code.usgs.gov/water/toxEval

Department of Agriculture and Agri‐Food Canada. 2020. Canada Land
Inventory Level I Watersheds, 1:2,000,000 scale (Vector digital data).
Ottawa, ON, Canada.

Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ. 2007.
The ToxCast program for prioritizing toxicity testing of environmental
chemicals. Toxicol Sci 95:5–12.

Elliott SM, Brigham ME, Lee KE, Banda JA, Choy SJ, Gefell DJ, Minarik TA,
Moore JN, Jorgenson ZG. 2017. Contaminants of emerging concern in
tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PLoS
One 12:e0182868.

Elliott SM, Route WT, DeCicco LA, VanderMeulen DD, Corsi SR, Blackwell
BR. 2018. Contaminants in bald eagles of the upper Midwestern U.S.: A
framework for prioritizing future research based on in‐vitro bioassays.
Environ Pollut 244:861–870.

Fay KA, Villeneuve DL, Swintek J, Edwards SW, Nelms MD, Blackwell BR,
Ankley GT. 2018. Differentiating pathway‐specific from nonspecific ef-
fects in high‐throughput toxicity data: A foundation for prioritizing ad-
verse outcome pathway development. Toxicol Sci 163:500–515.

Filer DL, Kothiya P, Setzer RW, Judson RS, Martin MT. 2016. tcpl: The
ToxCast pipeline for high‐throughput screening data. Bioinformatics
33:618–620.

Fischer FC, Henneberger L, König M, Bittermann K, Linden L, Goss K‐U,
Escher BI. 2017. Modeling exposure in the Tox21 in vitro bioassays.
Chem Res Toxicol 30:1197–1208.

Gellert G, Stommel A. 1999. Influence of microplate material on the sen-
sitivity of growth inhibition tests with bacteria assessing toxic organic
substances in water and waste water. Environ Toxicol 14:424–428.

Guo J, Romanak K, Westenbroek S, Hites RA, Venier M. 2017. Current‐use
flame retardants in the water of Lake Michigan tributaries. Environ Sci
Technol 51:9960–9969.

Harman C, Allan IJ, Vermeirssen ELM. 2012. Calibration and use of the polar
organic chemical integrative sampler—A critical review. Environ Toxicol
Chem 31:2724–2738.

Helm PA, Howell ET, Li H, Metcalfe TL, Chomicki KM, Metcalfe CD. 2012.
Influence of nearshore dynamics on the distribution of organic
wastewater‐associated chemicals in Lake Ontario determined using
passive samplers. J Great Lakes Res 38:105–115.

Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J,
Herold ND, Wickham JD, Megown K. 2015. Completion of the 2011
National Land Cover Database for the conterminous United States—
Representing a decade of land cover change information. Photogramm
Eng Remote Sensing 81:345–354.

Hornbuckle KC, Carlson DL, Swackhamer DL, Baker JE, Eisenreich SJ. 2006.
Polychlorinated biphenyls in the Great Lakes. In Hites RA, ed, Persistent
Organic Pollutants in the Great Lakes. Springer, Berlin, Germany,
pp 13–70.

Huang DW, Sherman BT, Lempicki RA. 2009a. Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat
Protoc 4:44–57.

Huang DW, Sherman BT, Lempicki RA. 2009b. Bioinformatics enrichment
tools: Paths toward the comprehensive functional analysis of large gene
lists. Nucleic Acids Res 37:1–13.

Huckins JN, Petty JD, Booij K. 2006. Monitors of Organic Chemicals in the
Environment—Semipermeable Membrane Devices. Springer, New York,
NY, USA.

Instituto Nacional de Estadística Geografía e Informática, Atlas of Canada,
US Geological Survey. 2006a. North American Atlas—Hydrography
(Vector digital data), US Geological Survey, Reston, VA.

Instituto Nacional de Estadística Geografía e Informática, Atlas of Canada,
US Geological Survey. 2006b. North American Atlas—Political boun-
daries (Vector digital data), US Geological Survey, Reston, VA.

Jick H, Derby LE. 1995. A large population‐based follow‐up study of
trimethoprim‐sulfamethoxazole, trimethoprim, and cephalexin for
uncommon serious drug toxicity. Pharmacotherapy 15:428–432.

Johnson BT, Petty JD, Huckins JN, Lee K. 2004. Hazard assessment of
simulated oil spill on intertidal areas of the St. Lawrence River with
SPMD‐TOX. Environ Toxicol 19:329–335.

Jolly C, Katsiadaki I, Le Belle N, Mayer I, Dufour S. 2006. Development of a
stickleback kidney cell culture assay for the screening of androgenic and
anti‐androgenic endocrine disrupters. Aquat Toxicol 79:158–166.

Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM,
Reif DM, Rotroff DM, Shah I, Richard AM, Dix DJ. 2009. In vitro
screening of environmental chemicals for targeted testing prioritization:
The ToxCast project. Environ Health Perspect 118:485–492.

Kahl MD, Villeneuve DL, Stevens K, Schroeder A, Makynen EA, LaLone CA,
Jensen KM, Hughes M, Holmen BA, Eid E, Durhan EJ, Cavallin JE,
Berninger J, Ankley GT. 2014. An inexpensive, temporally integrated
system for monitoring occurrence and biological effects of aquatic
contaminants in the field. Environ Toxicol Chem 33:1584–1595.

Kannan K, Ridal J, Struger J. 2006. Pesticides in the Great Lakes. In Hites
RA, ed, Persistent Organic Pollutants in the Great Lakes. Springer,
Berlin, Germany, pp 151–199.

Kavlock R, Chandler K, Houck K, Hunter S, Judson R, Kleinstreuer N,
Knudsen T, Martin M, Padilla S, Reif D, Richard A, Rotroff D, Sipes N, Dix
D. 2012. Update on EPA's ToxCast program: Providing high throughput
decision support tools for chemical risk management. Chem Res Toxicol
25:1287–1302.

Keith L. 1991. Environmental Sampling and Analysis: A Practical Guide.
CRC, Boca Raton, FL, USA.

Kiesling RL, Elliott SM, Kammel LE, Choy SJ, Hummel SL. 2019. Predicting
the occurrence of chemicals of emerging concern in surface water and
sediment across the U.S. portion of the Great Lakes basin. Sci Total
Environ 651:838–850.

Kimbrough K, Johnson WE, Jacob A, Edwards M, Davenport E. 2018. Great
Lakes Mussel Watch: Assessment of contaminants of emerging concern.
Technical Memorandum NOS NCCOS 249. National Oceanic and
Atmospheric Administration, Silver Spring, MD.

Kolpin DW, Blazer VS, Gray JL, Focazio MJ, Young JA, Alvarez DA,
Iwanowicz LR, Foremen WT, Furlong ET, Speiran GK, Zaugg SD,
Hubbard LE, Meyer MT, Sandstrom MW, Barber LB. 2013. Chemical
contaminants in water and sediment near fish nesting sites in the Po-
tomac River basin: Determining potential exposures to smallmouth bass
(Micropterus dolomieu). Sci Total Environ 443:700–716.

Kraus JM, Gibson PP, Walters DM, Mills MA. 2017. Riparian spiders as
sentinels of polychlorinated biphenyl contamination across heteroge-
neous aquatic ecosystems. Environ Toxicol Chem 36:1278–1286.

Lamastra L, Suciu NA, Trevisan M. 2018. Sewage sludge for sustainable
agriculture: Contaminants' contents and potential use as fertilizer. Chem
Biol Technol Agric 5:10.

Li H, Helm PA, Metcalfe CD. 2010. Sampling in the Great Lakes for phar-
maceuticals, personal care products, and endocrine‐disrupting sub-
stances using the passive polar organic chemical integrative sampler.
Environ Toxicol Chem 29:751–762.

Meadows JN, Echols KR, Huckins JN, Borsuk FA, Carline RF, Tillitt DE. 1998.
Estimation of uptake rate constants for PCB congeners accumulated by
semipermeable membrane devices and brown trout (Salmo trutta). En-
viron Sci Technol 32:1847–1852.

Metcalfe CD, Helm P, Paterson G, Kaltenecker G, Murray C, Nowierski M,
Sultana T. 2019. Pesticides related to land use in watersheds of the
Great Lakes basin. Sci Total Environ 648:681–692.

Moore AA, Palmer MA. 2005. Invertebrate biodiversity in agricultural and
urban headwater streams: Implications for conservation and manage-
ment. Ecol Appl 15:1169–1177.

Nirmalakhandan N, Arulgnanendran V, Mohsin M, Sun B, Cadena F. 1994.
Toxicity of mixtures of organic chemicals to microorganisms. Water Res
28:543–551.

Parrott JL, Tillitt DE. 1997. The use of semipermeable membrane devices
(SPMDs) to concentrate inducers of fish hepatic mixed function oxy-
genase (MFO). In Zelikoff JT, ed, Ecotoxicology: Responses, Biomarkers,
and Risk Assessment. An OECD Workshop. SOS, Fair Haven, NJ, USA,
pp 185–196.

Passive sampling and ToxCast identify chemicals of concern—Environmental Toxicology and Chemistry, 2021;40:2165–2182 2181

wileyonlinelibrary.com/ETC Published 2021

https://code.usgs.gov/water/toxEval


Pedersen JA, Soliman M, Suffet IH. 2005. Human pharmaceuticals, hor-
mones, and personal care product ingredients in runoff from agricultural
fields irrigated with treated wastewater. J Agric Food Chem
53:1625–1632.

Petty JD, Jones SB, Huckins JN, Cranor WL, Parris JT, McTague TB, Boyle
TP. 2000. An approach for assessment of water quality using semi-
permeable membrane devices (SPMDs) and bioindicator tests. Che-
mosphere 41:311–321.

Pittman ME, Edwards SW, Ives C, Mortensen HM. 2018. AOP‐DB: A data-
base resource for the exploration of adverse outcome pathways
through integrated association networks. Toxicol Appl Pharmacol
343:71–83.

Pottinger TG, Katsiadaki I, Jolly C, Sanders M, Mayer I, Scott AP, Morris S,
Kortenkamp A, Scholze M. 2013. Anti‐androgens act jointly in sup-
pressing spiggin concentrations in androgen‐primed female three‐
spined sticklebacks—Prediction of combined effects by concentration
addition. Aquat Toxicol 140–141:145–156.

R Development Core Team. 2019. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria.

Rastall AC, Neziri A, Vukovic Z, Jung C, Mijovic S, Hollert H, Nikcevic S,
Erdinger L. 2004. The identification of readily bioavailable pollutants in
Lake Shkodra/Skadar using semipermeable membrane devices
(SPMDs), bioassays and chemical analysis. Environ Sci Pollut Res
11:240–253.

Rodriguez RS, Haugen R, Rueber A, Huang CC. 2014. Reversible neuronal
and muscular toxicity of caffeine in developing vertebrates. Comp Bio-
chem Physiol C Toxicol Pharmacol 163:47–54.

Sabaliu‐as D, Lazutka J, Sabaliu‐niene I, Södergren A. 1998. Use of semi-
permeable membrane devices for studying effects of organic pollutants:
Comparison of pesticide uptake by semipermeable membrane devices
and mussels. Environ Toxicol Chem 17:1815–1824.

Schoenfuss HL, Furlong ET, Phillips PJ, Scott T‐M, Kolpin DW, Cetkovic‐
Cvrlje M, Lesteberg KE, Rearick DC. 2016. Complex mixtures, complex
responses: Assessing pharmaceutical mixtures using field and laboratory
approaches. Environ Toxicol Chem 35:953–965.

Scott MC. 2006. Winners and losers among stream fishes in relation to land
use legacies and urban development in the southeastern US. Biol
Conserv 127:301–309.

Simcik MF, Offenberg JH. 2006. Polycyclic aromatic hydrocarbons in the
Great Lakes. In Hites RA, ed, Persistent Organic Pollutants in the Great
Lakes. Springer, Berlin, Germany, pp 307–353.

Society for the Advancement of Adverse Outcome Pathways. 2018. Aop-
wiki. [cited 2018 September 21]. Available from: https://aopwiki.org/

Steeves P, Nebert D. 1994. 1:250,000‐scale hydrologic units of the United
States. Open‐file report 94–0236. US Geological Survey, Reston, VA.

Tang JYM, McCarty S, Glenn E, Neale PA, Warne MStJ, Escher BI. 2013.
Mixture effects of organic micropollutants present in water: Towards the
development of effect‐based water quality trigger values for baseline
toxicity. Water Res 47:3300–3314.

Tice RR, Austin CP, Kavlock RJ, Bucher JR. 2013. Improving the human
hazard characterization of chemicals: A Tox21 update. Environ Health
Perspect 121:756–765.

US Department of Agriculture–Natural Resources Conservation Service, US
Geological Survey, US Environmental Protection Agency. 2009. The
watershed boundary dataset (WBD) (Vector digital data). US Department
of Agriculture, Natural Resources Conservation Service, National
Cartography and Geospatial Center, Fort Worth, TX.

US Environmental Protection Agency. 2020. ToxCast & Tox21 summary files
for invitrodb_v3.2. [cited 2020 January 3]. Available from: https://www.
epa.gov/chemical‐research/exploring‐toxcast‐data‐downloadable‐data

US Environmental Protection Agency. n.d. ECOTOX knowledgebase. [cited
2020 June 11]. Available from: http://www.epa.gov/ecotox

Van Metre PC, Alvarez DA, Mahler BJ, Nowell L, Sandstrom M, Moran P.
2017. Complex mixtures of pesticides in Midwest U.S. streams
indicated by POCIS time‐integrating samplers. Environ Pollut 220:
431–440.

Vermeirssen ELM, Körner O, Schönenberger R, Suter MJF, Burkhardt‐Holm
P. 2005. Characterization of environmental estrogens in river water using
a three pronged approach: Active and passive water sampling and the
analysis of accumulated estrogens in the bile of cages fish. Environ Sci
Technol 39:8191–8198.

Walters DM, Otter RR, Kraus JM, Mills MA. 2018. Riparian spiders indicate the
magnitude and sources of polychlorinated biphenyl contamination at a
large contaminated sediment site. Environ Toxicol Chem 37:2467–2474.

Waxman DJ. 1999. P450 gene induction by structurally diverse xen-
ochemicals: Central role of nuclear receptors CAR, PXR, and PPAR. Arch
Biochem Biophys 369:11–23.

Wickham H, Averick M, Bryan J, Chang W, D'Agostino McGowan L, Francois
R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Lin Pedersen T,
Miller E, Milton Bache S, Müller K, Ooms J, Robinson D, Paige Seidel D,
Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019.
Welcome to the tidyverse. J Open Source Softw 4:1686.

Xie Z, Ebinghaus R, Temme C, Lohmann R, Caba A, Ruck W. 2007. Oc-
currence and air–sea exchange of phthalates in the Arctic. Environ Sci
Technol 41:4555–4560.

Xu C, Li CY‐T, Kong, A‐NT. 2005. Induction of phase I, II and III drug me-
tabolism/transport by xenobiotics. Arch Pharm Res 28:249–268.

Zeng F, Cui K, Xie Z, Wu L, Liu M, Sun G, Lin Y, Luo D, Zeng Z. 2008.
Phthalate esters (PAEs): Emerging organic contaminants in agricultural
soils in peri‐urban areas around Guangzhou, China. Environ Pollut
156:425–434.

Zhao H‐M, Hu R‐W, Huang H‐B, Wen H‐F, Du H, Li Y‐W, Li H, Cai Q‐Y, Mo
C‐H, Liu J‐S, Wong M‐H. 2017. Enhanced dissipation of DEHP in soil and
simultaneously reduced bioaccumulation of DEHP in vegetable using
bioaugmentation with exogenous bacteria. Biol Fertil Soils 53:663–675.

Zhen Z, Yin Y, Chen K, Zhang X, Kuang X, Jiang H, Wang H, Cui Y, He C,
Ezekiel AO. 2019. Phthalate esters in atmospheric PM2.5 at Mount Tai,
north China plain: Concentrations and sources in the background and
urban area. Atmos Environ 213:505–514.

2182 Environmental Toxicology and Chemistry, 2021;40:2165–2182—D.A. Alvarez et al.

Published 2021 wileyonlinelibrary.com/ETC

https://aopwiki.org/
https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data
https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data
http://www.epa.gov/ecotox



