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BACKGROUND AND AIMS: Manual histological assessment 
is currently the accepted standard for diagnosing and monitor-
ing disease progression in NASH, but is limited by variability in 
interpretation and insensitivity to change. Thus, there is a criti-
cal need for improved tools to assess liver pathology in order 
to risk stratify NASH patients and monitor treatment response.

APPROACH AND RESULTS: Here, we describe a machine 
learning (ML)-based approach to liver histology assessment, 
which accurately characterizes disease severity and heterogeneity, 
and sensitively quantifies treatment response in NASH. We use 
samples from three randomized controlled trials to build and 
then validate deep convolutional neural networks to measure 
key histological features in NASH, including steatosis, inflam-
mation, hepatocellular ballooning, and fibrosis. The ML-based 
predictions showed strong correlations with expert pathologists 
and were prognostic of progression to cirrhosis and liver-related 
clinical events. We developed a heterogeneity-sensitive metric 

of fibrosis response, the Deep Learning Treatment Assessment 
Liver Fibrosis score, which measured antifibrotic treatment ef-
fects that went undetected by manual pathological staging and 
was concordant with histological disease progression.

CONCLUSIONS: Our ML method has shown reproduc-
ibility and sensitivity and was prognostic for disease pro-
gression, demonstrating the power of ML to advance our 
understanding of disease heterogeneity in NASH, risk stratify 
affected patients, and facilitate the development of therapies. 
(Hepatology 2021;74:133-147).

Global prevalence of NAFLD is rising rapidly.(1,2) 
NAFLD represents a continuum of disease of 
varying severity, with milder forms consisting of 

simple steatosis, whereas the progressive form, NASH, 
can progress to cirrhosis and end-stage liver disease. 
NASH-related cirrhosis is now the fastest growing indi-
cation for liver transplantation (LT) in the USA.(3)
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ELF, Enhanced Liver Fibrosis; FDR, false discovery rate; FIR, f irsocostat; HB, hepatocellular ballooning; LT, liver transplantation; MELD, 
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Histopathological assessment of liver biopsies is 
the reference standard for the diagnosis and stag-
ing of NASH, both clinically and in the context of 
clinical trials. Classification of NASH severity is 
based on ordinal staging systems, including those 

developed by the NASH Clinical Research Network 
(NASH CRN), which includes fibrosis stages 0-4, 
and the NAFLD Activity Score (NAS), a compos-
ite ordinal scoring system comprising steatosis, lob-
ular inflammation, and hepatocellular ballooning 
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(HB).(4) Ordinal classification systems have limited 
value when describing a disease that is driven by a 
continuum of cellular and stromal injury, and limited 
sensitivity to reflect changes in disease severity over 
time. Moreover, existing scoring systems have only 
moderate-to-fair reproducibility, even among expert 
hepatopathologists.(4-6) Despite these limitations, the 
current regulatory framework for approval of NASH 
therapies relies on manual pathological scoring.(7)

In comparison to other diseases like cancer, where 
image-based analysis is also central to diagnostic 
accuracy, development of a therapeutic for NASH 
has been constrained by diagnostic irreproducibility.(8) 
Furthermore, a high rate of apparent histological 
response observed in placebo-treated patients impacts 
the powering of clinical trials that include histolog-
ical endpoints.(8-11) Adoption of computerized anal-
ysis, based on machine learning (ML) algorithms, 
improved the performance of pathologists and clinical 
experts in detection and diagnosis of cancer, retinopa-
thy, and skin lesions.(12,13) Initial efforts to apply ML 
to NASH histology have demonstrated the feasibil-
ity of this approach in small cohorts.(14–17) Here, we 
hypothesized that leveraging deep convolutional neu-
ral networks (CNNs) for quantitative tissue charac-
terization would improve upon human pathological 
evaluation by increasing reproducibility, identifying 
features associated with clinical outcomes, and provid-
ing a platform for rigorous and consistent assessment 
of disease regression following treatment.

To this end, we applied our approach to the assess-
ment of liver histology using biopsies from multiple 
randomized controlled trials of therapies in patients 
with advanced fibrosis attributable to NASH. Our 
models recapitulated the key histological features of 
NASH, as assessed by the central pathologist (CP) 
who provided slide-level scores in the context of the 
clinical trials, and demonstrated comparable agree-
ment with consensus scores from readings from three 
expert pathologists conducted as part of the current 
study. Features associated with disease progression 
were also identified, demonstrating the potential 
utility of ML-based approaches for risk stratification.

Finally, these models revealed, and were used to 
characterize, the heterogeneity of fibrosis that exists 
within a given biopsy. When applied to serial biopsy 
samples, this approach tracked changes in fibrosis 
phenotypes over time with greater granularity than 
achieved with using ordinal scoring systems. Our 

results highlight the potential to integrate this ML-
based approach into routine patient care and adapt for 
use as endpoints in NASH clinical trials.

Materials and Methods
CLINICAL TRIAL INFORMATION

This study used liver biopsy samples from three 
randomized controlled trials of therapies for patients 
with advanced fibrosis attributable to NASH 
(STELLAR-3 [NCT03053050], STELLAR-4 
[NCT03053063], and ATLAS [NCT03449446]). 
The designs, eligibility criteria, and results of these 
trials have been reported elsewhere.(18,19) Written 
informed consent was obtained from each patient 
prior to the initiation of study activities. The study 
protocols conformed to the ethical guidelines of the 
1975 Declaration of Helsinki and were approved by 
all participating institutional review boards or ethics 
committees. In brief, the phase 3 STELLAR studies 
enrolled adult patients with a histological diagnosis of 
NASH (defined as the presence of grade ≥1 steatosis, 
HB, and lobular inflammation according to the NAS) 
and either bridging (F3) fibrosis (STELLAR-3) or 
compensated cirrhosis, stage F4 (STELLAR-4). Both 
studies were terminated after a preplanned efficacy 
analysis at week 48 demonstrated that the study drug, 
selonsertib (SEL), was ineffective compared with pla-
cebo. Similarly, in the phase 2b ATLAS study, adult 
patients with advanced fibrosis (F3-F4) attribut-
able to NASH were randomized to treatment with 
SEL, firsocostat (FIR), or cilofexor (CILO), alone 
or in two-drug combinations, for 48 weeks.(19) The 
SEL monotherapy arm was discontinued following 
reporting of the negative STELLAR studies.(18) In 
these studies, patients were deemed to have a clinical 
event if they had adjudication-confirmed evidence of 
hepatic decompensation (e.g., ascites, grade ≥2 HE, or 
gastrointestinal bleeding secondary to portal hyper-
tension), LT, qualification for transplantation (Model 
for End-Stage Liver Disease score [MELD] ≥15), or 
histological progression to cirrhosis (in STELLAR-3 
and ATLAS).

LIVER BIOPSY SLIDES
Throughout all three trials, core-needle liver biop-

sies were performed at baseline and week 48. These 
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were evaluated by a single CP (Z.G.) who generated 
slide-level scores according to the NASH CRN and 
Ishak fibrosis classifications and NAS. The primary 
endpoint for each study was fibrosis improvement, 
defined as a ≥1-stage improvement in fibrosis accord-
ing to the NASH CRN classification without wors-
ening of NASH (defined as any increase in lobular 
inflammation or ballooning according to the NAS) 
from baseline to week 48.

Digitized liver biopsy slides from these trials, 
including screened and/or enrolled patients, were 
separated into training, validation, and test sets for 
the purpose of model parameter estimation, model 
performance evaluation, and model generalization 
evaluation, respectively. Patients were first binned by 
both NAS and NASH CRN fibrosis stage, and bins 
were used to randomly assign patients to training 
and validation or test sets in a 0.187/0.813 ratio. 
The training and validation slide data set included 
753 slides from 388 patients in STELLAR-3 and 
502 slides from 256 patients in STELLAR-4. The 
test set included 2,194 slides from 1,282 patients in 
STELLAR-3, 2,027 slides from 1,120 patients in 
STELLAR-4, and 918 slides from 616 patients in 
ATLAS. Slides from the ATLAS study were used 
exclusively in model testing.

To train ML models, board-certified patholo-
gists specializing in hepatobiliary pathology from the 
PathAI network of expert pathologists provided pixel-
level annotations designating regions of tissue within 
a whole-slide image (WSI) as exhibiting specific 
morphologies. Specifically, using a digital platform 
(PathAI, Boston, MA), polygons were created to indi-
cate areas of specified morphologies. In total, >65,424 
annotations (45,081 on images of HE-stained slides 
and 20,343 on images of trichrome-stained slides) of 
key histological parameters were used for supervised 
model training. For details of annotation statistics by 
morphology, see Supporting Table S1.

After model training, we recruited three expe-
rienced board-certified hepatobiliary pathologists 
(U.K., R.N., and R.T.), distinct from the pathologists 
who generated training and validation annotations, 
to generate a consensus score for comparison of ML 
scoring with pathologist assessment. These patholo-
gists were presented with a WSI and asked to enter 
a numerical score for the pathological feature in 
question. Pathologists evaluated each slide in dupli-
cate, inter-rater consensus was calculated across these 

pathologists, and intrarater consensus was computed 
across duplicate reads (Supporting Table S2). The 
median interval between biopsy rereads was 16 weeks 
(range, 9-20).

SLIDE BACKGROUND AND 
ARTIFACT EXCLUSION

Most pixels in an WSI of a core needle biopsy con-
tain background rather than liver tissue, and tissue-
containing regions may suffer from sample preparation 
and imaging artifacts, including debris, tissue folds, 
and areas of poor focus. We excluded both these back-
ground and artifact-containing regions from our anal-
ysis using an additional CNN trained to classify pixels 
as either background, tissue with artifact, or usable tis-
sue. All other models and features were then evaluated 
only in the areas classified as usable tissue.

TRAINING AND TESTING AN ML 
SYSTEM FOR QUANTIFICATION 
OF NAS FEATURES

Pathologist-derived annotations of HE WSIs 
(as described above) were grouped into classes as 
appropriate and then used to generate training sets 
of image patches on the order of 500,000 samples. 
These patches were used to train a deep CNN with 
stochastic minibatch gradient descent, using the 
ADAM optimizer(20) to produce pixel-level predic-
tions of NAS components (steatosis, lobular inflam-
mation, and HB; Fig. 1A). Models are comprised 
of 8-12 blocks of compound layers with a topology 
inspired by residual networks and inception net-
works with a softmax loss.(21,22) Model training was 
monitored and hyperparameters adjusted based on 
performance of the model on pathologist annota-
tions from the held-out validation set, until conver-
gence was achieved.

TRAINING AND TESTING AN ML 
SYSTEM FOR QUANTIFICATION 
OF FIBROSIS

The ML Ishak and NASH CRN fibrosis scor-
ing models were supervised with the slide-level label 
generated during the clinical trials by the CP (Z.G.). 
After label assignment, the training process was sim-
ilar to that described above for NAS features. Model 
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FIG. 1. ML system for quantification of NAS features. (A) ML process for training and deploying models for the NAS. Example 
pathologist annotations are shown in the middle panel (bounding boxes). These annotations are used for model training to generate pixel-
resolution heatmaps (left panel), which segment the tissue into corresponding regions. (B) Box-and-whisker plots showing comparison of 
ordinal score based on evaluation by the CP (x-axis) and ML-based model measurement (y-axis). Model values describe the proportion 
of tissue area predicted to be the substance in question (steatosis, lobular inflammation, or HB). Values shown are Spearman correlation 
coefficients (rho) and corresponding P values. Boxes show the interquartile range (IQR), and whiskers show 1.5× the limit of the IQR. 
Points show values beyond this range. (C) Example pathological images (left) and corresponding ML heatmaps (right). Figures represent 
pathologist label (left) and model predictions (right). Heatmaps represent model predictions: Green regions are predicted to be steatosis 
(top), blue regions are predicted to be lobular inflammation (middle), and red regions are predicted to be HB (bottom). (D) Intrapathologist 
reproducibility for scoring of NAS parameters. Values shown are weighted Cohen’s kappa computed for the repeated grading of the same 
slides (N = 166).

A

B C D
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predictions were restricted to regions identified as bile 
duct or fibrosis. Using the fibrosis stage assigned by 
the CP, an “end-to-end” (E2E) model was developed 
that predicted fibrosis stage (NASH CRN or Ishak) 
within fibrotic regions in the tissue directly from 
images of trichrome-stained slides without calculation 
of specific histological features. Specifically, the model 
was used to predict a fibrosis stage for each pixel of 
fibrotic tissue within each slide. Slide-level scores 
were generated by summing all pixels predicted to be 
each grade of fibrosis and normalized by total area of 
fibrosis. These features measure the fraction of tissue 
consistent with each NASH CRN or Ishak fibrosis 
stage in each slide. To compute the weighted average 
score, we multiplied each of these fractions by the cor-
responding stage value and summed over the stages.

We also used these scores to compute the patient 
DELTA Liver Fibrosis score measuring change in 
fibrosis, treating each patient’s fraction of stage of 
fibrosis as a distribution over the possible stages at 
baseline and week 48 and computing the Wasserstein 
distance between these distributions. Finally, we mul-
tiplied this distance by the change in average weighted 
score (week 48 to baseline) to achieve the DELTA 
Liver Fibrosis score. Specifically, the score is the first 
Wasserstein distance (or earth mover’s distance(23)) 
between the distribution of fibrosis stages at baseline 
and following treatment multiplied by the overall shift 
in mean score between time points. The Wasserstein 
distance measures the amount of “work” required to 
turn one distribution into another; in this case, the 
magnitude of change in the composition of predicted 
NASH CRN fibrosis stages between baseline and 
week 48. The Wasserstein distance is symmetric and 
unitless (i.e., the amount of work is the same regard-
less of direction); therefore, we scaled by the mean 
to give the DELTA score a sign and an interpretable 
magnitude. Finally, we multiplied this distance by the 
change in average weighted score (week 48 to base-
line) to achieve the DELTA Liver Fibrosis score.

MODEL PREDICTIONS OF TISSUE 
HISTOLOGICAL FEATURES

Cloud-computing infrastructure allowed mas-
sively parallel patch-wise inference to be efficiently 
performed exhaustively on every tissue-containing 
region of an WSI, with a spatial precision of four to 
eight pixels. The resulting “heatmaps” represent model 

predictions at each point in the WSI. These were then 
used to calculate specific features summarizing these 
heatmaps at the patient level. In total, 198 features 
ranging from simple area proportions (e.g., the frac-
tion of tissue area predicted to be fibrotic) to higher-
order features, such as bile duct/proximal fibrosis, were 
calculated. Accuracy of the models for classification 
of individual features compared with the pathologists’ 
slide-level assessments is reported in Supporting Figs. 
S1-S5.

ASSOCIATIONS BETWEEN 
PATHOLOGICAL FEATURES AND 
CLINICAL OUTCOMES

The 198 patient-level feature vectors provide a rich 
characterization of patients’ liver pathology. To assess 
associations between these features with clinical out-
comes, we used Cox’s proportional hazards regression 
models and calculated the c-statistic to assess model 
discrimination of these features for these outcomes. 
The outcome measures of interest were histological 
progression to cirrhosis in patients with bridging (F3) 
fibrosis at baseline and adjudicated liver-related clin-
ical events in those with cirrhosis (F4). Liver-related 
clinical events were ascites, grade ≥2 HE, gastrointes-
tinal bleeding attributable to portal hypertension, LT, 
qualification for transplantation (MELD ≥15), and 
death and were observed in 22 patients.

STATISTICAL ANALYSIS
Computed multiple associations between our fea-

ture vectors and clinical outcomes created a multi-
ple comparisons problem. However, typical methods 
for control of false discovery rate (FDR) were not 
appropriate because of the high correlation between 
features (Supporting Fig. S6). To address this chal-
lenge, feature reduction by clustering was performed 
and then cluster-wise significance was computed and 
corrected to control the FDR. To cluster features, a 
feature-by-feature distance matrix was calculated 
using the absolute value of the Spearman correlation. 
Next, hierarchical clustering was performed using 
Ward’s method to produce a dendrogram of features. 
We chose a cut in tree and produced flattened clusters 
using the elbow method. We performed this cluster-
ing procedure using the combined data from all three 
data sets to enforce consistent clusters throughout 
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the analyses. To compute the significance value of 
each cluster, P values of the features in each cluster 
were combined using the empirical Brown’s method 
(EBM).(24) After combining P values, we assumed that 
each cluster’s association with an outcome would rep-
resent an approximately independent hypothesis and 
applied Storey’s method to calculate FDR-corrected 
q values.(25)

Results
ML-QUANTIFIED LIVER 
HISTOLOGICAL FEATURES

To develop a reproducible and quantitative measure 
of NASH histology, deep CNN models were trained 
to predict the NAS components of steatosis, lobular 
inflammation, and HB using pathologists’ annotations 
of HE slide images (Fig. 1A). Notably, confusion of 
the model was greatest for features that pathologists 
normally find difficult to distinguish (e.g., normal 
hepatocytes [normal liver] vs. hepatocellular swelling 
vs. HB), highlighting the difficulty in evaluating mod-
els using subjective labels where expert human pathol-
ogists may disagree. We evaluated the relevance of 
our model-based slide annotations by comparing the 
proportion of tissue area assigned to each NAS com-
ponent in the test set with the ordinal grade as deter-
mined by the CP (Fig. 1B). Model predictions were 
significantly correlated with ordinal grades for all three 
NAS components across all test-set slides (steatosis, 
ρ  =  0.60; P  <  0.001; lobular inflammation, ρ  =  0.35; 
P  <  0.001; and HB, ρ  =  0.41; P  <  0.001), with sim-
ilar concordance in the individual trials (Supporting 
Fig. S2). Model features were significantly concordant 
with scoring by the CP in the clinical trials on slides 
from the ATLAS trial, despite its exclusion from the 
training data set. To visualize the output of the mod-
els, we created heatmaps representing the ML-based 
prediction of each NAS component and visualized the 
predictions on images of HE-stained slides (Fig. 1C).

Next, to examine the reliability and reproducibility 
of manual pathology-based scoring of NASH fea-
tures, three expert liver pathologists (U.K., R.N., and 
R.T.) independently graded the NAS components 
on 166 slides in duplicate (Materials and Methods; 
Supporting Table S2). We found that pathologist 

scoring of NAS features showed substantial intraob-
server reproducibility. Specifically, weighted Cohen 
kappa values(26) were 0.797 for steatosis (range, 0.726-
0.864), 0.593 for lobular inflammation (0.513-0.659), 
and 0.666 for ballooning (0.562-0.793; Fig. 1D; 
Supporting Table S3). However, rates of discordance 
between pathologists for ordinal grading of NAS 
features ranged from 22% to 47%. Consensus NAS 
grades by the three pathologists were significantly 
correlated with the ML model’s scores (steatosis, 
ρ = 0.66; p < 0.001; HB, ρ = 0.62; P < 0.001; lobular 
inflammation, ρ = 0.54; P < 0.001).

FIBROSIS SCORING BY ML 
MODELS

An E2E model was developed to predict fibrosis 
stage directly from a trichrome-stained slide image 
without calculating any intermediate histological fea-
tures (Fig. 2A; Materials and Methods). This model 
generates slide-level scores that capture both the 
severity and heterogeneity of fibrosis (NASH CRN 
and Ishak) within the slide (Fig. 2B). On test-set 
slides, these scores were significantly correlated with 
fibrosis as staged by the CP (Fig. 2C and Supporting 
Fig. S4A; NASH CRN fibrosis stage, Spearman 
ρ = 0.56; P < 0.001 and Ishak fibrosis stage, ρ = 0.71; 
P  <  0.001). Concordance of ML fibrosis scores with 
fibrosis stage was consistent in the test set in each 
trial, demonstrating model generalization across vary-
ing sources of slides (Supporting Fig. S4B). Manual 
staging of fibrosis demonstrated substantial inter-rater 
agreement (Supporting Table S2); intrarater kappa 
values(26) were 0.865 (range, 0.815-0.911) for the 
Ishak classification and 0.797 (range, 0.754-0.833) for 
the NASH CRN classification (Fig. 2D; Supporting 
Table S3). However, rates of discordance between 
fibrosis stages assigned by the same pathologist on 
biopsy rereads ranged from 29% to 45%.

We also evaluated model performance versus a 
consensus of pathologists’ staging (N  =  161 slides; 
Fig. 2E; Supporting Table S4). The model’s agree-
ment with the consensus staging of pathologists, 
assessed by weighted Cohen’s kappa, was 0.801 for the 
NASH CRN and 0.817 for the Ishak classifications. 
This level of agreement is within the range of agree-
ment between individual pathologists and the consen-
sus (N  =  3; 0.780-0.862), indicating that the model 
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performed within the range of expert review, while at 
the same time enabling a level of reproducibility supe-
rior to what could be achieved by expert review.

In addition to an accurate reproduction of fibrosis 
staging by human pathologists, the model predicts the 
overall NASH CRN and Ishak fibrosis scores for each 
pixel within the image, which enables computation 

of continuous measures of disease severity summa-
rizing their disease state (Fig. 2F; Materials and 
Methods). These measures illuminated heterogeneity 
in fibrosis within each sample that is not captured by 
a single ordinal stage provided by traditional staging 
using either the NASH CRN or Ishak classification 
systems.
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ML PARAMETERS PREDICT 
CLINICAL OUTCOMES

During a median follow-up of 15.9 months (range, 
0.06-26.20), 113 patients with bridging (F3) fibro-
sis in the STELLAR-3 trial progressed to cirrho-
sis, and liver-related clinical events were observed in 
22 patients with cirrhosis in STELLAR-4 during a 
median follow-up of 15.7 months (range, 0.26-25.00; 
Supporting Table S5). Among the 198 ML-based his-
tological features, 99 and 61 predicted (with nominal 
statistical significance) progression to cirrhosis and 
liver-related clinical events, respectively.

For all NAS features and each Ishak fibrosis stage, 
we compared the prognostic value of the ML-based 
parameters with scores of the CP based on the c-sta-
tistic. NASH CRN fibrosis stage was not examined 
given that it is part of the outcome measure in F3 

patients and because it cannot worsen in F4 patients. 
Overall, both the ML-predicted features and param-
eters from CP review were moderately predictive. 
However, the ML-predicted features were nominally 
as prognostic, or more prognostic, than the parameters 
from CP review (Table 1). The ML-based assessment 
of steatosis was the most nominally differential prog-
nostic feature (c-statistics in STELLAR-3, ML 0.57 
vs. CP 0.51; in STELLAR-4, ML 0.67 vs. CP 0.52).

ML models also enabled the quantification of 
more complex features, such as ratios of NAS features 
(e.g., ratio of area of steatosis to HB) and features 
not included in the NAS (e.g., portal inflammation; 
summarized in Supporting Table S5). We used these 
features to identify histological parameters associated 
with disease progression. Overall, we found 13 feature 
clusters (derived from the features in Supporting Table 
S5) that were significantly (q < 0.05) associated with 

FIG. 2. ML system for staging of fibrosis. (A) ML process for training and deploying models for fibrosis staging. Model is trained using 
the CP’s ordinal fibrosis stage (NASH CRN 0-4 and Ishak 0-6, middle panel). The model performs pixel-wise prediction, and these 
predictions are pooled over the entire slide to yield a per-slide prediction and distribution of fibrosis stages (left panel). (B) Box-and-
whisker plots showing comparison of ordinal stage based on evaluation by the CP (x-axis) and ML-based model measurement (y-axis). 
The ML-based measurement is the weighted average NASH CRN fibrosis stage based on model predictions (Materials and Methods). 
Spearman correlation coefficients (rho) and corresponding P values are inset. Boxes show the IQR, and whiskers show 1.5× the limit of the 
IQR. Points show values beyond this range. (C) Example pathological image with and without ML-based heatmap and stacked bar chart. 
Pixel-wise predictions of NASH CRN fibrosis stage are shown on the left (gray = 0, green = 1, yellow = 2, orange = 3, and red = 4). Height 
of bar chart represents percentage of tissue classified as each fibrosis stage. (D) Intrapathologist reproducibility for NASH CRN fibrosis 
stage. Values shown are weighted Cohen’s kappa computed for repeated staging of the same slides (N = 166). (E) Pathologist and model 
inter-rater agreement for staging of fibrosis. Bar charts show the weighted Cohen’s kappa for each pathologist’s score and the model’s score 
against the consensus of pathologists. (F) Heterogeneity of fibrosis within patients with advanced fibrosis (F3-F4) attributable to NASH. 
Leftmost column represents the CP’s single ordinal stage (green = F3 and blue = F4). Middle panel shows a heatmap where each row is a 
patient and each column is an ML NASH CRN predicted stage. The color of each box represents the percentage of that patient’s biopsy, 
which is predicted to be consistent with each NASH CRN fibrosis stage (0-4).

TABLE 1. Concordance Index (C-index) for Univariate Cox Model Using Each of the ML-Based Features, Features Scored by the 
CP

Patient Population Features

C-index [95% CI] (Cox Proportional Hazards Model)

ML CP

STELLAR 3; N = 113 (patients with progression to cirrhosis) Inflammation 0.55 [0.49-0.55] 0.52 [0.49-0.55]

Steatosis 0.57 [0.52-0.62] 0.51 [0.50-0.54]

Ballooning 0.55 [0.51-0.60] 0.53 [0.50-0.56]

Ishak 0.62 [0.57-0.67] 0.58 [0.54-0.61]

STELLAR 4; N = 22 (patients with adjudicated clinical events) Inflammation 0.57 [0.48-0.73] 0.57 [0.49-0.65]

Steatosis 0.67 [0.55-0.77] 0.52 [0.50-0.58]

Ballooning 0.64 [0.52-0.75] 0.53 [0.50-0.60]

Ishak 0.73 [0.63-0.81] 0.65 [0.59-0.71]

The C-index is a generalization of the AUC and measures the discriminatory ability of the model for survival times. ML features include 
inflammation, steatosis, ballooning, and Ishak score.
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progression to cirrhosis in STELLAR-3 and seven 
clusters associated with liver-related clinical events 
in STELLAR-4 (Supporting Table S6; Supporting 
Fig. S6A-D; Materials and Methods). Clusters con-
taining features describing the proportionate area of 
fibrosis stage (NASH CRN and Ishak) were associ-
ated with clinical disease progression in both trials 
(Fig. 3A). The most significant cluster of NAS fea-
tures in STELLAR-4, which was also significant in 
STELLAR-3, includes the ratio of steatosis to HB. 
Specifically, patients with more HB and less steatosis 
at baseline were significantly more likely to experience 
a clinical event (STELLAR-4: log-rank test by tertile, 
P = 0.003; Fig. 3B; HR, 0.35; 95% CI, 0.182, 0.672). 
The most significant cluster in STELLAR-3, which 
was also significant in STELLAR-4, included portal 
inflammation (q  =  0.011). Patients with high levels 
of portal inflammation in STELLAR-3 were sig-
nificantly more likely to progress to cirrhosis during 

follow-up (STELLAR-3: log-rank test by tertile, 
P = 0.033; Fig. 3C; HR, 1.372; 95% CI, 1.079, 1.743).

ML-BASED SCORE CAPTURES 
FIBROSIS HETEROGENEITY AND 
PROGRESSION

Beyond use for subject inclusion, pathology plays a 
critical role in NASH clinical trials for the assessment 
of changes in pathological phenotypes in response 
to treatment.(9) Whereas traditional staging by the 
NASH CRN or Ishak fibrosis classifications include 
only a single integer measurement of fibrosis, the ML 
method enables quantification of a distribution of 
heterogenous fibrosis patterns (Fig. 4A). We hypothe-
sized that considering the change in the full distribu-
tion of fibrosis patterns within a patient’s liver biopsy 
may provide a more sensitive measure of biological 
change following treatment with an effective therapy. 

FIG. 3. Application of ML features for assessing prognosis and monitoring responses to treatment and disease progression. Kaplan-Meier 
curves showing proportions of patients with bridging fibrosis (F3) without progression to cirrhosis (left panel, STELLAR-3) or patients 
with cirrhosis (F4) without liver-related clinical events (right panel, STELLAR-4) over time. Patients are categorized into subgroups 
by tertile of (A) percentage of area predicted to be NASH CRN stage 4, (B) ratio of steatosis to HB, and (C) percent area of portal 
inflammation based on ML predictions. Tertiles are shown by shades of green (STELLAR-3) and blue (STELLAR-4), with the lightest 
shades indicating the bottom tertile and darkest shades the top tertile. P values were computed using the log-rank test.
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FIG. 4. (A) Example quantification of changes in fibrosis from advanced (F3-F4) to less-advanced (≤F2) fibrosis stage patterns for a 
patient treated with the CILO + FIR in the ATLAS trial. Sample regions with heatmaps are shown at baseline and week 48 below. (B) 
Box-and-whisker plot showing the difference in DELTA Liver Fibrosis score for patients who did and did not progress to cirrhosis at 
week 48 in STELLAR-3. (C) Heatmap showing the change in percentage of each fibrosis stage pattern between baseline and week 48 
in biopsies from patients in the placebo (top) and CILO + FIR (bottom) arms of the ATLAS trial. Each row represents a patient, all of 
whom were determined by the CP to have had a ≥1-stage improvement in NASH CRN fibrosis stage. Each column is an ML NASH 
CRN predicted fibrosis stage. The color of each box represents the percentage of that patient’s biopsy, which is predicted to be consistent 
with each NASH CRN fibrosis stage (0-4) at baseline (left) and at week 48 (right). (D) Box-and-whisker plot showing the DELTA Liver 
Fibrosis score for patients in the placebo and CILO + FIR arms of the ATLAS trial according to achievement of a ≥1-stage improvement 
in fibrosis according to the CP. (B,D) P values for comparisons of change in DELTA Liver Fibrosis score between groups was computed 
using the Mann-Whitney U test. Boxes show the interquartile range (IQR), and whiskers show 1.5× the limit of the IQR. (E) Bar chart 
showing the proportion of patients in the placebo (gray) and CILO + FIR arms (red) of the ATLAS study with a reduction in fibrosis 
as assessed by the DELTA Liver Fibrosis score and according to the CP using the NASH CRN classification. P values computed using 
Fisher’s exact test.
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To evaluate this, we developed a metric based on the 
Wasserstein probability distribution metric,(23,27–29) 
termed the Deep Learning Treatment Assessment 
(DELTA) Liver Fibrosis score, that captures the 
change in fibrosis patterns from before to after treat-
ment (Fig. 4A). To evaluate the clinical relevance of 
this metric, we assessed its association with histo-
logical progression to cirrhosis among patients with 
bridging (F3) fibrosis in STELLAR-3. This showed 
that patients who progressed to cirrhosis had a greater 
DELTA Liver Fibrosis score from baseline to week 48 
compared with patients who did not progress to cir-
rhosis (P < 0.001; Fig. 4B). We were unable to assess 
the clinical relevance of the DELTA Liver Fibrosis 
score to progression to clinical events in STELLAR-4 
because in this case patients who experienced a clin-
ical event before week 48 did not undergo the sec-
ond biopsy required to calculate the DELTA Liver 
Fibrosis score.

DELTA LIVER FIBROSIS SCORE 
MEASURES TREATMENT 
RESPONSE

Utility of the DELTA Liver Fibrosis score for 
monitoring treatment responses in the ATLAS study 
was also evaluated. As reported, the combination of 
CILO and FIR (CILO + FIR) led to improvement in 
histological and noninvasive measures of fibrosis and 
liver injury compared with placebo over the 48-week 
study period.(19) However, the difference between 
CILO  + FIR and placebo for the primary endpoint 
(fibrosis improvement without worsening of NASH) 
was not statistically significant, potentially attribut-
able to insensitivity of manual pathological review. To 
investigate this, we evaluated concordance between 
the DELTA Liver Fibrosis score and standard patho-
logical staging of fibrosis. We assessed whether 
patients treated with CILO + FIR who achieved a 
≥1-stage improvement in fibrosis by the NASH CRN 
classification according to CP review showed a sig-
nificant decrease in the DELTA Liver Fibrosis score. 
CILO + FIR–treated patients with a fibrosis response 
had a greater reduction in DELTA Liver Fibrosis 
score compared to fibrosis nonresponders (P < 0.001; 
Fig. 4C,D).

If the DELTA Liver Fibrosis score is more sensitive 
than manual pathological staging for the identifica-
tion of treatment effects, we would expect to identify 

a greater reduction among CILO + FIR–treated 
patients versus those on placebo who had a fibrosis 
response because the latter may be more likely to be 
attributable to sampling variability of biopsy. Among 
patients deemed to have a fibrosis response by manual 
pathological staging, those treated with CILO + FIR 
had significantly greater reductions in DELTA Liver 
Fibrosis score compared to placebo-treated patients 
(P  =  0.009) where responders and nonresponders 
had similar scores (P  =  0.369; Fig. 4D). Similarly, 
among patients treated with SEL + FIR, those with 
a pathologist-defined fibrosis response had a signifi-
cantly greater reduction in DELTA Liver Fibrosis 
score than nonresponders (P  <  0.001; Supporting 
Fig. S7A).

To validate this differential in DELTA Liver 
Fibrosis score by nonhistological measures, we com-
pared changes in scores between patients with and 
without reductions of the noninvasive fibrosis mark-
ers, Enhanced Liver Fibrosis (ELF) score (Siemens, 
Tarrytown, NY) and liver stiffness by transient elastog-
raphy (FibroScan; Echosens, Paris, France), between 
baseline and week 48 (>0.5-unit and >25% reductions, 
respectively).(30,31) In patients with advanced fibrosis 
attributable to NASH, changes of this magnitude 
have been associated with a reduced risk of clinical 
disease progression.(21,32) In ATLAS, CILO + FIR–
treated patients with reductions in both measures had 
significantly lower DELTA Liver Fibrosis scores than 
nonresponders (ELF score, P  =  0.008; liver stiffness, 
P = 0.029), confirming the relevance of this metric for 
monitoring disease severity (Supporting Fig. S7B,C).

Finally, we aimed to define a threshold of the 
DELTA Liver Fibrosis score to classify patients as 
fibrosis responders or nonresponders. In randomized 
controlled trials of NASH therapies, ~20% of patients 
treated with placebo achieve a ≥1-stage improve-
ment in fibrosis.(5-7) This high placebo response is a 
challenge for adequately powering clinical trials, par-
ticularly smaller phase 2 studies. To create a strin-
gent threshold, we identified the 10th percentile of 
DELTA Liver Fibrosis score in all patients from the 
STELLAR trials(6-8) and applied this value (–0.08) 
to data from the ATLAS study to classify patients 
as responders or nonresponders. Using this threshold, 
17 of 63 patients (27%) treated with CILO + FIR 
were classified as responders compared to only 2 of 37 
patients (5%) treated with placebo (Fisher’s exact test, 
P  =  0.008). In contrast, using manual pathological 
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staging, the proportion of patients with a ≥1-stage 
improvement in fibrosis was not statistically different 
between CILO + FIR– and placebo-treated patients 
(22% [14 of 63] vs. 14% [5 of 37]; P  =  0.30; Fig. 
4E). We repeated this analysis for the other treat-
ment groups in the ATLAS study. Although no other 
therapy was associated with a statistically significant 
increase in fibrosis response rate versus placebo based 
on this DELTA Liver Fibrosis threshold, patients 
treated with FIR monotherapy (P  =  0.0709) or FIR 
in combination with SEL (P = 0.0802) tended to have 
a higher response rate than placebo-treated patients 
(Supporting Fig. S8).

Importantly, this approach enables rigorous control 
of the placebo response rate by threshold selection. 
For example, by selecting a less-stringent threshold 
at the 25th percentile from the STELLAR studies 
(–0.03) for defining response, the response rates in 
placebo and CILO + FIR–treated patients in ATLAS 
were 24% (9 of 37) and 40% (25 of 62), respectively. 
Given the modest sample size, this difference is not 
statistically significant (P  =  0.13), demonstrating the 
impact of response criteria stringency on the power 
to detect statistically significant differences between 
treatment arms.

Discussion
This study aimed to validate an ML-based approach 

to automate, standardize, and quantify the key histo-
logical features of NASH, explore histological features 
associated with disease progression, and develop a sen-
sitive and quantitative method for assessing treatment 
response. To this end, we used 5,139 images of liver 
biopsy slides from 3,018 patients with NASH from 
the phase 3 STELLAR trials and phase 2 ATLAS 
trial, and the key findings are outlined below.

First, we demonstrated a high degree of concor-
dance between NASH-related histological parame-
ters estimated by the ML model and an experienced 
pathologist for steatosis (ρ  =  0.59) and fibrosis 
(ρ  =  0.63), whereas concordance for HB (ρ  =  0.39) 
and lobular inflammation (ρ  =  0.34) was lower. 
Notably, high intraobserver variability in pathological 
assessment of ballooning and lobular inflammation 
has been reported(33) and was found in 22%-47% of 
three pathologists’ repeat analyses of the same images. 
Inconsistency of the reference standard against which 

these ML models were derived and compared to—
the imperfect gold-standard bias—highlights chal-
lenges inherent in developing alternative approaches 
to the evaluation of liver histology in NASH. Using a 
consensus score derived from multiple expert patholo-
gists’ scores as the gold standard may improve scoring 
consistency, but poses logistical challenges and would 
still be less reliable than an ML-based approach.(11) 
However, before ML-model–predicted histology can 
advance to the clinic, proof of superiority over tradi-
tional pathology will need to be established.

Second, we developed continuous measurements 
of NAS components and fibrosis that, though cor-
related with the current scoring systems, highlight the 
variability in individual values within each category 
of these classifications. The ordinal nature of current 
classification systems limits their dynamic range for 
the evaluation of change, which may be overcome by 
continuous ML parameters. For liver fibrosis specif-
ically, we demonstrated the heterogeneity of fibro-
sis within the same patient and across patients with 
the same fibrosis stage (e.g., cirrhosis). This level of 
granularity is not possible with conventional staging 
and supports the potential utility of these measures as 
endpoints in clinical trials (e.g., reductions in overall 
fibrosis score or a shift from more-advanced to less-
advanced fibrosis patterns).

In this regard, we created an ML-derived metric 
termed the DELTA Liver Fibrosis score to measure 
changes in the intrasample distribution of fibro-
sis attributable to disease progression or therapy. 
Application to ATLAS study results showed that this 
measure increases in patients with bridging fibrosis 
(F3) who progress to cirrhosis (F4) and identifies an 
antifibrotic effect of CILO + FIR not observed with 
placebo in patients with no fibrosis regression by stan-
dard histological staging. DELTA Liver Fibrosis score 
was also consistent with changes in validated, non-
invasive markers of fibrosis (ELF and liver stiffness 
by transient elastography), demonstrating the poten-
tial for his approach to identify true treatment effects 
beyond what can be achieved with manual staging.

The high placebo response rate in NASH ran-
domized controlled trials presents a challenge to their 
successful execution.(5-7) Here, we show that a strin-
gent DELTA Liver Fibrosis score threshold can min-
imize the reported placebo response in a large data 
set of patients treated with placebo or an ineffective 
therapy in the STELLAR trials. When applied to 



Hepatology,  July 2021TAYLOR-WEINER ET AL.

146

the ATLAS trial, this threshold revealed a signif-
icant antifibrotic effect of CILO + FIR compared 
to placebo that was not statistically significant with 
conventional pathological staging, showing that the 
DELTA Liver Fibrosis score represents a more sen-
sitive and reproducible method for assessing histo-
logical response to NASH treatments. These results 
are based on relatively small numbers of patients in 
the phase 2 ATLAS study and warrant confirma-
tion in additional randomized trials with prespecified 
analyses of cohorts. If validated, implementation of 
DELTA Liver Fibrosis score as an endpoint in clin-
ical trials for NASH therapeutics could immediately 
benefit pharmaceutical companies—and ultimately to 
patients with NASH—because such endpoints would 
be clear, interpretable, and medically relevant bench-
marks of treatment success (or failure).

Finally, we demonstrated that ML-derived histo-
logical features have superior prognostic utility com-
pared with manual pathological features for routinely 
scored components of the NAS and fibrosis. Beyond 
these conventional parameters, we also demonstrated 
the potential of deep CNN models to identify feature 
clusters associated with disease progression (e.g., the 
ratio of steatosis to HB). Taken together, these data 
show that ML-derived models may be more accurate 
for risk stratification of patients with NASH.

Using the expert pathologist assessments for 
training results in ML models that can identify the 
morphological signatures of each NAS feature and 
quantify fibrosis with a performance approximating 
that of multiple expert pathologists. Thus, we believe 
that ML-based pathological assessment is a powerful 
tool for measuring disease severity, risk stratification, 
and monitoring treatment response in patients with 
NASH. A significant advantage of this ML-based 
approach to liver pathology over human assessment is 
that once the model is trained, the system is perfectly 
reproducible; multiple applications of the same model 
on the same image produce identical scores enabling 
improved prediction of clinical outcomes and evalua-
tion of treatment response. Our models hold prom-
ise for addressing a critical unmet medical need to 
support the clinical development of safe and effective 
therapies for patients with NASH.
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