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Abstract

Ultrasound elasticity imaging in soft tissue with acoustic radiation force requires the estimation 

of displacements, typically on the order of several microns, from serially-acquired raw data 

A-lines. In this work, we implement a fully convolutional neural network (CNN) for ultrasound 

displacement estimation. We present a novel method for generating ultrasound training data, in 

which synthetic 3-D displacement volumes with a combination of randomly-seeded ellipsoids are 

created and used to displace scatterers, from which simulated ultrasonic imaging is performed 

using Field II. Network performance was tested on these virtual displacement volumes as well as 

an experimental ARFI phantom dataset and a human in vivo prostate ARFI dataset. In simulated 

data, the proposed neural network performed comparably to Loupas’s algorithm, a conventional 

phase-based displacement estimation algorithm; the RMS error was 0.62 μm for the CNN and 

0.73 μm for Loupas. Similarly, in phantom data, the contrast-to-noise ratio of a stiff inclusion 

was 2.27 for the CNN-estimated image and 2.21 for the Loupas-estimated image. Applying the 

trained network to in vivo data enabled the visualization of prostate cancer and prostate anatomy. 

The proposed training method provided 26,000 training cases, which allowed for robust network 

training. The CNN had a computation time that was comparable to Loupas’s algorithm; further 

refinements to the network architecture may provide an improvement in the computation time. We 

conclude that deep neural network-based displacement estimation from ultrasonic data is feasible, 

providing comparable performance with respect to both accuracy and speed compared to current 

standard time delay estimation approaches.
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I. Introduction

Ultrasound elastography techniques assess the stiffness of soft tissue by monitoring the 

tissue response to an applied deformation [1]. One such technique, acoustic radiation force 

impulse (ARFI) imaging, generates displacement magnitudes of several microns in tissue 

using a focused ultrasound pulse [2]. Immediately following the impulsive excitation, the 

relative tissue displacements within the region of excitation are tracked with ultrasound, with 

stiffer tissues associated with lower displacement magnitudes. The use of ARFI imaging 

to detect and assess disease states has been demonstrated in several clinical applications, 

including cancer detection [3], [4], [5], cardiac ablation imaging [6], and carotid plaque 

characterization [7].

To form an ARFI image, ultrasound data are obtained before and after the radiation force 

excitation. These data can be in the form of radiofrequency (RF) signals, or demodulated to 

in-phase and quadrature (I/Q) signals. A displacement estimation algorithm then computes 

the tissue displacement magnitudes between the two time steps [8]. For RF data, normalized 

cross-correlation methods or iterative phase zero estimation algorithms can be used to 

compute the displacements [9]. For I/Q data, commonly used displacement estimation 

algorithms include those described by Kasai et al. [10] and Loupas et al. [11]. These 

autocorrelation techniques compute phase differences between ultrasound data at the two 

time steps of interest to estimate the displacements. A 2-D ARFI displacement image 

is reconstructed by laterally translating the ARFI excitation across the field of view and 

performing displacement estimation on each A-line.

Recently, deep learning methods have been investigated for a variety of ultrasound imaging 

applications, including beamforming [12], [13], speckle reduction [14], [15], [16], and 

sparse image recovery [17]. Within the field of ultrasound elastography, recent studies have 

explored a deep learning approach for strain imaging applications. In strain imaging, the 

transducer is used to physically compress the surface of the tissue by several millimeters 

[1], [18]. The strain profile along the axis of the transducer is then computed and can be 

used to reconstruct the elastic modulus of the tissue. Kibria and Rivaz developed a strain 

imaging algorithm using FlowNet 2.0, a neural network that was originally designed for 

optical flow motion estimation, to obtain a coarse estimate of the time delay that was 

further refined with global ultrasound elastography (GLUE) strain imaging [19]. Tehrani and 

Rivaz used a modified version of pyramid warping and cost volume network (PWC-Net), 

which estimates the optical flow at different levels with increasingly fine resolution and 

requires fewer parameters compared to FlowNet 2.0 [20]. Peng et al. also retrained existing 

models—FlowNet-CSS, PWC-Net, and LiteFlowNet—for strain imaging in phantom and 

in vivo breast tissue data after envelope detection [21]. Wu et al. used a two-stage deep 

neural network to first estimate motion after soft tissue compression and then compute the 

strain field [22]. Gao et al. developed an implicit strain reconstruction framework using a 
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deep neural network with a learning using privileged information (LUPI) paradigm [23]. 

Additionally, recent studies from Haukom et al. [24], Delaunay et al. [25], and Tehrani et al. 
[26] have explored the use of unsupervised or semi-supervised learning for strain estimation, 

in which the neural network is directly trained or fine-tuned on unlabeled clinical ultrasound 

data.

To investigate whether a machine learning approach could be used to map raw I/Q 

ultrasound ARFI data to the underlying tissue displacements, this study used a deep 

convolutional neural network (CNN) as an alternative to traditional displacement estimation 

algorithms used in ARFI imaging. The challenges associated with displacement estimation 

in ARFI imaging are distinct from those associated with strain imaging [8]. Primarily, 

the displacements encountered in ARFI imaging are several orders of magnitude smaller—

typically at most several microns—nearing the theoretical fundamental limit on time delay 

estimation imposed by the Cramér-Rao lower bound [27]. In recent work, we demonstrated 

the feasibility of training a CNN for estimating small displacements from raw I/Q ultrasound 

data [28]. To our knowledge, this was the first application of a deep learning approach for 

the estimation of ARFI displacements.

In this study, we describe our novel approach to generating displacement training data that 

does not require finite-element simulations, which are often specific to a particular ARFI 

excitation configuration and are computationally intensive. Our proposed approach enables 

the creation of a sufficiently large training dataset to train the neural network to estimate 

ARFI displacements without overfitting the training data. We conduct a learning curve 

analysis to assess the necessary dataset size to avoid overfitting by the CNN, which uses the 

same architecture as the neural network examined in the previous feasibility study [28]. The 

performance of the trained network is evaluated in simulated data, as well as experimentally 

acquired data in a tissue-mimicking phantom and in vivo in human prostate tissue, and 

compared with the conventional phase-shift displacement estimator described by Loupas et 
al. [11].

II. Methods

A. Generating the Training Dataset

The data used to train a deep neural network are ultimately critical to the performance 

of the network, since these data are used to learn the weights that map the input data to 

the final output. Because the true underlying displacements must be known to generate the 

ground-truth labels used to train a network for displacement estimation, the training dataset 

in this case was limited to simulation data. Without using a complex experimental setup 

incorporating optical tracking of targets embedded within a translucent phantom [29], the 

true displacements following an ARFI excitation are not typically known in experimental 

ARFI acquisitions. This limitation is primarily due to displacement underestimation in the 

focal zone resulting from lateral and elevation shearing underneath the point spread function 

(PSF) of the ultrasound tracking beam [30], [31].

One approach to generating the training dataset involves performing finite-element 

simulations of ARFI excitation dynamics in heterogeneous materials of varying stiffness, 

Chan et al. Page 3

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and to model ultrasonic tracking of the resulting displacements [31], [32]. This method 

would be similar to the approach used in recent studies that explored the application of 

deep learning to strain imaging [21], [20], [22], [23]. However, finite-element simulations 

can often be computationally costly, particularly for large volumes or materials containing 

complex, heterogeneous structures. Long simulation runtimes may preclude the generation 

of a large training dataset to robustly train the neural network, or make it difficult to 

recreate the dataset if simulation parameters need to be modified. Furthermore, a neural 

network trained with data specific to a particular simulated ARFI excitation configuration, 

where the focal gain is consistently located in the same region for each case, may not 

necessarily generalize to the wide variety of displacement patterns that may be encountered 

with different push configurations.

Instead, we developed a novel training approach for this study in which the training 

dataset was created by generating synthetic 3-D axial displacement volumes, as shown in 

Figure 1. Different ellipsoids with randomly-assigned sizes, spatial orientations, locations, 

and amplitudes were summed to create a complex displacement field within the volume. 

Both positive and negative ellipsoid amplitudes, from −15 μm to 15 μm, were included to 

train the network to detect potential displacements in either axial direction. This range of 

displacements is consistent with the magnitudes of displacement typically encountered in 

ARFI imaging [33], including in our prostate ARFI imaging study [5]. For each volume, 150 

ellipsoids in total were summed to create a complex displacement field, with the resultant 

displacement amplitudes of several microns, as typically encountered in ARFI imaging 

applications. To prevent sharp discontinuities in displacement that would be inconsistent 

with a realistic ARFI tissue response, an isotropic 3-D Gaussian spatial smoothing filter 

with a standard deviation of 0.15 mm in each dimension was applied after the summation. 

The standard deviation of the smoothing filter was below the smallest desired structural 

resolution of the prostate imaging application.

These displacement volumes were used to introduce scatterer motion in Field II simulations 

[34], [35]. Field II was used to simulate imaging of randomly-placed scatterers in a 3-D 

volume with a linear Siemens 12L4 transducer (Siemens Healthcare, Mountain View, CA), 

which we are using in an ongoing prostate ARFI imaging study [5]. The 5-MHz tracking 

transmit beam was focused at a depth of 60 mm in an F/2 focal configuration, with dynamic 

receive focusing; these tracking parameters were matched to our experimental parameters. A 

scatterer density of 160,000 scatterers/cm3 was used in the simulation.

For each scatterer realization, two simulations were performed: one with the scatterers in 

their original locations within the field, and one after the scatterers were displaced axially 

by a given magnitude based on the displacement volume generated by the ellipsoids. To 

make the simulated results more closely resemble the data from our experimental setup, 

the resulting raw simulated radiofrequency data were demodulated to produce in-phase and 

quadrature (I/Q) data, and then downsampled to a sampling frequency of 5 MHz. After 

downsampling, the data were then re-upsampled to a sampling frequency of 25 MHz using 

spline interpolation; this step is typically performed prior to conventional displacement 

estimation in experimentally acquired data [8]. The simulation of ultrasonic imaging with 

Field II models speckle and its associated biases in ultrasonic displacement data [31], but 
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does not model electronic noise that is present in experimental data. Thus, electronic noise 

was added to the data in order to train the network to be able to estimate displacements 

from noisy data. For each simulated dataset, a random amount of additive Gaussian noise 

(standard deviation ranging from 0 μm to 1 μm) was added to the input data before the 

training data were input to the network.

To successfully train a supervised neural network, the network must be supplied with the 

ground-truth labels as well. During the training process, the weights of the neural network 

are adjusted to minimize the loss between the network output and the ground truth. In this 

case, the ground-truth displacement values were produced by taking the center axial line 

of each virtual displacement volume (i.e., the axial line located at the central azimuthal 

and elevational positions). This ground-truth axial line is shown in Figure 1 as the dashed 

vertical line running through the center of the summed displacement volume.

Figure 1 also plots the ground-truth displacements for this displacement volume. The 

displacements are slightly negative at shallow depths, increase to positive values near the 

middle of the volume, and decrease back to approximately zero at the deepest part of 

the volume. Note that the displacement magnitudes that were simulated are similar to the 

magnitudes that would typically be expected for in vivo ARFI imaging applications (several 

microns). Furthermore, the applied 3-D Gaussian spatial smoothing filter generates subtle 

gradients in the displacement pattern and prevents sudden discontinuities in the data.

In total, 30,000 unique displacement volumes were randomly generated using the process 

described above, and each volume was used to displace scatterers in Field II to produce 

simulated I/Q data lines. For each displacement volume, the two simulated I/Q data A-lines 

(before and after the displacements were applied) were used as the input to the neural 

network, and the ground-truth displacements through depth were used as the output that the 

neural network would attempt to reconstruct.

The generated data were divided into three datasets: 26,000 cases were used as the training 

dataset and 2,000 cases each were used as validation and test datasets to assess the 

performance of the network.

B. Neural Network Design and Training

Figure 2 shows a diagram of the architecture of the deep convolutional neural network 

that was used in this study, with the labeled dimensions in the figure corresponding to 

the dimensions of the training dataset. The input to the neural network was a 1200×2×2 

data array, where 1200 was the number of depth samples in each training data array, 

and the remaining two dimensions corresponded to the time step (before and after the 

scatterers’ applied ARFI displacements) and I/Q data channel, respectively. The final output 

of the neural network was a one-dimensional vector with the same height as the input 

data (1200 samples in the training data case), and corresponded to the network’s estimated 

displacement values through depth.

Notably, the neural network’s fully convolutional architecture did not contain any fully 

connected layers, which connect all of the nodes in a given layer to all of the nodes in the 
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subsequent layer. The exclusion of fully connected layers from the architecture not only 

simplified the model by reducing the number of parameters that had to be learned during the 

training process, but it also suggested that the trained network would be robust to different 

input sizes. As a result, the input to the trained network was not limited to data containing 

1200 depth samples, potentially allowing the network to generalize to different imaging 

conditions.

A fully convolutional architecture was selected for this displacement estimation task, since 

the displacement information should be locally encoded in the I/Q data. In other words, data 

from spatially-distant regions do not need to be combined for local displacement estimation, 

so a fully-connected layer should not be needed.

Within the deep convolutional neural network, the input I/Q data are fed into a series 

of convolutional layers with rectified linear unit (ReLU) nonlinearity, with the number 

of features (third array dimension) increasing with each convolutional layer due to the 

increasing complexity of features being represented at each layer. After four sets of 

convolutional layers (3×3 filter size) with 2×1 max pooling, a series of transposed 

convolutional layers are used to build the image back up to the original number of depth 

samples (e.g., 1200 samples for the training data). For the convolutional layers, a filter size 

of 3×3 was selected; before each convolution, the data were zero-padded using the “SAME” 

parameter in TensorFlow to preserve the same data size after the operation. Finally, a single 

additional convolutional layer is used to collapse the last two dimensions to produce a 1-D 

output vector of the network’s estimated displacements. Batch normalization was applied to 

the inputs of each network layer to reduce internal covariate shift [36].

The L1 loss, calculated as the mean absolute error, was used to train the network and 

evaluate its performance. During the training process, the displacements that were output 

by the network were subtracted element-wise from the ground-truth displacement labels, 

and the mean absolute difference across the data was computed. A minibatch size of 75 

was used for training, meaning that 75 sets of training data were processed at a time and 

used in conjunction to update the parameters of the neural network at each iteration. ADAM 

(adaptive moment estimation), which is a stochastic gradient descent optimization algorithm 

commonly used in deep learning applications, was used to train this network with an initial 

learning rate of 0.001 [37].

Before training, the parameters of the neural network were initialized using the approach 

described by He et al. [38]. This initialization, in which the variance of the nodes in a layer 

of the network is set to 2.0/n where n is the number of units in the previous layer, was 

derived specifically for ReLU activation functions, which were used in this architecture. 

Using this initialization method can prevent an undesirable exploding variance value as the 

number of inputs to the neural network grows.

The open-source TensorFlow machine learning interface (version 1.9.0) was used to develop 

the model in this study [39]. Network training was performed on an NVIDIA Tesla V100 

GPU. To evaluate the performance of the neural network, the I/Q data were also processed 

using the algorithm described by Loupas et al., which is a conventional phase-shift approach 
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based on a 2-D autocorrelation algorithm that is commonly used for ARFI displacement 

estimation applications [8], [11]. A 1.5-wavelength axial kernel was used with Loupas’s 

algorithm for this analysis. A comparison of the computation time between the proposed 

network and Loupas’s algorithm was performed on a 2.3-GHz Intel Core i7 CPU.

C. Experimental Data Collection

Phantom and in vivo prostate data were obtained using a modified Siemens 12L4 linear 

side-fire transducer on a modified Siemens ACUSON SC2000 scanner. For an extended 

pushing depth of field for the ARFI excitation, three focal depths (30 mm, 22.5 mm, and 

15 mm) were rapidly and successively transmitted deep-to-shallow for each radiation force 

excitation [40]. The track transmit beam was focused at 60 mm in an F/2 configuration 

with dynamic receive focusing, using the same tracking sequence as the Field II simulation 

described above.

To build up a 2-D ARFI displacement image, eighty-two push beams were laterally 

translated across the transducer aperture, with each push beam spaced 0.62 mm apart. The 

ARFI track beams were obtained with 4:1 parallel receive and 0.16-mm track beam spacing 

[41]. ARFI data were acquired in a custom CIRS elastic phantom (Norfolk, VA) containing 

a stiff spherical inclusion with a diameter of 10 mm. The Young’s modulus of the spherical 

inclusion was 16.3 kPa, while the Young’s modulus of the background material was 10 kPa.

In an institutional review board-approved study, ARFI and B-mode prostate data were 

acquired in subjects with biopsy-confirmed prostate cancer after obtaining written informed 

consent, immediately before they underwent a radical prostatectomy procedure [5]. The 

same ARFI pushing and tracking sequence used to acquire the phantom dataset was also 

used to obtain the in vivo data. For each subject, a 3-D prostate ARFI data volume was 

populated by rotating the side-fire transducer in approximately 1 degree increments in 

elevation using a mechanical rotation stage with an optical encoder to track the trajectory 

of the transducer [5]. Immediately following the ARFI data acquisition, the transducer was 

rotated in the reverse direction to acquire high-quality B-mode data, using a 7-MHz transmit 

frequency and 126 transmits spanning the field of view at each elevation angle. Scan 

conversion and visualization of the ARFI and B-mode prostate volumes were performed in 

3D Slicer, an open-source software package designed for image analysis and display [42].

III. Results

To assess the size of the training dataset needed to train a neural network for a displacement 

estimation task, a learning curve was constructed, shown in Figure 3. This plot was 

generated by varying the size of the training dataset used to learn the parameters of the 

network. In other words, instead of using all 26,000 displacement volumes in the training 

dataset, only a subset of those volumes were selected to train the network. After training, 

the mean absolute error between the network’s outputs and the ground-truth displacements 

was computed using both the subset of the training data and the validation dataset. The 

error bars in Figure 3 indicate the standard deviation of the mean absolute error over ten 

training repetitions. The convergence of the two curves towards the right side of the figure 

demonstrates that a large training dataset of this size (26,000 cases for this study) was 
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needed for robust training of the network and to prevent excessive overfitting of the training 

data. During training, L2 loss (mean squared error) and log-cosh loss were compared with 

L1 loss (data not shown); in each case, the neural network converged to the same baseline 

loss value, indicating that the training loss function did not impact the performance of the 

final trained network.

Figure 4 shows the results of the trained neural network in one of the simulated datasets 

(i.e., tracked data from a randomly generated 3-D displacement volume in the test dataset). 

In this figure, the ground-truth displacement labels extracted from the central line of the 

displacement volume are shown in black, while the CNN-estimated displacements and 

Loupas-estimated displacements are shown in orange and green, respectively. The root

mean-square (RMS) error between the neural network and the true displacements was 0.62 

μm, while the RMS error between Loupas’s algorithm and the true displacements was 0.73 

μm. Across the entire test dataset (2000 test cases), the mean RMS error between the neural 

network and the true displacements was 0.66 μm (standard deviation [SD] = 0.06 μm), and 

the mean RMS error between Loupas’s algorithm and the true displacements was 0.75 μm 

(SD = 0.05 μm).

To investigate the performance of the trained network versus scatterer displacement, 

the displacements in the simulated training data were divided into two groups: smaller 

displacements less than 5 μm and larger displacements greater than 5 μm. For the smaller 

displacements group, the RMS error between the neural network and the true displacements 

was 0.61 ± 0.04 μm. For the larger displacements group, the RMS error was 0.70 ± 0.04 μm.

Figure 5 shows the results of the trained neural network in data that were experimentally 

acquired in an elastic stiffness phantom. While the phantom contained a stiff spherical 

inclusion, the data shown in this figure were taken from a region of the phantom that 

had homogeneous stiffness; the variation in amplitude across depth is due to focal gain 

from the ARFI push excitation. For these data, there was no ground-truth displacement 

label available, since the true displacement magnitudes within the phantom are unknown. 

Therefore, only the results of the neural network (orange) and Loupas’s algorithm (green) 

are shown in this figure. For the data shown in this plot, the RMS difference between the 

displacements output by the neural network and those estimated using Loupas was 0.24 μm.

Figure 6 shows images from the same experimental phantom dataset, where the stiff 

spherical inclusion is visualized as a circular region of low displacement. The left 

and middle sub-figures show the output of the neural network and Loupas’s algorithm, 

respectively; both are shown on the same colorbar scale. Across the entire image, the RMS 

difference between the two was 0.40 μm. The contrast-to-noise ratio (CNR) of the inclusion 

was 2.27 for the CNN-estimated image and 2.21 for Loupas-estimated image.

The right sub-figure of Figure 6 shows the difference image obtained by subtracting the 

Loupas estimates from the neural network estimates. In this difference image color scheme, 

red pixels indicate that the CNN estimate was greater than the Loupas estimate, while blue 

pixels indicate the opposite, and gray regions correspond to pixels where the estimates were 

similar. Note that this difference image indicates increased discrepancies between the CNN- 
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and Loupas-estimated displacements towards the edges of the field of view; in these regions, 

the CNN tended to slightly overestimate the displacements relative to Loupas’s algorithm.

Figure 7 shows the output of the neural network for the full-size phantom dataset (top row), 

as well as for an input dataset where the I/Q data has been truncated in depth. This analysis 

was performed to assess the robustness of the network to inputs with different numbers 

of depth samples, even though the entire training dataset was generated with 1200 depth 

samples. Considering the truncated region of the image, the RMS difference between the 

two ARFI images shown was negligible (<5.07 × 10−7 μm), likely a result of small rounding 

errors.

Figure 8 shows the results of the comparison of the processing time on a 2.3-GHz Intel Core 

i7 CPU between the CNN and Loupas’s algorithm. The computation time for a single A-line 

was longer for the CNN (2.40 ms) than Loupas (0.34 ms); however, for an increased number 

of input A-lines, the CNN was faster (40.11 ms versus 49.25 ms for 200 lines).

Figure 9 shows results of applying the trained convolutional neural network displacement 

estimator to an in vivo human prostate dataset. The image shows scan-converted axial 

(sub-figures A, B, and C) and coronal (sub-figures D, E, and F) views from the CNN- and 

Loupas-estimated 3-D ARFI prostate volumes. In each image, the green arrow points to a 

clinically significant Gleason Grade Group 2 (Gleason Score 3+4) prostate lesion, which 

appears stiffer than the surrounding noncancerous tissue. In the axial images (sub-figures A 

and B), the yellow and cyan outlines respectively indicate the cancerous and non-cancerous 

segmentations used to compute the lesion CNR. The CNR of the lesion was 1.42 for 

the CNN-estimated image and 1.34 for the Loupas-estimated image. Across the entire 

prostate volume, the RMS difference between the CNN-estimated displacements and the 

Loupas-estimated displacements was 0.44 μm.

IV. Discussion

In assessing the size of the training dataset that is needed to adequately train a neural 

network, the learning curves (Fig. 3) provide some insight into when the network is 

overfitting the training data and when it is actually learning to generalize its algorithm. 

For example, when the training dataset is relatively small (less than 5000), the training loss 

(purple points) is very low but the validation loss (orange points) is high. This discrepancy 

indicates that the network is not actually generalizing to the data, but rather overfitting or 

“memorizing” the few (5000) training examples that it is presented with, and failing to 

correctly process the validation examples that it has not seen before the time of testing, 

resulting in a high mean absolute error.

On the other hand, as the size of the training dataset increases, the training and validation 

losses become more similar (Fig. 3, right side of plot). The training loss increased, compared 

to the small training dataset case, since the network is no longer memorizing the training 

dataset and therefore does not perform as well. However, the validation loss has decreased, 

corresponding to more accurate displacement estimation for cases that the CNN was not 

trained on. Ultimately, this is desirable since the trained network will be applied to new data.
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Fig. 3 indicates that the entirety of the relatively large training dataset (26,000 training 

cases) was needed to properly train the neural network and allow it to generalize to the 

validation dataset (2,000 cases). The method for easily generating training data that was 

introduced here allowed for the creation of that large training dataset, without having to 

run computationally-expensive finite element simulations. More importantly, this method 

enables the generation of a diverse set of training data, since the displacement volumes 

are randomly seeded; this allows the trained network to be adaptable to a variety of 

displacement estimation tasks and reduces the potential network bias that would result 

from a non-random training dataset. In other words, while the displacement volumes in the 

training dataset may not necessarily resemble a realistic ARFI displacement distribution, 

this approach allows for the trained network to potentially be used with applications beyond 

ARFI, including perfusion imaging and super-resolution techniques.

In the learning curve, the training and validation losses appeared to both converge to an 

asymptote of about 0.42 μm as the size of the training dataset was increased. This asymptote 

is known as the irreducible error, or the error that is inherent in the observation of the data 

that cannot be reduced by refining the model architecture. In other words, this irreducible 

error is the error that fundamentally limits the accuracy of displacement estimation from 

ultrasound I/Q data.

This can be likened to the Cramér-Rao lower bound that places a theoretical limit on the 

variance of time-delay estimates in ultrasound imaging, due to factors such as decorrelation 

noise, thermal noise, and finite sample volumes [27]. Applying the formula for the estimated 

jitter magnitude given in [27] and assuming a signal-to-noise ratio of 40 dB and a signal 

correlation of 0.98 (estimated from the training dataset), the expected jitter level for axial 

time delay estimation would be 0.205 ns, or 0.16 μm when converted to round-trip distance 

using the speed of sound. This predicted theoretical jitter magnitude is on the same order of 

magnitude as the irreducible error of the CNN that was observed in this study.

Fig. 4 demonstrated that the neural network could accurately reconstruct the displacement 

profile for data generated using the synthetic displacement volumes, with comparable 

performance to Loupas’s algorithm. The finding that larger displacements had a slightly 

larger estimation bias is consistent with results from previous studies [8]. Here, deviations 

from the ground-truth displacements are likely due to an averaging effect of the imaging 

point spread function (”shearing”) [31]. Shearing occurs when an inhomogeneous scatterer 

displacement field within the ultrasound track beam causes the different displacements 

to be averaged together, often leading to underestimation of the true displacement. One 

opportunity for future work to investigate this effect could be to re-train the network using 

realistic finite-element simulations of ARFI excitations; by generating a training dataset with 

consistent patterns of radiation force, the neural network may learn to detect and compensate 

for shearing in the tracked data. This would, however, require running finite-element ARFI 

simulations and would bias the CNN to only this specific application.

Figs. 5 and 6 demonstrated that the CNN, which was trained exclusively on simulated data, 

was able to generalize and estimate displacements for experimental data, with comparable 

results compared to Loupas’s algorithm. The stiff spherical inclusion was clearly visible 
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in the CNN-estimated phantom image. The difference image in Fig. 6 showed some 

discrepancies towards the edge of the field of view, where the CNN estimates were slightly 

higher than the Loupas estimates. The likely reason for this is that as the edge of the 

array was approached, the imaging sub-aperture became smaller due to a lack of elements, 

resulting in a large lateral PSF in the received data that was distorted compared to the 

focal configuration used to train the network. This resulted in biases in the outputted 

displacements in these regions compared to Loupas’s algorithm, which does not involve 

training on a dataset. Future work will explore whether simulating the aperture size in the 

generated training data can mitigate these biases.

As previously described, the neural network was designed with a fully convolutional 

architecture for a more streamlined network with fewer parameters to train and a goal of 

robustness to input data size. This was validated in Fig. 7, where truncating the I/Q data 

in depth and re-processing it with the same trained network resulted in an identical output 

within numerical accuracy. This is a useful feature of the network since the input data 

shape can easily change in different situations depending on the specific transducer, transmit 

frequency, interpolation settings, and other parameters. Additionally, the convolutional 

nature of the displacement estimator readily enables an entire ensemble of tracked ARFI 

data to be processed simultaneously, regardless of the ensemble length.

One limitation of this study is that the training dataset was generated with a single track 

configuration (specifically matched to the one used in an ongoing clinical study), and tested 

only on data acquired with the same sequence. A next step will be to evaluate the robustness 

of the trained network to changes in a variety of track configuration parameters, including 

fundamental versus harmonic imaging, track transmit frequency, sampling frequency, and 

focal configuration (deep focused, plane wave, or diverging wave). Additionally, while a 3×3 

convolutional filter size was selected to potentially accommodate a longer track ensemble 

with multiple time steps, the training and test data used in this study had only two time 

steps; further analysis is needed to fully explore the advantages of this filter size.

This work used raw ARFI ultrasound data in the in-phase and quadrature (I/Q) format, 

corresponding to the format of the data outputted by the ultrasound scanner in our clinical 

prostate imaging study. Recent work by Jin et al. has examined the impact of ultrasonic data 

format on the performance of deep neural networks for various ultrasound signal processing 

tasks [43]. They found that for displacement estimation, the baseline performance was 

similar for I/Q data, radiofrequency (RF) data, and the phase angle of the IQ signal, though 

RF data were more robust to changes in the frequency of the tracking beam.

The objective of this study was to demonstrate the feasibility of using a deep neural network 

for ARFI displacement estimation. Figure 8 demonstrated that the model’s computation 

time, as currently implemented on a CPU, is comparable to the computation time for 

Loupas’s algorithm. While the neural network requires upfront model training, it may be 

advantageous for displacement estimation of a larger number of input A-lines. Future work 

will explore further streamlining and optimization of the neural network, to determine 

whether deep learning could provide further improvements in computation time and/or 

Chan et al. Page 11

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimation accuracy compared to conventional phase-shift algorithms used for displacement 

estimation.

V. Conlusions

In this study, a fully convolutional neural network was trained to extract micron-level 

ARFI displacements from ultrasound data with comparable timing to Loupas’s algorithm. In 

addition, a novel method for generating training data by creating synthetic 3-D displacement 

volumes used to displace tracked scatterers was described, which facilitated rapid generation 

of a large number of datasets (30,000). In simulated data, the network accurately 

reconstructed the ground-truth displacements. The trained network had comparable, but 

slightly lower, RMS error than Loupas’s algorithm when compared to the ground truth 

displacements. The CNN generalized to experimentally-acquired phantom data, enabling the 

visualization of a stiff spherical inclusion contained within an elastic phantom. Application 

of the network to a truncated ultrasound dataset demonstrated that the CNN is robust to 

the input data size. Using the neural network in human in vivo prostate data, prostate 

anatomy and prostate cancer were well-visualized. We conclude that while Loupas’s 

algorithm may be currently preferable since it does not require model training, deep 

neural network-based displacement estimation from I/Q ultrasonic data is feasible, providing 

comparable performance with respect to both accuracy and speed, with potential for further 

improvements.
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Fig. 1. 
Example of a synthetic 3-D displacement field generated by summing ellipsoids of random 

size, orientation, location, and amplitude. These displacement fields were used to displace 

scatterers and simulate ultrasonic tracking in Field II to produce in-phase and quadrature 

(I/Q) data. The arrows pointing to the dashed axial line in the center of the summed 

volume indicate the ground-truth displacement values, which are also plotted. In total, 

30,000 displacement volumes were generated to train, validate, and test the neural network.
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Fig. 2. 
Diagram of the neural network architecture. The input size is 1200 × 2 × 2, where 1200 is 

the number of depth samples and the last two dimensions specify the time step (before and 

after the ARFI excitation) and I/Q data channel. A series of convolutional and max pooling 

layers are used, followed by a series of transposed convolutional layers to build the image 

size back up to 1200 samples. A final convolutional layer collapses the last two dimensions 

to produce a 1-D displacement output vector.
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Fig. 3. 
Learning curve, generated by varying the size of the training dataset and computing the 

mean absolute error between the output displacements and the ground-truth displacement 

labels, across both the training and validation datasets after training on the subset of data. 

Error bars indicate the standard deviation computed across ten training repetitions. The 

convergence of the two curves indicates the large number of training cases used in this study 

(26,000) was required to robustly train the network and prevent overfitting of the training 

data.
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Fig. 4. 
Displacement estimation results for a simulated dataset generated from a synthetic 3-D 

displacement field, including the ground-truth displacements (black) and the outputs from 

the neural network (orange) and Loupas’s algorithm (green). The RMS error between the 

neural network output and the true displacements was 0.62 μm, and the RMS error between 

Loupas’s algorithm output and the true displacements was 0.73 μm.
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Fig. 5. 
Displacement estimation results from the neural network (orange) and Loupas’s algorithm 

(green) for experimental data acquired in a phantom. The RMS difference between the 

outputs from the neural network and Loupas’s algorithm was 0.24 μm.
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Fig. 6. 
Displacement estimation results for experimental data acquired in a phantom with a stiff 

16.3 kPa spherical inclusion in a 10 kPa background. The RMS difference between the 

CNN- and Loupas-estimated displacements was 0.40 μm. The right sub-figure shows 

the difference image obtained by subtracting the Loupas-estimated image from the CNN

estimated image. The contrast-to-noise ratio (CNR) of the inclusion was 2.27 for the CNN

estimated image and 2.21 for Loupas-estimated image.
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Fig. 7. 
Results of the neural network for full-size phantom dataset (top row) and truncated phantom 

dataset (bottom row). For the truncated region, the RMS difference between the two 

displacement outputs was negligible (<5.07 × 10−7 μm), demonstrating that the data length 

does not impact performance, supporting the translation of this approach to a variety of 

datasets.
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Fig. 8. 
Comparison of processing time between the neural network and Loupas’s algorithm, 

performed on a 2.3-GHz Intel Core i7 CPU. For a single A-line, the computation time 

was longer for the neural network (2.40 ms) than Loupas’s algorithm (0.34 ms); however, 

as the number of lines was increased, the CNN was faster (40.11 ms vs. 49.25 ms for 200 

lines).
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Fig. 9. 
In vivo prostate ARFI images. Sub-figures (A) and (B) show an axial view of the prostate, 

and sub-figure (C) shows the difference image between the CNN and Loupas estimates. 

Sub-figures (D) and (E) show a coronal view of the prostate, and sub-figure (F) shows 

the difference image between the CNN and Loupas estimates. In each image, the green 

arrow indicates a clinically significant Gleason Grade Group 2 (Gleason Score 3+4) prostate 

lesion. In the axial images, the yellow and cyan outlines respectively indicate the cancerous 

and non-cancerous segmentations used to compute contrast-to-noise ratio.
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