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Abstract

The use of machine learning (ML) in healthcare raises numerous ethical concerns, especially 

as models can amplify existing health inequities. Here, we outline ethical considerations for 

equitable ML in the advancement of healthcare. Specifically, we frame ethics of ML in healthcare 

through the lens of social justice. We describe ongoing efforts and outline challenges in a 

proposed pipeline of ethical ML in health, ranging from problem selection to postdeployment 

considerations. We close by summarizing recommendations to address these challenges.
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1. INTRODUCTION

As machine learning (ML) models proliferate into many aspects of our lives, there is 

growing concern regarding their ability to inflict harm. In medicine, excitement about 

human-level performance (1) of ML for health is balanced against ethical concerns, such 

as the potential for these tools to exacerbate existing health disparities (2–5). For instance, 

recent work has demonstrated that state-of-the-art clinical prediction models underperform 

on women, ethnic and racial minorities, and those with public insurance (6). Other research 
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has shown that when popular contextual language models are trained on scientific articles, 

they complete clinical note templates to recommend hospitals for violent white patients and 

prison for violent Black patients (7). Even more worrisome, healthcare models designed 

to optimize referrals to long-term care management programs for millions of patients have 

been found to exclude Black patients with similar health conditions compared to white 

patients from care management programs (8).

Machine learning (ML):

the study of computer algorithms that improve automatically through experience

ML model:

an algorithm that has been trained on data for a specific use case

Algorithm:

a finite sequence of well-defined instructions used to solve a class of problems

A growing body of literature wrestles with the social implications of ML and technology. 

Some of this work, termed critical data studies, is from a social science perspective (9, 

10), whereas other work leads with a technical and computer science perspective (11–13). 

While there is scholarship addressing social implications and algorithmic fairness in general, 

there has been less work at the intersection of health, ML, and fairness (14–16), despite the 

potential life-or-death impacts of ML models (8, 17).

Algorithmic fairness:

the study of definitions and methods related to the justice of models

While researchers looking to develop ethical ML models for health can begin by drawing 

on bioethics principles (18, 19), these principles are designed to inform research and 

clinical care practices. How these principles could inform the ML model development 

ethical pipeline remains understudied. We note that there has been significant work on other 

important ethical issues that relate to ML and health, including reviews of consent and 

privacy (20), which we do not address here. Instead, we focus on equity in ML models that 

operate on health data. We focus primarily on differences between groups induced by, or 

related to, the model development pipeline, drawing on both the bioethics principle of justice 

and the established social justice centering of public health ethics (21). Unjust differences in 

quality and outcomes of healthcare between groups often reflect existing societal disparities 

for disadvantaged groups. We consider other bioethics principles such as beneficence and 

nonmaleficence, but focus them primarily on groups of patients rather than on individuals.
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Bioethics:

the study of ethical issues emerging from advances in biology and medicine

Ethical pipeline:

the model development process and the corresponding ethical considerations

Justice:

the principle that obligates equitably distributed benefits, risks, costs, and resources

Beneficience:

the principle that requires care be provided with the intent of doing good for the patient 

involved

Nonmaleficence:

the principle that forbids harm or injury to the patient, either through acts of commission 

or omission

We organize this review by describing the ethical considerations that arise at each step of 

the pipeline during model development for ML in health (Figure 1), from research funding 

to post-deployment. Here, we motivate the ethical considerations in the pipeline with a case 

study of Black mothers in the United States, who die in childbirth at a rate three times 

higher than white women (22). This inequity is unjust because it connects to a history of 

reproductive injustices faced by Black women in the United States, from gynecological 

experimentation on enslaved women to forced sterilizations (23, 24).

1. Problem selection: This disparity occurs in part during problem selection 

because maternal mortality is an understudied problem (25).

2. Data collection: Even after accounting for problem selection, data collection 

from hospitals may differ in quality and quantity. For example, 75% of Black 

women give birth at hospitals that serve predominantly Black patients (26), but 

Black-serving hospitals have higher rates of maternal complications than other 

hospitals (27).

3. Outcome definition: Once data are collected, the choice of outcome definition 

can obscure underlying issues, e.g., differences in clinical practice. General 

model outcome definitions for maternal health complications might overlook 

conditions specific to Black mothers, e.g., fibroids (28).

4. Algorithm development: During algorithm development, models may not be able 

to account for the confounding presence of societal bias. Black mothers in the 
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wealthiest neighborhoods in Brooklyn, New York have worse outcomes than 

white, Hispanic, and Asian mothers in the poorest ones, demonstrating a gap 

despite factors that should improve Black mothers’ outcomes—living in the same 

place and having a higher income—likely due to societal bias that impacts Black 

women (29).

5. Postdeployment considerations: Finally, after a model is trained, postdeployment 

considerations may not fully consider the impact of deploying a biased 

prediction model into clinical settings that have large Black populations. Because 

Black women have a heightened risk of pregnancy-related death across income 

and education levels (30), a biased prediction model could potentially automate 

policies or risk scores that disadvantage Black mothers.

Model outcome:

the output of interest for predictive models

Confounding:

the condition in which a feature influences both the dependent variable and independent 

variable, causing a spurious association

Risk score:

a calculated number denoting the likelihood of adverse event

We organize the rest of this review sequentially expanding on each of the five steps in the 

pipeline described above and in Figure 1. First, we look at problem selection, and explain 

how funding for ML for health research can lead to injustice. We then examine how data 

collection processes in funded research can amplify inequity and unfairness. We follow this 

by exploring outcome definition and algorithm building, listing the multitude of factors that 

can impact model performance and explaining how these differences in performance relate 

to issues of justice. We close with audits that should be considered for more robust and just 

deployments of models in health, as well as recommendations to practitioners for ethical, 

fair, and just ML deployments.

2. PROBLEM SELECTION

There are many factors that influence the selection of a research problem, from interest 

to available funding. However, problem selection can also be a matter of justice if the 

research questions that are proposed, and ultimately funded, focus on the health needs of 

advantaged groups. Below we provide examples of how disparities in research teams and 

funding priorities exacerbate existing socioeconomic, racial, and gender injustices.
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2.1. Global Health Injustice

The so-called 10/90 gap refers to the fact that the vast majority of health research dollars 

are spent on problems that affect a small fraction of the global population (31, 32). Diseases 

that are most common in lower-income countries receive far less funding than diseases 

that are most common in high-income countries (33) (relative to the number of individuals 

they affect). As an example, 26 poverty-related diseases account for 14% of the global 

disease burden, but receive only 1.3% of global health-related research and development 

expenditure. Nearly 60% of the burden of poverty-related neglected diseases occurs in 

western and eastern sub-Saharan Africa, as well as South Asia. Malaria, tuberculosis, and 

HIV/AIDS all have shares of global health-related research and development expenditure 

that are at least five times smaller than their share of global disease burden (33). This 

difference in rates of funding represents an injustice because it further exacerbates the 

disadvantages faced by populations in the Global South. While efforts like the “All Of 

Us” Research Program (34) and 23andMe’s call for collaboration (35) seek to collect more 

inclusive data, these efforts have come under criticism for not reflecting global health 

concerns, particularly among Indigenous groups (36).

Global South:

countries on one side of the North–South divide, the other side being the countries of the 

Global North

2.2. Racial Injustice

Racial bias affects which health problems are prioritized and funded. For example, sickle 

cell disease and cystic fibrosis are both genetic disorders of similar severity, but sickle cell 

disease is more common in Black patients, while cystic fibrosis is more common in white 

patients. In the United States, however, cystic fibrosis receives 3.4 times more funding per 

affected individual from the US National Institutes of Health (NIH), the largest funder of 

US clinical research, and hundreds of times more private funding (37). The disparities in 

funding persist despite the 1972 Sickle Cell Anemia Control Act, which recognizes that 

sickle cell has been neglected by the wider research community. Further, screening for sickle 

cell disease is viewed by some as unfair targeting (38), and Black patients with the disease 

who seek treatment are often maligned as drug abusers (39).

2.3. Gender Injustice

Women’s health conditions like endometriosis are poorly understood; as a consequence, 

even basic statistics like the prevalence of endometriosis remain unknown, with estimates 

ranging from 1% to 10% of the population (40, 41). Similarly, the menstrual cycle is 

stigmatized and understudied (40, 42), producing a dearth of understanding that undermines 

the health of half the global population. Basic facts about the menstrual cycle—including 

which menstrual experiences are normal and which are predictive of pathology—remain 

unknown (40). This lack of focus on the menstrual cycle propagates into clinical practice 

and data collection despite evidence that it affects many aspects of health and disease (43, 

44). Menstrual cycles are also not often recorded in clinical records and global health 
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data (40). In fact, until 2019 the NIH did not have an R01 grant, the NIH’s original and 

historically oldest grant mechanism, relating to the influence of sex and gender on health 

and disease (45). Notably, recent work has moved to target such understudied problems 

via ambulatory women’s health-tracking mobile apps. These crowd-sourcing efforts stand 

to accelerate women’s health research by collecting data from cohorts that are orders of 

magnitude larger than those used in previous studies (40).

2.4. Diversity of the Scientific Workforce

The diversity of the scientific workforce profoundly influences the problems studied 

and contributes to biases in problem selection (46). Research shows that scientists from 

underrepresented racial and gender groups tend to prioritize different research topics. They 

produce more novel research, but their innovations are taken up at lower rates (47). Female 

scientists tend to study different scientific subfields, even within the same larger field [for 

example, within sociology, they have been historically better represented on papers about 

sociology of the family or early childhood (48)], and express different opinions about ethical 

dilemmas in computer science (49). Proposals from white researchers in the United States 

are more likely to be funded by the NIH than proposals from Black researchers (50, 51), 

which in turns affects what topics are given preference. For example, a higher fraction of 

NIH proposals from Black scientists study community and population-level health (50). 

Overall, this evidence suggests that diversifying the scientific workforce will lead to problem 

selection that more equitably represents the interests and needs of the population as a whole.

3. DATA COLLECTION

The role of health data is ever-expanding, with new data sources routinely being integrated 

into decision-making around health policy and design. This wealth of high-quality data, 

coupled with advancements in ML models, has played a significant role in accelerating 

the use of computationally informed policy and practice to strengthen healthcare and 

delivery platforms. Unfortunately, data can be biased in ways that have (or can lead to) 

disproportionate negative impacts on already marginalized groups. First, data on group 

membership can be completely absent. For instance, countries such as Canada and France 

do not record race and ethnicity in their nationalized health databases (52, 53), making 

it impossible to study race-based disparities and hypotheses around associations of social 

determinants of health. Second, data can be imbalanced. Recent work on acute kidney injury 

achieved state-of-the-art prediction performance in a large dataset of 703,782 adult patients 

using 620,000 features; however, the authors noted that model performance was lower in 

female patients since they make up 6.38% of patients in the training data (54). Other work 

has indicated that this issue cannot be simply addressed by pretraining a model in a more 

balanced data setting prior to fine-tuning on an imbalanced dataset (55). This indicates that a 

model cannot be initialized with a balanced baseline representation that ameliorates issues of 

imbalance in downstream tasks, and it suggests that we must solve this problem at the root, 

be it with more balanced comprehensive data, specialty learning algorithms, or combinations 

thereof. Finally, while some sampling biases can be recognized and possibly corrected, 

others may be difficult to correct. For example, work in medical imaging has demonstrated 
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that models may overlook unforeseen stratification of conditions, like rare manifestations of 

diseases, which can result in harm in clinical settings (16, 56).

Training data:

information that a ML model fits to and learns patterns from

In this section, we discuss common biases in data collection. We consider two types of 

processes that result in a loss of data. First, we examine processes that affect what kind 

of information is collected (heterogenous data loss) across varying input types. Examples 

include clinical trials with aggressive inclusion criteria or social media data that reflect 

those with access to devices hosting social media apps. Second, we examine processes that 

affect whether an individual’s information is collected due to the individual’s population 

type (population-specific data losses), often across data input categories. For example, 

undocumented immigrants may fear deportation if they participate in healthcare systems.

Population-specific data loss:

the process whereby data can be lost in collection due to the features of the population

3.1. Heterogeneous Data Losses

Some data loss is specific to the data type, due to assumptions about noise that may have 

been present during the collection process. However, data noise and missingness can cause 

unjust inequities that impact populations in different ways. We cover four main data types: 

randomized controlled trials (RCTs), electronic health records (EHRs), administrative health 

data, and social media data.

Heterogeneous data loss:

the process whereby data can be lost in collection due to the data type

Data noise:

meaningless information added to data that obscures the underlying information of the 

data

Missingness:

the manner in which data are absent from a sample of the population

3.1.1. Randomized controlled trials.—RCTs are often run specifically to gather 

unbiased evidence of treatment effects. However, RCTs have notoriously aggressive 

exclusion (or inclusion) criteria (57), which create study cohorts that are not representative 

of general patient populations (58). In one study of RCTs used to define asthma treatment, 
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an estimated 94% of the adult asthmatic population would not have been eligible for the 

trials (59). There is a growing methodological literature designing methods to generalize 

RCT treatment effects to other populations (60). However, current empirical evidence 

indicates that such generalizations can be challenging given available data or may require 

strong assumptions in practice.

Randomized controlled trial (RCT):

a study in which subjects are allocated by chance to receive one of several interventions

3.1.2. Electronic health records.—Much recent work in ML also leverages large EHR 

data. EHR data are a complex reflection of patient health, healthcare systems, and providers, 

where data missingness is a known, and meaningful, problem (61). As one salient example, 

a large study of laboratory tests to model three-year survival found that healthcare process 

features had a stronger predictive value than the patient’s physiological feaures (62). Further, 

not all treatments investigated in RCTs can be easily approximated in EHRs (63).

Electronic health record (EHR):

digital version of a patient’s clinical history that is maintained by the provider over time

Biases in EHR data may arise due to differences in patient populations, access to care, 

or the availability of EHR systems (64). As an example, the widely used MIMIC-III 

EHR dataset includes most patients who receive care at the intensive care units in Beth 

Israel Deaconess Medical Center (BIDMC), but this sample is obviously limited by which 

individuals have access to care at BIDMC, which has a largely white patient population 

(14). In the United States, uninsured Black and Hispanic or Latin(o/x) patients, as well as 

Hispanic or Latin(o/x) Medicaid patients, are less likely to have primary care providers with 

EHR systems, as compared to white patients with private insurance (65). Other work has 

shown that gender discrimination in healthcare access has not been systematically studied in 

India, primarily due to a lack of reliable data (66).

3.1.3. Administrative health records.—In addition to RCTs and EHRs, healthcare 

billing claims data, clinical registries, and linked health survey data are also common 

data sources in population health and health policy research (67, 68), with known biases 

concerning which populations are followed and who is able to participate. Translating 

such research into practice is a crucial part of maintaining healthcare quality, and limited 

participation of minority populations by sexual orientation and gender identity (69), race and 

ethnicity (70), and language (71) can lead to health interventions and policies that are not 

inclusive and can create new injustices for these already marginalized groups.

Intervention:

a treatment, procedure, or other action taken to prevent or treat disease or improve health 

in other ways
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3.1.4. Social media data.—Data from social media platforms and search-based 

research naturally consist of only individuals with internet access (72). Even small 

choices like limiting samples to those from desktop versus mobile platforms constitute 

a problematic distinction in non–North American contexts (73). Beyond concerns about 

access to resources or geographic limitations, data collection and scraping pipelines for most 

social media cohorts do not yield a random sample of individuals. Further, the common 

practice of limiting analysis to those satisfying a specified threshold of occurrence can lead 

to skewed data. As an example, when processing the large volume of Twitter data (7.6 

billion tweets), researchers may first restrict to users who can be mapped to a US county 

(1.78 billion), then to those Tweets that contain only English (1.64 billion tweets), and 

finally to users who made more than 30 posts (1.53 billion) (74).

3.2. Population-Specific Data Losses

As with data types, the modern data deluge does not apply equally to all communities. 

Historically underserved groups are often underrepresented, misrepresented, or entirely 

missing from health data that inform consequential health policy decisions. When 

individuals from disadvantaged communities appear in observational datasets, they are 

less likely to be accurately captured due to errors in data collection and systemic 

discrimination. Larger genomics datasets often target European populations, producing 

genetic risk scores that are more accurate in individuals of European ancestry than other 

ancestries (75). We note four specific examples of populations that are commonly impacted: 

low- and middle-income nationals, transgender and gender nonconforming individuals, 

undocumented migrants, and pregnant women.

3.2.1. Low- and middle-income nationals.—Health data are infrequently collected 

due to resource constraints, and even basic disease statistic data such as prevalence of 

mortality rates can be challenging to find for low- and middle-income nations (73). When 

data are collected, they are not digitized and often contain errors. In 2001, the World Health 

Organization found that only 9 out of the 46 member states in sub-Saharan Africa could 

produce death statistics for a global assessment of the burden of disease, with data coverage 

often less than 60% in these countries (76).

3.2.2. Transgender and gender-nonconforming individuals.—The healthcare 

needs and experiences of transgender and gender-nonconforming individuals are not well 

documented in datasets (77) because documented sex, not gender identity, is what is 

usually available. However, documented sex is often discordant with gender identity 

for transgender and gender-nonconforming individuals. Apart from health documentation 

concerns, transgender people are often concerned about their basic physical safety when 

reporting their identities. In the United States, it was only in 2016, with the release of the US 

Transgender Survey, that there was a meaningfully sized dataset—28,000 respondents—to 

enable significant analysis and quantification of discrimination and violence that transgender 

people face (77).

3.2.3. Undocumented immigrants.—Safety concerns are important in data collection 

for undocumented migrants, where sociopolitical environments can lead to individuals 
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feeling unsafe during reporting opportunities. When immigration policies limit access to 

public services for immigrants and their families, these restrictions lead to spillover effects 

on clinical diagnoses. As one salient example, autism diagnoses for Hispanic children in 

California fell following aggressive federal anti-immigrant policies requiring citizenship 

verification at hospitals (78).

3.2.4. Pregnant women.—Despite pregnancy being neither rare nor an illness, the 

United States continues to experience rising maternal mortality and morbidity rates. In the 

United States, the maternal mortality rate has more than doubled from 9.8 per 100,000 

live births in 2000 to 21.5 in 2014 (79). Importantly, disclosure protocols recommend 

suppression of information in nationally available datasets when the number of cases or 

events in a data cell is low, in order to reduce the likelihood of a breach of confidentiality. 

For example, the US Centers for Disease Control and Prevention suppresses numbers for 

counties with fewer than 10 deaths for a given disease (80). Although these data omissions 

occur because of patient privacy, such censoring on the dependent variable introduces 

particularly pernicious statistical bias, and as a result, much remains to be understood about 

what community, health facility, patient, and provider-level factors drive high mortality rates.

Censoring:

the mechanism through which data values are removed from observation

4. OUTCOME DEFINITION

The next step in the model pipeline is to define the outcome of interest for a healthcare 

task. Even seemingly straightforward tasks like defining whether a patient has a disease 

can be skewed by how prevalent diseases are or how they manifest in some patient 

populations. For example, a model predicting if a patient will develop heart failure will 

need labeled examples both of patients who have heart failure and of patients without heart 

failure. Choosing these patients can rely on parts of the EHR that may be skewed due 

to lack of access to care or due to abnormalities in clinical care: For example, economic 

incentives may alter diagnosis code logging (81), clinical protocol affects the frequency 

and observation of abnormal tests (62), historical racial mistrust may delay care and affect 

patient outcomes (82), and naive data collection can yield inconsistent labels in chest X-rays 

(56). Such biased labels, and the resulting models, may cause clinical practitioners to 

allocate resources poorly.

Diagnosis code:

a label in patient records of disease occurrence, which may be subject to 

misclassification, used primarily for billing purposes

We discuss social justice considerations in two examples of commonly modeled healthcare 

outcomes: clinical diagnosis and healthcare costs. In each example, it is essential that model 

developers choose a reliable proxy and account for noise in the outcome labels, as these 

choices can have a large impact on performance and equity of the resulting model.
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4.1. Clinical Diagnosis

Clinical diagnosis is a fundamental task for clinical prediction models, e.g., models for 

computer-aided diagnosis from medical imaging. In clinical settings, researchers often select 

patient disease occurrence as the prediction label for models. However, there are many 

options for the choice of a disease occurrence label. For example, the outcome label for 

developing cardiovascular disease could be defined through the occurrence of specific 

phrases in clinical notes. However, women can manifest symptoms of acute coronary 

syndrome differently (83) and receive delayed care as a result (84), which may then manifest 

in diagnosis labels derived from the clinical notes being gender skewed. Because differences 

in label noise result in disparities in model impact, researchers have the responsibility 

to choose and improve disease labels so that these inequalities do not further exacerbate 

disparities in health.

Label noise:

errors or otherwise obscuring information that affects the quality of the labels

Additionally, it is important to consider the healthcare system in which disease labels are 

logged. For example, healthcare providers leverage diagnosis codes for billing purposes, not 

clinical research. As a result, diagnosis codes can create ambiguities because of overlap and 

hierarchy in codes. Moreover, facilities have incentives to underreport (81) and overreport 

(85, 86) outcomes, yielding differences in model representations.

Recent advances in improving disease labels target statistical corrections based on estimates 

of the label noise. For instance, a positive label may be reliable, but the omission of a 

positive label could indicate either a negative label (i.e., no disease) or merely a missed 

positive label. Methods to address the positive-unlabeled setting use estimated noise rates 

(87) or hand-curated labels from clinicians that are strongly correlated with positive labels, 

known also as silver-standard labels (88). Clinical analysis of sources of error in disease 

labels can also guide improvements (89) and identify affected groups (56).

4.2. Healthcare Costs

Developers of clinical models may choose to predict healthcare costs, meaning the ML 

model seeks to predict which patients will cost the healthcare provider more in the future. 

Some model developers may use healthcare costs as a proxy for future health needs to 

guide accurate targeting of interventions (8), with the underlying assumption that addressing 

patients with future health needs will limit future costs. Others may explicitly want to 

understand patients who will have high healthcare costs to reduce the total cost of healthcare 

(90). However, because socioeconomic factors affect both access to healthcare and access to 

financial resources, these models may yield predictions that exacerbate inequities.

For model developers seeking to optimize for health needs, healthcare costs can deviate 

from health needs on an individual level because of patient socioeconomic factors. For 

instance, in a model used to allocate care management program slots to high-risk patients, 

the choice of future healthcare costs as a predictive outcome led to racial disparities in 
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patient allocation to the program (8). Healthcare costs can differ from health needs on an 

institutional level due to under-insurance and undertreatment within the patient population 

(91). After defining health disparities as all differences except those due to clinical need 

and preferences, researchers have found racial disparities in mental healthcare. Specifically, 

white patients had higher rates of initiation of treatment for mental health compared to 

Black and Hispanic or Latin(o/x) patients. Because the analysis controls for health needs, the 

disparities are solely a result of differences in healthcare access and systemic discrimination 

(92).

Addressing issues that arise from the use of healthcare costs depends on the setting of the 

ML model. In cases where health need is of highest importance, a natural solution is to 

choose another outcome definition besides healthcare costs, e.g., the number of chronic 

diseases as a measure of health needs. If a model developer is most concerned with cost, it 

is possible to correct for health disparities in predicting healthcare costs by building fairness 

considerations directly into the predictive model objective function (93). Building these 

types of algorithmic procedures is further discussed in Section 5.

5. ALGORITHM DEVELOPMENT

Algorithm development considers the construction of the underlying computation for the 

ML model and presents a major vulnerability and opportunity for ethical ML in healthcare. 

Just as data are not neutral, algorithms are also not neutral. A disproportionate amount of 

power lies with research teams that, after determining the research questions, make decisions 

about critical components of an algorithm such as the loss function (46, 94). In the case 

of loss functions, common choices like the L1 absolute-error loss and L2 squared-error 

loss do not target the same conditional functions of the outcome but instead minimize the 

error in the median and mean, respectively. Using a surrogate loss (e.g., hinge loss for the 

error rate) can provide computational efficiency, but it may not reflect the ethical criteria 

that we truly care about. Recent work has shown that models trained with a surrogate loss 

may exhibit approximation errors that disproportionately affect undersampled groups in 

the training data (95). Similarly, one might choose to optimize the worst-case error across 

groups as opposed to the average overall error. Such choices may seem purely technical but 

reflect value statements about what should be optimized, potentially leading to differences in 

performance among marginalized groups (96).

Loss function:

the relation that determines the error between algorithm output and a given label, which 

the algorithm uses to optimize

In this section, we review several crucial factors in model development that potentially 

impact ethical deployment capacity: understanding (and accounting for) confounding, 

feature selection, tuning parameters, and the definition of “fairness” itself.
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Deployment:

the process through which an ML model is integrated into an existing production 

environment

Tuning parameters:

algorithm components used for prediction that are tuned toward solving an optimization 

problem

5.1. Understanding Confounding

Developing models that use sensitive attributes without a clear causal understanding of 

their relationship to outcomes of interest can significantly affect model performance and 

interpretation. This is relevant to algorithmic problems focused on prediction, not just causal 

inference. Confounding features—i.e., those features that influence both the independent 

variables and the dependent variable—require careful attention. The vast majority of models 

learn patterns based on observed correlations between training data, even when such 

correlations do not occur in test data. For instance, recent work has demonstrated that 

classification models designed to detect hair color learn gender-biased decision boundaries 

when trained on confounded data, i.e., if women are primarily blond in training data, the 

model incorrectly associates gender with the hair label in test samples (97).

Sensitive attribute:

a specified patient feature (e.g., race, gender) that is considered important for fairness 

considerations

Test data:

unseen information that a model predicts on and is evaluated against

As ML methods are increasingly used for clinical decision support, it is critical to account 

for confounding features. In one canonical example, asthmatic patients presenting with 

pneumonia are given aggressive interventions that ultimately improve their chances of 

survival over nonasthmatic patients (98). When the hospital protocol assigned additional 

treatment to patients with asthma, those patients had improved outcomes. Thus the treatment 

policy was a confounding factor in a seemingly straightforward prediction task by altering 

the data such that patients with asthma were erroneously predicted by models to have lower 

risk of dying from pneumonia.

Simply controlling for confounding features by including them as features in classification 

or regression models may be insufficient to train reliable models because features can have a 

mediating or moderating effect (posttreatment effect on outcomes of interest) and have to be 

incorporated differently into model design (99).
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Modern ML and causal discovery techniques can identify sources of confounding at scale 

(100), although validation of such methods can be challenging because of the lack of 

counterfactual data. ML methods have also been proposed to estimate causal effects from 

observational data (101, 102). In practice, when potential hidden confounding is suspected, 

either mediating features or proxies can be leveraged (99, 103) or sensitivity analysis 

methods can be used to determine potential sources of errors in effect estimates (104). 

Data-augmentation and sampling methods may also be used to mitigate effects of model 

confounding. For example, augmenting X-ray images with rotated and translated variants 

can help train a model that is not sensitive to orientation of an image (105).

5.2. Feature Selection

With large-scale digitization of EHRs and other sources, sensitive attributes like race 

and ethnicity may be increasingly available (although prone to misclassification and 

missingness). However, blindly incorporating factors like race and gender in a predictive 

model may exacerbate inequities for a wide range of diagnostics and treatments (106). These 

resulting inequities can lead to unintended and permanent embedding of biases in algorithms 

used for clinical care. For example, vaginal birth after cesarean (VBAC) scores are used to 

predict success of trial of labor of pregnant women with a prior cesarean section; however, 

these scores explicitly include a race component as an input, which reduces the chance of 

VBAC success for Black and Hispanic women. Although researchers found that previous 

observational studies showed correlation between racial identity and success of trial of labor 

(107), the underlying cause of this association is not well understood. Such naive inclusion 

of race information could exacerbate disparities in maternal mortality. This ambiguity calls 

into question race-based correction in scores like VBAC (106).

Automation in feature selection does not eliminate the need for contextual understanding. 

For example, stepwise regression is commonly used and taught as a technique for feature 

selection despite known limitations (108). While specific methods have varying initialization 

(e.g., start with an empty set of features or a full set of features) and processing steps 

(e.g., deletion versus addition of features), most rely on p-values, R2, or other global fit 

metrics to select features. Weaknesses of stepwise regressions include the misleading nature 

of p-values and the fact that the final set depends on if and when features were considered 

(109). In ML, penalized regressions like lasso regression are popular for automated feature 

selection, but the lasso trades potential increases in estimation bias for reductions in 

variance by shrinking some feature coefficients to zero. Features selected by lasso may 

be colinear with other features not selected (110). Over-interpretation of the selected features 

in any automated procedures should therefore be avoided in practice given these pitfalls. 

Researchers should also consider the humans-in-the-loop framework, whereby incorporation 

of automated procedures is blended with investigator knowledge (111).

Stepwise regression:

a method of estimation whereby each feature is sequentially considered by addition or 

subtraction to the existing feature set
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5.3. Tuning Parameters

There are many tuning parameters that may be set a priori or selected via cross-validation 

(110). These range from the learning rate in a neural network to the minimum size of 

the terminal leaves in a random forest. In the latter example, default settings in R for 

classification will allow trees to grow until there is just one observation in a terminal leaf. 

This can lead to overfitting the model to the training data and a loss of generalizability to 

the target population. Lack of generalizability is a central concern for ethical ML given the 

previously discussed issues in data collection and study inclusion. When data lack diversity 

and are not representative of the target population where the model would be deployed, 

overfitting algorithms to this data has the potential to disproportionately harm marginalized 

groups (112). Using cross-validation to select tuning parameters does not automatically 

solve these problems, as cross-validation still operates with respect to an a priori–chosen 

optimization target.

Generalizability:

the ability of a model to apply in a setting different from the one in which it was trained

5.4. Performance Metrics

There are many commonly used performance metrics for model evaluation, such as area 

under the receiver operating characteristic curve (AUC), area under the precision-recall 

curve (AUPRC), and calibration (113). However, the appropriate metrics to optimize depend 

on the intended use case and relative value of true positives, false positives, true negatives, 

and false negatives. Not only can AUC be misleading when considering other global fit 

metrics (e.g., high AUC masking a weak true positive rate) but it also does not describe the 

impact of the model across selected groups. Furthermore, even so-called objective metrics 

and scores can be deeply flawed and lead to over- or undertreatment of minorities if blindly 

applied (114). Note that robust reporting of results should include an explicit statement of 

other nonoptimized metrics, including the original intended use case, the training cohort and 

case, or the level of model uncertainty.

Performance metric:

score or other quantitative representation of a model’s quality and ability to achieve goals

AUC:

a measure of the sensitivity and specificity of a model for each decision threshold

AUPRC:

a measure of precision and recall of a model for each decision threshold
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Calibration:

a measure of how well ML risk estimates reflect true risk

5.5. Group Fairness Definition

The specific definition of fairness for a given application often impacts the choice of a 

loss function, and therefore the underlying algorithm. Individual fairness imposes classifier 

performance requirements that operate over pairs of individuals; e.g., similar individuals 

should be treated similarly (115). Group fairness operates over protected groups (based on 

some sensitive attribute) by requiring that a classifier performance metric be balanced across 

those groups (116, 117). For instance, a model may be partially assessed by calculating 

the true positive rate separately among rural and urban populations to ensure risk score 

similarity. Regressions subject to group fairness constraints or penalties optimizing toward 

joint global and group fit considerations have also been developed (93, 118, 119).

Group fairness:

a principle whereby predefined patient groups should receive similar model performance

Recent work has focused on identifying and mitigating violations of fairness definitions 

in healthcare settings. While most of these algorithms have emerged outside the field of 

healthcare, researchers have designed penalized and constrained regressions to improve 

the performance of health insurance plan payment. This payment system impacts tens 

of millions of lives in the United States and is known to undercompensate insurers 

for individuals with certain health conditions, including mental health and substance 

use disorders, in part because billing codes do not accurately capture diagnoses 

(120). Undercompensation creates incentives for insurers exclude individuals with these 

health conditions from enrollment, limiting their access to care. Regressions subject 

to group fairness constraints or penalties have been successful in removing nearly all 

undercompensation for a single group with negligible impacts on global fit (93). Subsequent 

work incorporating multiple groups into the loss function also saw improvements in 

undercompensation for the majority of groups not included (121).

6. POSTDEPLOYMENT CONSIDERATIONS

Often the goal of model training is to ultimately deploy it in a clinical, epidemiological, 

or policy service. However, deployed models can have lasting ethical impact beyond the 

model performance measured in development: For example, in the inclusion of race in the 

clinical risk scores described above that may lead to chronic over- or undertreatment (106). 

Here we outline considerations for robust deployment by highlighting the need for careful 

performance reporting and auditing generalizability, documentation, and regulation.

6.1. Quantifying Impact

Unlike in other settings with high-stakes decisions (e.g., aviation), clinical staff performance 

is not audited by an external body (122). Instead, clinicians are often a self-governing body, 
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relying on clinicians themselves to determine when a colleague is underperforming or in 

breach of ethical practice principles, e.g., through such tools as surgical morbidity and 

mortality conferences (123). Clinical staff can also struggle to keep abreast of what current 

best practice recommendations are, as these can change dramatically over time; one study 

found that more than 400 previously routine practices were later contradicted in leading 

clinical journals (124).

Hence, it is important to measure and address the downstream impact of models 

though audits for bias and examination of clinical impact (6). Regular model auditing 

postdeployment, i.e., detailed inspection of model performance on various groups and 

outcomes, may reveal the impact of models on different populations (8) and identify areas 

of potential concern. Some recent work has targeted causal models in dynamic systems in 

order to reduce the severity of bias (125). Others have targeted bias reduction through model 

construction with explicit guarantees about balanced performance (16) or by specifying 

groups that must have equal performance (126). Additionally, there is the possibility that 

models may help to debias current clinical care by reducing known biases against minorities 

(127) and disadvantaged majorities (128).

Model auditing:

the postdeployment inspection of model performance on groups and outcomes

6.2. Model Generalizability

As has been raised in previous sections, a crucial concern with model deployment is 

generalization. Any shifts in data distributions can significantly impact model performance 

when the settings for development and for deployment differ. For example, chest X-ray 

diagnosis models can have high performance on test data drawn from the same hospital 

but degrade rapidly on data from another hospital (129). Other work in gender bias on 

chest X-ray data has demonstrated both that small proportions of female chest X-rays 

degrade diagnostic performance accuracy in female patients (130) and that this is not simply 

addressed in all cases by adding in more female X-rays (131). Even within a single hospital, 

models trained on data from an initial EHR system data deteriorated significantly when 

tested on data from a new EHR system (132). Finally, data artifacts that induce strong priors 

in what patterns ML models are sensitive to have the potential to perpetrate harms when 

used without awareness (133). For example, patients with dark skin can have morphological 

variation and disease manifestations that are not easily detected under the defaults that are 

set by predominantly white-skinned patients (134).

Data artifact:

a flaw in data caused by equipment, techniques, or conditions that is unrelated to model 

output

Several algorithms have recently been proposed to account for distribution shifts in 

data (135, 136). However, these algorithms have significant limitations, as they typically 
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require assumptions about the nature or amount of distributional shift an algorithm can 

accommodate. Some, like that of Reference 136, may require a clear indication of which 

distributions in a healthcare pipeline are expected to change, and may develop models for 

prediction accordingly. Many of these assumptions may be verifiable. If not, periodically 

monitoring for data shifts (137) and potentially retraining models when performance 

deteriorates due to such shifts are imperative deployment considerations with significant 

ethical implications.

6.3. Model and Data Documentation

Clear documentation enables insight into the model development and data collection. Good 

model documentation should include clinically specific features of model development that 

can be assessed and recorded beforehand, such as logistics within the clinical setting, 

potential unintended consequences, and trade-offs between bias and performance (138). In 

addition to raising ethical concerns in the pipeline, the process of co-designing checklists 

with clinical practitioners formalizes ad hoc procedures and empowers individual advocates 

(139). Standardized reporting of model performance—such as the one-page summary model 

cards for model reporting (140)—can empower clinical practitioners to understand model 

limitations and future model developers to identify areas of improvement. Similarly, better 

documentation of the data supporting initial model training can help expose sources of 

discrimination in the collected data. Modelers could use datasheets for datasets to detail the 

conditions of data collection (141).

6.4. Regulation

In the United States, the Food and Drug Administration (FDA) bears responsibility for the 

regulation of healthcare ML models. As there does not exist comprehensive guidance for 

healthcare model research and subsequent deployment, the opportunity is ripe to create 

a comprehensive framework to audit and regulate models. Currently, the FDA’s proposed 

ML-specific modifications to the software as a medical device regulations draw a distinction 

between models that are trained and then frozen prior to clinical deployment and models that 

continue to learn on observed outcomes. Although models in the latter class can leverage 

larger, updated datasets, they also face additional risk due to model drift and may need 

additional audits (142). Such frameworks should explicitly account for health disparities 

across the stages of ML development in health and ensure health equity audits as part of 

postmarket evaluation (143). We also note that there are many potential legal implications, 

e.g., in malpractice and liability suits, that will require new solutions (144).

Researchers have proposed additional frameworks to guide clinical model development, 

which could inspire future regulation. ML model regulation could draw from existing 

regulatory frameworks: An RCT for ML models would assess patient benefit compared 

to a control cohort of standard clinical practice (145), and a drug development pipeline for 

ML models would define a protocol for adverse events and model recalls (146). The clinical 

interventions accompanying the clinical ML model should be analyzed to contextualize the 

use of the model in the clinical setting (147).
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7. RECOMMENDATIONS

In this review, we have described the ethical considerations at each step of the ML model 

development pipeline we introduced. While most researchers will address known challenges 

such as deployed task accuracy and outcome distribution shift, they are unlikely to be aware 

of the full magnitude of the hidden challenges such as existing health inequities or outcome 

label bias. As seen in Figure 2, many hidden pipeline challenges can go unaddressed in a 

typical ML health project, but they have serious ethical repercussions. With these challenges 

in mind, we propose five general recommendations that span the pipeline stages:

1. Problems should be tackled by diverse teams and using frameworks that increase 

the probability that equity will be achieved. Further, historically understudied 

problems are important targets to practitioners looking to perform high-impact 

work.

2. Data collection should be framed as an important front-of-mind concern in 

the ML modeling pipeline, clear disclosures should be made about imbalanced 

datasets, and researchers should engage with domain experts to ensure that data 

reflecting the needs of underserved and understudied populations are gathered.

3. Outcome choice should reflect the task at hand and should preferably be 

unbiased. If the outcome label has ethical bias, the source of inequity should be 

accounted for in ML model design, leveraging literature that attempts to remove 

ethical biases during preprocessing, or with use of a reasonable proxy.

4. Reflection on the goals of the model is essential during development and should 

be articulated in a preanalysis plan. In addition to technical choices like loss 

function, researchers must interrogate how, and whether, a model should be 

developed to best answer a research question, as well as what caveats are 

included.

5. Audits should be designed to identify specific harms and should be paired with 

methods and procedures. Harms should be examined group by group, rather 

than at a population level. ML ethical design checklists are one possible tool to 

systematically enumerate and consider such ethical concerns prior to declaring 

success in a project.

Finally, we note that ML also could and should be harnessed to create shifts in power 

in health-care systems (148). This might mean actively selecting problems for the benefit 

of underserved patients, designing methods to target systemic interventions for improved 

access to care and treatments, or enforcing evaluations with the explicit purpose of 

preserving patient autonomy. In one salient example, the state of California reduced 

disparities in rates of obstetric hemorrhage (and therefore maternal mortality for women 

of color) by weighing blood loss sponges, i.e., making access to treatment consistent and 

unbiased for all women (149). Models could similarly be harnessed to learn and recommend 

consistent rules, potentially giving researchers an opportunity to debias current clinical 

care (150), measure racial disparities and mistrust in end-of-life care (82), and improve 

known biases against minorities (127) and disadvantaged majorities (128). Ultimately, 

the responsibility for ethical models and behavior lies with a broad community, but it 
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begins with technical researchers fulfilling an obligation to engage with patients, clinical 

researchers, staff, and advocates to build ethical models.

ACKNOWLEDGMENTS

The authors thank Rediet Abebe for helpful discussions and contributions to an early draft and Peter Szolovits, 
Pang Wei Koh, Leah Pierson, Berk Ustun, and Tristan Naumann for useful comments and feedback. This work 
was supported in part by an NIH (National Institutes of Health) Director’s New Innovator Award (DP2MD012722) 
(to S.R.), a CIFAR (Canadian Institute for Advanced Research) AI Chair at the Vector Institute (to M.G.), and a 
Microsoft Research grant (to M.G.).

LITERATURE CITED

1. Topol EJ. 2019. High-performance medicine: the convergence of human and artificial intelligence. 
Nat. Med25:44–56 [PubMed: 30617339] 

2. Ferryman K, Winn RA. 2018. Artificial intelligence can entrench disparities—Here’s what we must 
do. The Cancer Letter, 11. 16. https://cancerletter.com/articles/20181116_1/

3. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, et al.2019. Do no harm: a roadmap for 
responsible machine learning for health care. Nat. Med25:1337–40 [PubMed: 31427808] 

4. Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. 2020. A review 
of challenges and opportunities in machine learning for health. AMIA Summits Transl. Sci. 
Proc2020:191–200 [PubMed: 32477638] 

5. Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. 2019. Practical guidance 
on artificial intelligence for health-care data. Lancet Digital Health1:e157–59 [PubMed: 33323184] 

6. Chen IY, Szolovits P, Ghassemi M. 2019. Can AI help reduce disparities in general medical and 
mental health care?AMA J. Ethics21:167–79

7. Zhang H, Lu AX, Abdalla M, McDermott M, Ghassemi M. 2020. Hurtful words: quantifying 
biases in clinical contextual word embeddings. In Proceedings of the ACM Conference on Health, 
Inference, and Learning, pp. 110–20. New York: Assoc. Comput. Mach.

8. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. 2019. Dissecting racial bias in an algorithm used 
to manage the health of populations. Science366:447–53 [PubMed: 31649194] 

9. Boyd D, Crawford K. 2012. Critical questions for big data: provocations for a cultural, 
technological, and scholarly phenomenon. Inform. Commun. Soc15:662–79

10. Dalton CM, Taylor L, Thatcher J. 2016. Critical data studies: a dialog on data and space. Big Data 
Soc. 3(1). 10.1177/2053951716648346

11. Zliobaite I2015. A survey on measuring indirect discrimination in machine 
learningarXiv:1511.00148 [cs.CY]

12. Barocas S, Hardt M, Narayanan A. 2018. Fairness and machine learning. Online Book, 
fairmlbook.org. http://www.fairmlbook.org

13. Corbett-Davies S, Goel S. 2018. The measure and mismeasure of fairness: a critical review of fair 
machine learning. arXiv:1808.00023 [cs.CY]

14. Chen I, Johansson FD, Sontag D. 2018. Why is my classifier discriminatory? In Proceedings of 
the 31st International Conference on Advances in Neural Information Processing Systems (NIPS 
2018), ed. Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, pp. 3539–
50. https://proceedings.neurips.cc/paper/2018/file/1f1baa5b8edac74eb4eaa329f14a0361-Paper.pdf

15. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. 2018. Ensuring fairness in machine 
learning to advance health equity. Ann. Intern. Med169:866–72 [PubMed: 30508424] 

16. Ustun B, Liu Y, Parkes D. 2019. Fairness without harm: decoupled classifiers with preference 
guarantees. Proc. Mach. Learn. Res97:6373–82

17. Benjamin R2019. Assessing risk, automating racism. Science366:421–22 [PubMed: 31649182] 

18. Veatch RM, Guidry-Grimes LK. 2019. The Basics of Bioethics. New York: Routledge. 4th ed.

19. Vayena E, Blasimme A, Cohen IG. 2018. Machine learning in medicine: addressing ethical 
challenges. PLOS Med. 15:e1002689 [PubMed: 30399149] 

Chen et al. Page 20

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cancerletter.com/articles/20181116_1/
http://www.fairmlbook.org
https://proceedings.neurips.cc/paper/2018/file/1f1baa5b8edac74eb4eaa329f14a0361-Paper.pdf


20. Kaye J2012. The tension between data sharing and the protection of privacy in genomics research. 
Annu. Rev. Genom. Hum. Genet13:415–31

21. Powers M, Faden R. 2006. Social Justice: The Moral Foundations of Public Health and Health 
Policy. New York: Oxford Univ. Press

22. Berg CJ, Atrash HK, Koonin LM, Tucker M. 1996. Pregnancy-related mortality in the United 
States, 1987–1990. Obstet. Gynecol88:161–67 [PubMed: 8692494] 

23. Roberts DE. 1999. Killing the Black Body: Race, Reproduction, and the Meaning of Liberty. New 
York: Vintage Books

24. Berry DR. 2017. The Price for their Pound of Flesh: The Value of the Enslaved, from Womb to 
Grave, in the Building of a Nation. Boston: Beacon

25. Fisk N, Atun R. 2009. Systematic analysis of research underfunding in maternal and perinatal 
health. BJOG116:347–56 [PubMed: 19187366] 

26. Howell EA, Egorova N, Balbierz A, Zeitlin J, Hebert PL. 2016. Black-white differences in 
severe maternal morbidity and site of care. Am. J. Obstet. Gynecol214:122.e1–122.e7 [PubMed: 
26283457] 

27. Creanga AA, Bateman BT, Mhyre JM, Kuklina E, Shilkrut A, Callaghan WM. 2014. Performance 
of racial and ethnic minority-serving hospitals on delivery-related indicators. Am. J. Obstet. 
Gynecol211:647.e1–647.e16 [PubMed: 24909341] 

28. Eltoukhi HM, Modi MN, Weston M, Armstrong AY, Stewart EA. 2014. The health disparities 
of uterine fibroid tumors for african american women: a public health issue. Am. J. Obstet. 
Gynecol210:194–99 [PubMed: 23942040] 

29. Hoffman KM, Trawalter S, Axt JR, Oliver MN. 2016. Racial bias in pain assessment and 
treatment recommendations, and false beliefs about biological differences between blacks and 
whites. PNAS113:4296–301 [PubMed: 27044069] 

30. Creanga AA, Berg CJ, Ko JY, Farr SL, Tong VT, et al.2014. Maternal mortality and morbidity in 
the United States: Where are we now?J. Women’s Health23:3–9

31. Vidyasagar D2006. Global notes: the 10/90 gap disparities in global health research. J. 
Perinatol26:55–56 [PubMed: 16281051] 

32. Pierson L, Millum J. 2019. Grant reviews and health research priority setting: Do research 
funders uphold widely endorsed ethical principles?Paper presented at Global Health Bioeth. Conf., 
Oxford, 1–2 July

33. Von Philipsborn P, Steinbeis F, Bender ME, Regmi S, Tinnemann P. 2015. Poverty-related and 
neglected diseases–an economic and epidemiological analysis of poverty relatedness and neglect 
in research and development. Glob. Health Action8:25818 [PubMed: 25623607] 

34. All Us Res. Prog. Investig. 2019. The “All of Us” research program. New Engl. J. Med381:668–76 
[PubMed: 31412182] 

35. 23andme. 2019. 23andme’s call for collaborations to study underrepresented 
populations. 23andme-Blog, Feb. 28.https://blog.23andme.com/23andme-research/23andmes-call­
for-collaborations-to-study-underrepresented-populations/

36. Tsosie KS, Yracheta JM, Dickenson D. 2019. Overvaluing individual consent ignores risks to tribal 
participants. Nat. Rev. Genet20:497–98 [PubMed: 31308520] 

37. Farooq F, Strouse JJ. 2018. Disparities in foundation and federal support and development of new 
therapeutics for sickle cell disease and cystic fibrosis. Blood132:4687–87

38. Park M2010. NCAA genetic screening rule sparks discrimination concerns. CNN, 8. 4. https://
www.cnn.com/2010/HEALTH/08/04/ncaa.sickle.genetic.screening/index.html

39. Rouse C2009. Uncertain Suffering: Racial Health Care Disparities and Sickle Cell Disease. 
Berkeley: Univ. Calif. Press

40. Chakradhar S2018. Discovery cycle. Nat. Med24:1082–86 [PubMed: 30069040] 

41. Eisenberg V, Weil C, Chodick G, Shalev V. 2018. Epidemiology of endometriosis: a 
large population-based database study from a healthcare provider with 2 million members. 
BJOG125:55–62 [PubMed: 28444957] 

42. Pierson E, Althoff T, Thomas D, Hillard P, Leskovec J.2021. Daily, weekly, seasonal and menstrual 
cycles in women’s mood, behaviour and vital signs. Nat. Human BehavIn press

Chen et al. Page 21

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://blog.23andme.com/23andme-research/23andmes-call-for-collaborations-to-study-underrepresented-populations/
https://blog.23andme.com/23andme-research/23andmes-call-for-collaborations-to-study-underrepresented-populations/
https://www.cnn.com/2010/HEALTH/08/04/ncaa.sickle.genetic.screening/index.html
https://www.cnn.com/2010/HEALTH/08/04/ncaa.sickle.genetic.screening/index.html


43. Hillard PJA. 2014. Menstruation in adolescents: What do we know? And what do we do with the 
information?J. Pediatr. Adolesc. Gynecol27:309–19 [PubMed: 25438706] 

44. Am. Acad. Pediatr. Comm. Adolesc., Am. Coll. Obstet. Gynecol. Comm. Adolesc. Health 
Care. 2006. Menstruation in girls and adolescents: using the menstrual cycle as a vital sign. 
Pediatrics118:2245–50 [PubMed: 17079600] 

45. NIH (Natl. Inst. Health). 2020. NIH offers its first research project grant (R01) on sex and 
gender. In the Spotlight, Oct. 8.https://orwh.od.nih.gov/in-the-spotlight/all-articles/nih-offers-its­
first-research-project-grant-r01-sex-and-gender

46. Kasy M, Abebe R. 2020. Fairness, equality, and power in algorithmic decision making. Work. Pap., 
Oct. 8. https://maxkasy.github.io/home/files/papers/fairness_equality_power.pdf

47. Hofstra B, Kulkarni VV, Galvez SMN, He B, Jurafsky D, McFarland DA. 2020. The diversity–
innovation paradox in science. PNAS117:9284–91 [PubMed: 32291335] 

48. West JD, Jacquet J, King MM, Correll SJ, Bergstrom CT. 2013. The role of gender in scholarly 
authorship. PLOS ONE8:e66212 [PubMed: 23894278] 

49. Pierson E2017. Demographics and discussion influence views on algorithmic fairness. 
arXiv:1712.09124 [cs.CY]

50. Hoppe TA, Litovitz A, Willis KA, Meseroll RA, Perkins MJ, et al.2019. Topic choice contributes 
to the lower rate of NIH awards to African-American/black scientists. Sci. Adv5:eaaw7238 
[PubMed: 31633016] 

51. Ginther DK, Schaffer WT, Schnell J, Masimore B, Liu F, et al.2011. Race, ethnicity, and NIH 
research awards. Science333:1015–19 [PubMed: 21852498] 

52. CIHI (Can. Inst. Health Info.). 2020. Proposed standards for race-based and indigenous identity 
data collection and health reporting in Canada. Data Stand., Can. Inst. Health Info., Ottawa, Ont.

53. Léonard MN. 2014. Census and racial categorization in France: invisible categories and color-blind 
politics. Humanit. Soc38:67–88

54. Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, et al.2019. A clinically applicable 
approach to continuous prediction of future acute kidney injury. Nature572:116–19 [PubMed: 
31367026] 

55. McDermott MBA, Nestor B, Kim E, Zhang W, Goldenberg A, et al.2020. A comprehensive 
evaluation of multi-task learning and multi-task pre-training on EHR time-series data. 
arXiv:2007.10185 [cs.LG]

56. Oakden-Rayner L, Dunnmon J, Carneiro G, Ré C. 2020. Hidden stratification causes clinically 
meaningful failures in machine learning for medical imaging. In Proceedings of the ACM 
Conference on Health, Inference, and Learning, pp. 151–59. New York: Assoc. Comput. Mach.

57. Rothwell PM. 2005. External validity of randomised controlled trials: “To whom do the results of 
this trial apply?”Lancet365:82–93 [PubMed: 15639683] 

58. Courtright K2016. Point: Do randomized controlled trials ignore needed patient populations? Yes. 
Chest149:1128–30 [PubMed: 27157212] 

59. Travers J, Marsh S, Williams M, Weatherall M, Caldwell B, et al.2007. External validity of 
randomised controlled trials in asthma: To whom do the results of the trials apply?Thorax62:219–
23 [PubMed: 17105779] 

60. Stuart EA, Bradshaw CP, Leaf PJ. 2015. Assessing the generalizability of randomized trial results 
to target populations. Prev. Sci16:475–85 [PubMed: 25307417] 

61. Wells BJ, Chagin KM, Nowacki AS, Kattan MW. 2013. Strategies for handling missing data in 
electronic health record derived data. eGEMS1(3):7

62. Agniel D, Kohane IS, Weber GM. 2018. Biases in electronic health record data due to processes 
within the healthcare system: retrospective observational study. BMJ361:k1479 [PubMed: 
29712648] 

63. Bartlett VL, Dhruva SS, Shah ND, Ryan P, Ross JS. 2019. Feasibility of using real-world data to 
replicate clinical trial evidence. JAMA Netw. Open2:e1912869 [PubMed: 31596493] 

64. Ferryman K, Pitcan M. 2018. Fairness in precision medicine. Res. Proj., Data & Societyhttps://
datasociety.net/research/fairness-precision-medicine/

Chen et al. Page 22

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://orwh.od.nih.gov/in-the-spotlight/all-articles/nih-offers-its-first-research-project-grant-r01-sex-and-gender
https://orwh.od.nih.gov/in-the-spotlight/all-articles/nih-offers-its-first-research-project-grant-r01-sex-and-gender
https://maxkasy.github.io/home/files/papers/fairness_equality_power.pdf
https://datasociety.net/research/fairness-precision-medicine/
https://datasociety.net/research/fairness-precision-medicine/


65. Hing E, Burt CW. 2009. Are there patient disparities when electronic health records are adopted?J. 
Health Care Poor Underserved20:473–88 [PubMed: 19395843] 

66. Kapoor M, Agrawal D, Ravi S, Roy A, Subramanian S, Guleria R. 2019. Missing female patients: 
an observational analysis of sex ratio among outpatients in a referral tertiary care public hospital in 
India. BMJ Open9:e026850

67. Haneuse SJA, Shortreed SM. 2017. On the use of electronic health records. In Methods in 
Comparative Effectiveness Research, ed. Gatsonis C, Morton SC, pp. 469–502. New York: 
Chapman & Hall/CRC

68. Wing C, Simon K, Bello-Gomez RA. 2018. Designing difference in difference studies: best 
practices for public health policy research. Annu. Rev. Public Health39:453–69 [PubMed: 
29328877] 

69. Callahan EJ, Hazarian S, Yarborough M, Sánchez JP. 2014. Eliminating LGBTIQQ health 
disparities: the associated roles of electronic health records and institutional culture. Hastings 
Center Rep. 44:S48–52

70. López MM, Bevans M, Wehrlen L, Yang L, Wallen G. 2017. Discrepancies in race and ethnicity 
documentation: a potential barrier in identifying racial and ethnic disparities. J. Racial Ethnic 
Health Disparities4:812–18

71. Klinger EV, Carlini SV, Gonzalez I, Hubert SS, Linder JA, et al.2015. Accuracy of race, ethnicity, 
and language preference in an electronic health record. J. Gen. Intern. Med30:719–23 [PubMed: 
25527336] 

72. Dredze M2012. How social media will change public health. IEEE Intell. Syst27:81–84

73. Abebe R, Hill S, Vaughan JW, Small PM, Schwartz HA. 2019. Using search queries to 
understand health information needs in Africa. In Proceedings of the Thirteenth International 
AAAI Conference on Web and Social Media, pp. 3–14. Palo Alto, CA: AAAI

74. Giorgi S, Preoţiuc-Pietro D, Buffone A, Rieman D, Ungar L, Schwartz HA. 2018. The remarkable 
benefit of user-level aggregation for lexical-based population-level predictions. In Proceedings 
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1167–72. 
Stroudsburg, PA: Assoc. Comput. Linguist.

75. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BMDaly MJ. 2019. Clinical use of 
current polygenic risk scores may exacerbate health disparities. Nat. Genet51:584–91 [PubMed: 
30926966] 

76. Jamison DT, Feacham RG, Makgoba MW, Bos ER, Baingana FK, et al.2006. Disease and 
Mortality in Sub-Saharan Africa. Washington, DC: World Bank. 2nd ed.

77. James S, Herman J, Rankin S, Keisling M, Mottet L, Anafi M. 2016. The report of the 2015 US 
transgender survey. Washington, DC: Natl. Cent. Transgend. Equal.

78. Fountain C, Bearman P. 2011. Risk as social context: immigration policy and autism in California. 
Sociol. Forum26:215–40

79. Collier AY, Molina RL. 2019. Maternal mortality in the United States: updates on trends, causes, 
and solutions. NeoReviews20:e561–74 [PubMed: 31575778] 

80. Tiwari C, Beyer K, Rushton G. 2014. The impact of data suppression on local mortality rates: the 
case of CDC WONDER. Am. J. Public Health104:1386–88 [PubMed: 24922161] 

81. Kesselheim AS, Brennan TA. 2005. Overbilling versus downcoding—the battle between 
physicians and insurers. New Engl. J. Med352:855–57 [PubMed: 15745973] 

82. Boag W, Suresh H, Celi LA, Szolovits P, Ghassemi M. 2018. Racial disparities and mistrust in 
end-of-life care. arXiv:1808.03827 [stat.AP]

83. Canto JG, Goldberg RJ, Hand MM, Bonow RO, Sopko G, et al.2007. Symptom presentation 
of women with acute coronary syndromes: myth versus reality. Arch. Intern. Med167:2405–13 
[PubMed: 18071161] 

84. Bugiardini R, Ricci B, Cenko E, Vasiljevic Z, Kedev S, et al.2017. Delayed care and mortality 
among women and men with myocardial infarction. J. Am. Heart Assoc6:e005968 [PubMed: 
28862963] 

85. Rose S2016. A machine learning framework for plan payment risk adjustment. Health Serv. 
Res51:2358–74 [PubMed: 26891974] 

Chen et al. Page 23

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



86. Geruso M, Layton T. 2015. Upcoding: evidence from medicare on squishy risk adjustment. J. Pol. 
Econ128(3). 10.1086/704756

87. Natarajan N, Dhillon IS, Ravikumar PK, Tewari A. 2013. Learning with noisy labels. In 
Proceedings of the 26th International Conference on Advances in Neural Information Processing 
Systems (NIPS 2013), ed. Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ, pp. 
1196–204. https://papers.nips.cc/paper/2013/file/3871bd64012152bfb53fdf04b401193f-Paper.pdf

88. Halpern Y, Horng S, Choi Y, Sontag D. 2016. Electronic medical record phenotyping using the 
anchor and learn framework. J. Am. Med. Inform. Assoc23:731–40 [PubMed: 27107443] 

89. Oakden-Rayner L2020. Exploring large-scale public medical image datasets. Acad. Radiol27:106–
12 [PubMed: 31706792] 

90. Tamang S, Milstein A, Sørensen HT, Pedersen L, Mackey L, et al.2017. Predicting patient ‘cost 
blooms’ in Denmark: a longitudinal population-based study. BMJ Open7:e011580

91. Cook BL, McGuire TG, Zaslavsky AM. 2012. Measuring racial/ethnic disparities in health care: 
methods and practical issues. Health Serv. Res47:1232–54 [PubMed: 22353147] 

92. Cook BL, Zuvekas SH, Carson N, Wayne GF, Vesper A, McGuire TG. 2014. Assessing racial/
ethnic disparities in treatment across episodes of mental health care. Health Serv. Res49:206–29 
[PubMed: 23855750] 

93. Zink A, Rose S. 2020. Fair regression for health care spending. Biometrics76:973–82 [PubMed: 
31860120] 

94. Guillory D2020. Combating anti-blackness in the AI community. arXiv:2006.16879 [cs.CY]

95. Lohaus M, Perrot M, von Luxburg U. 2020. Too relaxed to be fair. Proc. Mach. Learn. 
Res119:6360–69

96. Sagawa S, Koh PW, Hashimoto TB, Liang P. 2020. Distributionally robust neural network. Paper 
presented at the Eighth International Conference on Learning Representations (ICLR 2020), Apr. 
26–May 1. https://openreview.net/pdf?id=ryxGuJrFvS

97. Joshi S, Koyejo O, Kim B, Ghosh J. 2018. xGEMS: generating examplars to explain black-box 
models. arXiv:1806.08867 [cs.LG]

98. Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N. 2015. Intelligible models for 
healthcare: predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 
1721–30. New York: Assoc. Comput. Mach.

99. Hernán MA, Robins JM. 2010. Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC

100. Glymour C, Zhang K, Spirtes P. 2019. Review of causal discovery methods based on graphical 
models. Front. Genet10:524 [PubMed: 31214249] 

101. Van der Laan MJ, Rose S. 2011. Targeted Learning: Causal Inference for Observational and 
Experimental Data. New York: Springer-Verlag

102. Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, et al.2018. Double/debiased 
machine learning for treatment and structural parameters. Econom. J21(1):C1–68

103. Miao W, Geng Z, Tchetgen Tchetgen EJ. 2018. Identifying causal effects with proxy variables of 
an unmeasured confounder. Biometrika105:987–93 [PubMed: 33343006] 

104. Franks A, D’Amour A, Feller A. 2019. Flexible sensitivity analysis for observational studies 
without observable implications. J. Am. Stat. Assoc115(532):1730–76

105. Little MA, Badawy R. 2019. Causal bootstrapping. arXiv:1910.09648 [cs.LG]

106. Vyas DA, Eisenstein LG, Jones DS. 2020. Hidden in plain sight—reconsidering the use of race 
correction in clinical algorithms. N. Engl. J. Med383:874–82 [PubMed: 32853499] 

107. Grobman WA, Lai Y, Landon MB, Spong CY, Leveno KJ, et al.2007. Development of a 
nomogram for prediction of vaginal birth after cesarean delivery. Obstet. Gynecol109:806–12 
[PubMed: 17400840] 

108. Thompson B1995. Stepwise regression and stepwise discriminant analysis need not apply here: a 
guidelines editorial. Educ. Psychol. Meas55(4):525–34

109. Harrell FE Jr. 2015. Regression Modeling Strategies: With Applications to Linear Models, 
Logistic and Ordinal Regression, and Survival Analysis. New York: Springer. 2nd ed.

Chen et al. Page 24

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://papers.nips.cc/paper/2013/file/3871bd64012152bfb53fdf04b401193f-Paper.pdf
https://openreview.net/pdf?id=ryxGuJrFvS


110. James G, Witten D, Hastie T, Tibshirani R. 2013. An Introduction to Statistical Learning: With 
Applications in R. New York: Springer-Verlag

111. Koh PW, Nguyen T, Tang YS, Mussmann S, Pierson E, et al.2020. Concept bottleneck models. 
Proc. Mach. Learn. Res119:5338–48

112. Sagawa S, Raghunathan A, Koh PW, Liang P. 2020. An investigation of why 
overparameterization exacerbates spurious correlations. Proc. Mach. Learn. Res119:8346–56

113. Flach PA. 2003. The geometry of ROC space: understanding machine learning metrics through 
ROC isometrics. In Proceedings of the 20th International Conference on Machine Learning, ed. 
Fawcett T, Mishra N, pp. 194–201. Palo Alto, CA: AAAI

114. Vyas DA, Eisenstein LG, Jones DS. 2020.Hidden in plain sight—reconsidering the use of race 
correction in clinical algorithms. New Engl. J. Med383:874–82 [PubMed: 32853499] 

115. Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R. 2012. Fairness through awareness. In 
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–26. 
New York: Assoc. Comput. Mach.

116. Dwork C, Ilvento C. 2018. Fairness under composition. arXiv:1806.06122 [cs.LG]

117. Chouldechova A, Roth A. 2020. A snapshot of the frontiers of fairness in machine learning. 
Commun. ACM63:82–89

118. Calders T, Karim A, Kamiran F, Ali W, Zhang X. 2013. Controlling attribute effect in linear 
regression. In 2013 IEEE 13th International Conference on Data Mining, pp. 71–80. Los 
Alamitos, CA: IEEE Comput. Soc.

119. Zafar MB, Valera I, Rogriguez MG, Gummadi KP. 2017. Fairness constraints: mechanisms for 
fair classification. Proc. Mach. Learn. Res54:962–70

120. Montz E, Layton T, Busch AB, Ellis RP, Rose S, McGuire TG. 2016. Risk-adjustment simulation: 
Plans may have incentives to distort mental health and substance use coverage. Health Aff. 
35:1022–28

121. McGuire TG, Zink AL, Rose S. 2020. Simplifying and improving the performance of risk 
adjustment systems. Work. Pap., Natl. Bur. Econ. Res., Cambridge, MA

122. Helmreich RL. 2000. On error management: lessons from aviation. BMJ320:781–85 [PubMed: 
10720367] 

123. Murayama KM, Derossis AM, DaRosa DA, Sherman HB, Fryer JP. 2002. A critical evaluation of 
the morbidity and mortality conference. Am. J. Surg183:246–50 [PubMed: 11943120] 

124. Herrera-Perez D, Haslam A, Crain T, Gill J, Livingston C, et al.2019. Meta-research: a 
comprehensive review of randomized clinical trials in three medical journals reveals 396 medical 
reversals. eLife8:e45183 [PubMed: 31182188] 

125. Creager E, Madras D, Pitassi T, Zemel R. 2019. Causal modeling for fairness in dynamical 
systems. arXiv:1909.09141 [cs.LG]

126. Noseworthy PA, Attia ZI, Brewer LC, Hayes SN, Yao X, et al.2020. Assessing and mitigating 
bias in medical artificial intelligence: the effects of race and ethnicity on a deep learning model 
for ECG analysis. Circ. Arrhythm. Electrophysiol13:e007988 [PubMed: 32064914] 

127. Inst. Med.2002. Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care. 
Washington, DC: Natl. Acad. Press

128. Perez CC. 2019. Invisible Women: Exposing Data Bias in a World Designed for Men. New York: 
Abrams

129. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. 2018. Variable generalization 
performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional 
study. PLOS Med. 15:e1002683 [PubMed: 30399157] 

130. Larrazabal AJ, Nieto N, Peterson V, Milone DH, Ferrante E. 2020. Gender imbalance in medical 
imaging datasets produces biased classifiers for computer-aided diagnosis. PNAS117:12592–94 
[PubMed: 32457147] 

131. Seyyed-Kalantari L, Liu G, McDermott M, Ghassemi M. 2020. CheXclusion: fairness gaps in 
deep chest X-ray classifiers. arXiv:2003.00827 [cs.CV]

Chen et al. Page 25

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



132. Nestor B, McDermott M, Boag W, Berner G, Naumann T, et al.2019. Feature robustness in 
non-stationary health records: caveats to deployable model performance in common clinical 
machine learning tasks. Proc. Mach. Learn. Res106:381–405

133. Bissoto A, Fornaciali M, Valle E, Avila S. 2019. (De)constructing bias on skin 
lesion datasets. In Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition Workshops. https://openaccess.thecvf.com/content_CVPRW_2019/html/
ISIC/Bissoto_DeConstructing_Bias_on_Skin_Lesion_Datasets_CVPRW_2019_paper.html

134. Kundu RV, Patterson S. 2013. Dermatologic conditions in skin of color: part I. Special 
considerations for common skin disorders. Am. Family Phys87:850–56

135. Rabanser S, Günnemann S, Lipton Z. 2019. Failing loudly: an empirical study of methods for 
detecting dataset shift. In Proceedings of the 32nd International Conference on Advances in 
Neural Information Processing Systems (NIPS 2019), ed. Wallach H, Larochelle H, Beygelzimer 
A, d’Alché Buc F, Fox E, Garnett R, pp. 1396–408. https://papers.nips.cc/paper/2019/file/
846c260d715e5b854ffad5f70a516c88-Paper.pdf

136. Subbaswamy A, Saria S. 2020. From development to deployment: dataset shift, causality, and 
shift-stable models in health AI. Biostatistics21:345–52 [PubMed: 31742354] 

137. Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. 2017. Calibration drift in regression 
and machine learning models for acute kidney injury. J. Am. Med. Inform. Assoc24:1052–61 
[PubMed: 28379439] 

138. Saleh S, Boag W, Erdman L, Naumann T. 2020. Clinical collabsheets: 53 questions to guide a 
clinical collaboration. Proc. Mach. Learn. Res126:783–812

139. Madaio MA, Stark L, Wortman Vaughan J, Wallach H. 2020. Co-designing checklists to 
understand organizational challenges and opportunities around fairness in AI. In Proceedings 
of the 2020 CHI Conference on Human Factors in Computing Systems, Pap. 318.New York: 
Assoc. Comput. Mach.

140. Mitchell M, Wu S, Zaldivar A, Barnes P, Vasserman L, et al.2019. Model cards for model 
reporting. In Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 
220–29. New Yorl: Assoc. Comput. Mach.

141. Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, et al.2018. Datasheets for 
datasets. arXiv:1803.09010 [cs.DB]

142. FDA (US Food Drug Admin.). 2021. Artificial intelligence and machine 
learning in software as a medical device. Web Resour., FDA, Silver Spring, 
MD. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence­
and-machine-learning-software-medical-device

143. Ferryman K2020. Addressing health disparities in the Food and Drug Administration’s 
artificial intelligence and machine learning regulatory framework. J. Am. Med. Inform. 
Assoc27(12):2016–19 [PubMed: 32951036] 

144. Sullivan HR, Schweikart SJ. 2019. Are current tort liability doctrines adequate for addressing 
injury caused by AI?AMA J. Ethics21:160–66

145. Liu X, Rivera SC, Faes L, Di Ruffano LF, Yau C, et al.2019. Reporting guidelines for clinical 
trials evaluating artificial intelligence interventions are needed. Nat. Med25:1467–68 [PubMed: 
31551578] 

146. Coravos A, Chen I, Gordhandas A, Stern AD. 2019. We should treat algorithms like prescription 
drugs. Quartz, Feb. 19.https://qz.com/1540594/treating-algorithms-like-prescription-drugs-could­
reduce-ai-bias/

147. Parikh RB, Obermeyer Z, Navathe AS. 2019. Regulation of predictive analytics in medicine. 
Science363:810–12 [PubMed: 30792287] 

148. Mohamed S, Png MT, Isaac W. 2020. Decolonial AI: decolonial theory as sociotechnical foresight 
in artificial intelligence. Philos. Technol33:659–84

149. Lyndon A, McNulty J, VanderWal B, Gabel K, Huwe V, Main E. 2015. Cumulative quantitative 
assessment of blood loss. In CMQCC Obstet. Hemorrhage ToolkitVers. 2, pp. 80–85. Stanford, 
CA: Calif. Matern. Qual. Care Collab.https://www.cmqcc.org/content/cumulative-quantitative­
assessment-blood-loss

Chen et al. Page 26

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://openaccess.thecvf.com/content_CVPRW_2019/html/ISIC/Bissoto_DeConstructing_Bias_on_Skin_Lesion_Datasets_CVPRW_2019_paper.html
https://openaccess.thecvf.com/content_CVPRW_2019/html/ISIC/Bissoto_DeConstructing_Bias_on_Skin_Lesion_Datasets_CVPRW_2019_paper.html
https://papers.nips.cc/paper/2019/file/846c260d715e5b854ffad5f70a516c88-Paper.pdf
https://papers.nips.cc/paper/2019/file/846c260d715e5b854ffad5f70a516c88-Paper.pdf
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://qz.com/1540594/treating-algorithms-like-prescription-drugs-could-reduce-ai-bias/
https://qz.com/1540594/treating-algorithms-like-prescription-drugs-could-reduce-ai-bias/
https://www.cmqcc.org/content/cumulative-quantitative-assessment-blood-loss
https://www.cmqcc.org/content/cumulative-quantitative-assessment-blood-loss


150. Chen IY, Joshi S, Ghassemi M. 2020. Treating health disparities with artificial intelligence. Nat. 
Med26:16–17 [PubMed: 31932779] 

Chen et al. Page 27

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FUTURE QUESTIONS

1. How can we combat urgent global health crises that exacerbate existing 

patterns of health injustices?

2. How can we encourage machine learning (ML) model developers to build 

ethical considerations into the pipeline from the very beginning? Currently, 

when egregious cases of injustice are discovered only after clinical impact has 

already occurred, what can developers do to engage?

3. How can evaluation and audits of ML systems be translated into meaningful 

clinical practice when, in many countries, clinicians themselves are subject to 

only limited external evaluations or audits?

4. When, if ever, should sensitive attributes like race be used in analysis? How 

should we incorporate socially constructed features into models and audits?

5. How can ML be used to shift power from, e.g., well-known institutions, 

privileged patients, and wealthy multinational corporations to the patients 

most in need?
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Figure 1. 
We motivate the five steps in the ethical pipeline for healthcare model development. Each 

stage contains considerations for machine learning where ignoring technical challenges 

violate the bioethical principle of justice, either by exacerbating existing social injustices or 

by creating the potential for new injustices between groups. Although this review’s ethical 

focus is on social justice, the challenges that we highlight may also violate ethical principles 

such as justice and beneficence. We highlight a few in this illustration.
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Figure 2. 
The model development pipeline contains many challenges for ethical machine learning for 

healthcare. We highlight both visible and hidden challenges.
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