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Abstract

Introduction—Optimal treatment for recurrent glioblastoma isocitrate dehydrogenase 1 and 2 

wild-type (rGBM IDH-WT) is not standardized, resulting in multiple therapeutic approaches. 

A phase III clinical trial showed that tumor treating fields (TTFields) monotherapy provided 

comparable survival benefits to physician’s chemotherapy choice in rGBM. However, patients 

did not equally benefit from TTFields, highlighting the importance of identifying predictive 

biomarkers of TTFields efficacy.

Methods—A retrospective review of an institutional database with 530 patients with infiltrating 

gliomas was performed. Patients with IDH-WT rGBM receiving TTFields at first recurrence 
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were included. Tumors were evaluated by next-generation sequencing for mutations in 205 

cancer-related genes. Post-progression survival (PPS) was examined using the log-rank test and 

multivariate Cox-regression analysis.

Results—149 rGBM patients were identified of which 29 (19%) were treated with TTFields. 

No significant difference in median PPS was observed between rGBM patients who received 

versus did not receive TTFields (13.9 versus 10.9 months, p = 0.068). However, within the 

TTFields-treated group (n = 29), PPS was improved in PTEN-mutant (n = 14) versus PTEN-WT 

(n = 15) rGBM, (22.2 versus 11.6 months, p = 0.017). Within the PTEN-mutant group (n = 70, 

47%), patients treated with TTFields (n = 14) had longer median PPS (22.2 versus 9.3 months, p = 

0.005). No PPS benefit was observed in PTEN-WT patients receiving TTFields (n = 79, 53%).

Conclusions—TTFields therapy conferred a significant PPS benefit in PTEN-mutant rGBM. 

Understanding the molecular mechanisms underpinning the differences in response to TTFields 

therapy could help elucidate the mechanism of action of TTFields and identify the rGBM patients 

most likely to benefit from this therapeutic option.
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Introduction

Glioblastomas (GBMs) are malignant brain tumors associated with poor prognosis and 

a short time to recurrence after initial treatment. The current standard of care involves 

maximal safe resection followed by concurrent radiotherapy and temozolomide [1]. 

Treatment at the time of recurrence is variable but commonly involves re-resection, re

irradiation, multiple chemotherapy regimens, and/or clinical trial enrollment. However, no 

treatments for rGBM have been demonstrated to improve overall survival (OS) in phase III 

randomized clinical trials (RCTs) [2].

Tumor treating fields (TTFields) are low-intensity electric fields (1–4 V/cm) that alternate 

at an intermediate frequency (100–300 kHz) to disrupt mitosis and inhibit tumor growth. 

However, the mechanism of action of TTFields is not entirely understood [3]. TTFields 

is the only FDA-approved GBM therapy in the past decade to demonstrate prolonged 

progression-free survival (PFS) and overall survival (OS) when added to the standard of 

care [4]. In addition, the EF-11 RCT demonstrated that TTFields monotherapy provides 

comparable survival to physician’s choice chemotherapy in the setting of rGBM [5]. 

However, as not all GBM patients respond equally to TTFields, understanding which 

patients will benefit the most from this therapy by identifying predictors of response would 

have important clinical implications.

In addition, both EF-11 and EF-14 RCTs were performed prior to the routine incorporation 

of molecular alterations in the diagnosis of infiltrating gliomas [4, 5]. The increased 

understanding of the clinical implications of mutations in isocitrate dehydrogenase 1 or 2 

(IDH1 or IDH2), among other genes, has led to a refinement of the classification of gliomas 
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[6–8]. Therefore, it is important to consider genetic alterations when evaluating the effects of 

therapeutic interventions, including TTFields.

The goal of this study was (1) to evaluate the survival effects of TTFields in a cohort 

of patients with IDH wild-type (IDH-WT) recurrent GBM (rGBM) and (2) to investigate 

possible clinical characteristics or genomic alterations that may predict responsiveness to 

TTFields. Our results show that mutations in PTEN, a tumor suppressor gene frequently 

altered in GBM, predict benefit from TTFields in patients with rGBM IDH-WT.

Methods

Patients and tumor samples

We retrospectively searched for patients with infiltrating gliomas using an institutional 

glioma registry of cases diagnosed between 2010 and 2019. The inclusion criteria for this 

study were (1) histological diagnosis of IDH-WT GBM; (2) treatment with TTFields at first 

recurrence; (3) TTFields treatment for more than 4 weeks; and (4) available tumor genomic 

alteration information (Online Resource 1).

Data for this study were collected from the electronic medical record of Memorial Hermann 

Hospital (Houston, TX) and compiled utilizing REDCap electronic data capture tools hosted 

at the University of Texas Health Science Center at Houston (UTHealth) [9, 10]. Data 

collected included age, sex, Karnofsky performance status score (KPS), diagnosis, tumor 

location, volumetric extent of resection, initial treatment strategy, treatment strategy at 

the time of recurrence, use of TTFields, PFS, OS, and post-progression survival (PPS). 

Tumors were classified by a board-certified neuropathologist following the 2016 WHO 

Classification of Tumors of the Central Nervous System [6]. Available TTFields data 

included: average percent usage and therapy start and end dates, which was obtained 

from the Optune® (Novocure Ltd., Haifa, Israel) usage database. Radiographic extent 

of resection was classified as gross-total resection (GTR), near-total resection (NTR), or 

subtotal resection (STR) as previously described [11]. Recurrence and therapeutic strategy 

were determined by a review of cases by a multidisciplinary tumor board as previously 

described [12].

A group of IDH-WT rGBM patients without TTFields treatment was utilized as the 

control cohort. This group was identified using our institutional registry. Patients who 

met the following criteria were included: (1) diagnosis of IDH-WT GBM; (2) imaging or 

histological evidence of recurrence; (3) TTFields therapy-naïve; and (4) available tumor 

genomic alteration information (Online Resource 1).

Ethics declaration

This study was approved by the Institutional Review Board (ID: HSC-MS-17–0917) of 

UTHealth and Memorial Hermann Hospital, Houston, TX, USA.

Targeted sequencing

Tumor tissue samples were analyzed for genetic alterations by a targeted next

generation sequencing (NGS) panel interrogating 205 genes and 26 gene rearrangements 
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(FoundationOne, Foundation Medicine Inc., Cambridge, MA, USA). The FoundationOne 

assay was performed in a clinical laboratory improvement amendments (CLIA)-certified 

laboratory, as previously described [13–15].

Digital droplet PCR (ddPCR)

In a subset of patients (n = 5) TERT promoter mutation was evaluated through ddPCR. 

FFPE tissue samples were tested using TERT C228T dHsaEXD72405942 and TERT C250T 

dHsaEXD46675715 (Bio-Rad Laboratories, CA, USA) probes as previously described [16].

Statistical analyses

Descriptive analyses were evaluated by Fisher’s exact test or Mann–Whitney U-test for 

categorical or continuous variables, respectively. The primary and secondary study outcomes 

were PPS and OS, respectively. We anticipated that therapeutic strategies at recurrence 

could bias OS either by including patients without recurrence (sample bias) or taking into 

consideration the time before recurrence, which was not affected by the treatment initiated 

after first recurrence (lead-time bias). This lead time bias has been demonstrated in studies 

of GBM reoperation [17]. The Kaplan–Meier method was used to plot survival curves and 

the statistical significance was examined by the log-rank test. Multivariate Cox proportional 

hazard regression models were used to calculate the hazard ratio (HR) estimates with 

95% confidence intervals (95% CI), adjusted for the known variables that affect survival. 

A p-value of < 0.05 was considered statistically significant. All statistical analyses were 

performed in EZR (v.1.40) [10, 18] and GraphPad Prism (version 9.0, La Jolla, CA, USA).

Results

Cohort characteristics

Five hundred and thirty (530) infiltrating gliomas were identified between 2010 to 2019 

from our institutional registry. We selected 29 rGBM patients treated with TTFields that 

fulfilled the inclusion criteria (Online Resource 1). The median age was 58 years (range 

40–70 years). The majority of patients (n = 19, 66%) were male, and 11 (38%) patients 

had a preoperative KPS ≥ 80. All patients were treated with maximal safe resection with 9 

(33%) having gross-total resection (GTR), and 28 (97%) were treated according to the Stupp 

protocol [1].

The median time to progression from initial diagnosis was 4.7 months. All 29 rGBM 

patients received TTFields therapy for first GBM recurrence, with a median TTFields start 

time of 51 days (range 2–161 days) from the diagnosis of recurrence. TTFields was used for 

a median of 176 days (range 41–961 days), while the median percentage of daily usage was 

59% (range 3–88%). The 29 rGBM patients were concurrently treated with reoperation (n 

= 12, 41%), temozolomide re-challenge (n = 19, 66%), bevacizumab (n = 24, 83%), and/or 

irinotecan (n = 15, 52%). Table 1 summarizes the demographic and clinical characteristics of 

the TTFields-treated rGBM cohort.

The most common genomic alterations identified in the tumors of TTFields-treated patients 

were in TERT promoter (76%), CDKN2A/B (72%), EGFR (55%), PTEN (48%), TP53 
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(28%), PIK3CA (21%), NF1 (14%), PIK3R1 (14%), RB1 (14%), CDK4 (10%), MDM2 
(10%), MDM4 (10%), BCOR (7%), GLI1 (7%), MYC (7%), PDGFRA (7%), and BRAF 
(7%), which were similar to the frequencies reported in larger series of GBM [19–22]. 

Detailed information on the genomic alterations in the TTFields-treated patients is included 

in Online Resource 2.

TTFields therapy in recurrent IDH-WT GBM

The rGBM patients treated with TTFields (n = 29) did not show a statistically significant 

increase in PPS compared to rGBM patients that did not receive TTFields (n = 120), (13.9 

months VS. 10.9 months, p = 0.068), Fig. 1a. Similarly, no significant increase in OS was 

observed in rGBM patients treated with TTFields (Online Resource 3A).

Predictors of survival in rGBM patients treated with TTFields

Univariate analysis did not show a significant correlation between PPS and demographic or 

clinical characteristics in TTFields-treated patients (Online Resource 4). However, analysis 

of genetic alterations in rGBM patients treated with TTFields revealed a significantly longer 

PPS in patients with PTEN-mutant tumors (n = 14) compared to patients with PTEN-WT 

(n = 15) tumors (22.2 months vs. 11.6 months, p = 0.0167), Fig. 1b. Multivariate Cox

regression analysis adjusting for age and preoperative KPS demonstrated that preoperative 

KPS ≥ 80 (HR 0.30, p = 0.026) and PTEN mutation (HR 0.23, p = 0.003) independently 

correlated with improved PPS in TTFields-treated patients (Table 2). In addition to 

prolonged median PPS, there was an increased median OS in TTFields-treated patients 

with PTEN-mutant compared to PTEN-WT rGBM (30.8 vs. 16.6 months, p = 0.007), Online 

Resource 3B.

TTFields therapy improves survival of patients with PTEN-mutant rGBM

To confirm our results, we evaluated the effects of TTFields treatment in patients with 

PTEN-mutant rGBM. Among the 149 patients with GBM included in this study, 70 (47%) 

harbored a PTEN mutation, while 79 (53%) were PTEN-WT.

We compared the PPS of patients with PTEN-mutant rGBM between those treated with 

TTFields and those who did not receive TTFields therapy. Our results show an increased 

PPS in patients with PTEN-mutant rGBM that received TTFields (n = 14, 22.2 months) 

compared to those who did not receive TTFields therapy (n = 56, 9.3 months), p = 0.0053, 

Fig. 1c. Multivariate analysis adjusting for the most established covariates of survival 

in GBM (age and KPS), as well as other therapies used at recurrence (bevacizumab, 

temozolomide, and TTFields), showed that TTFields therapy was independently associated 

with improved PPS in patients with PTEN-mutant IDH-WT rGBM, p = 0.003 (Table 3). 

Although patients with PTEN-mutant rGBM that received TTFields had an approximate 

doubling of the median OS (30.8 months) compared to those who did not receive TTFields 

therapy (16.8 months), the difference was not statically significant (p = 0.054, Online 

Resource 3C).

Importantly, the improved PPS and OS observed with TTFields treatment in patients with 

PTEN-mutant rGBM was not observed in the n = 79 patients with PTEN-WT rGBM. There 
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was no significant difference in median PPS between patients with PTEN-WT rGBM who 

received TTFields (n = 15, 11.6 months) and those who did not receive TTFields therapy 

(n = 64, 11.6 months), p = 0.801 (Fig. 1d). There was no significant difference in median 

OS between patients with PTEN-WT rGBM who received TTFields (n = 15, 16.6 months) 

and those who did not receive TTFields therapy (n = 64, 21.5 months), p = 0.078 (Online 

Resource 3D).

We also examined demographic and clinical characteristics that might explain the survival 

differences between patients with PTEN-mutant and PTEN-WT tumors treated with 

TTFields. One hundred percent (100%, n = 15) of patients with PTEN-WT rGBM treated 

with TTFields were simultaneously treated with salvage bevacizumab, which is higher than 

the 64% (n = 14) of patients with PTEN-mutant rGBM treated with TTFields (p = 0.017) 

that also received bevacizumab. However, no significant differences in TTFields usage 

percentage or any other clinical characteristics were observed between TTFields-treated 

patients with PTEN-mutant or PTEN-WT rGBM (Table 1).

The type of PTEN mutations and its biological effect were subsequently evaluated 

demonstrating 6 missense mutations, 4 nonsense mutations, 2 frameshift mutations, and 2 

loss copy number alterations. From the 14 mutations; 7 are known to cause loss-of-function 

of the gene and 7 are likely to cause loss-of-function of the gene. Moreover, PTEN 
mutations reported in this study are considered pathogenic or likely pathogenic according to 

ClinVar and OncokB databases (Online Resource 5) [23, 24].

Discussion

The results of this study suggest that the effects of TTFields are influenced by tumor-related 

factors, particularly, the PTEN mutation status. Our study reveals, for the first time, a 

molecular biology predictor of responsiveness to TTFields therapy, i.e., that compared to 

PTEN-WT, PTEN-mutant GBM IDH-WT patients have an almost-doubling of median PPS 

due to TTFields at the time of recurrence (11.6 months vs. 22.2 months, respectively, p = 

0.0167). More importantly, we did not observe differences in TTFields compliance, which is 

a known factor that influences TTFields efficacy [25], between patients with PTEN-mutant 

and PTEN-WT rGBM. Additionally, we found that TTFields-treated patients with KPS ≥ 

80 derived a PPS benefit, which has been demonstrated in several GBM studies prior to 

the advent of TTFields therapy [26–28]. Importantly, large studies have demonstrated that 

PTEN mutations do not confer an outcome benefit in GBM IDH-WT [19–21]. Accordingly, 

we did not observed survival differences in either OS (PTEN-WT 21.5 vs. PTEN-mutant 

16.8-months, p = 0.062) or PPS (PTEN-WT 11.6 vs. PTEN-mutant 9.3-months, p = 0.296) 

in patients not treated with TTFields.

The improved survival observed in patients with PTEN-mutant GBM might indicate a 

relationship between the mechanism of action of TTFields and PTEN’s cellular function. 

PTEN, a gene found in chromosome 10, is commonly mutated in human cancers including 

~ 50% of GBM IDH-WT tumors [19–21]. Given the frequent loss-of-function of PTEN 
in cancers and its function (inhibition of PI3K pathway), PTEN is recognized as a 

bona fide tumor suppressor gene [29]. PTEN is involved in maintaining mitotic spindle 
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architecture and promoting chromosome alignment and segregation [29]. These functions 

overlap with the postulated mechanism of action of TTFields, which involves induction of 

abnormal spindle formation and subsequent mitotic arrest or delay [30, 31]. Even though 

the mechanism is not yet fully elaborated, it is believed that TTFields cause an improper 

attachment of chromosomes to the spindle fibers [3, 32, 33]. Loss of PTEN function causes 

disruption of proper spindle assembly and chromosome segregation, which results in mitotic 

catastrophe [29, 34, 35]. Therefore, it is possible that the effects of TTFields therapy, which 

can inhibit the polymerization of microtubules and the assembly of the mitotic spindle 

apparatus, would be enhanced by loss-of-function mutations in PTEN.

Future directions

In vitro experiments using PTEN-mutant and PTEN-WT cell lines will facilitate the 

evaluation of TTFields’ effects on the mitotic spindle and mitotic division. Similarly, studies 

with animal models using PTEN-WT and PTEN-mutant tumor models could shed light into 

the mechanism of action of TTFields and the possible sensitizing effects of PTEN mutations. 

Finally, a prospective study evaluating the effects of TTFields on GBM patient survival in 

the context of the tumor’s genomic alterations (including PTEN mutation status) will be 

critical to confirm our results.

Limitations

Some limitations of our study include its retrospective nature and the potential for selection 

bias, as not all patients with rGBM in our institution had information available on the 

mutations present in the tumor. Also, the effects of concurrent systemic chemotherapies 

cannot be entirely segregated from the effects of TTFields. However, as Table 1 shows, 

the only significant difference in concurrent therapy use with TTFields at recurrence was 

more frequent salvage bevacizumab use in the PTEN-WT compared to the PTEN-mutant 

cohort. Other limitations of our study are the relatively small sample size of TTFields

treated patients and unknown MGMT promoter methylation status for most patients. Lastly, 

mutation analysis was performed in tissue from the initial resection. However, recent studies 

have shown that GBM may evolve stochastically from early driver events that are shared 

both at presentation and recurrence. Therefore, differences in genetic alterations between 

initial and recurrent tumors are not expected in critical oncogenic drivers like PTEN [36].

Conclusions

Compared to patients with PTEN-WT GBM, those with PTEN-mutant GBM derived 

a significantly improved survival benefit when treated with TTFields at recurrence. 

Understanding the molecular mechanisms underpinning and predicting the differences in 

response to TTFields therapy could help elucidate the mechanisms of action of TTFields, 

thereby identifying those patients that will benefit the most from this therapeutic option.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Post-progression survival (PPS) differences in response to tumor treating fields (TTFields) 

treatment of recurrent glioblastoma (rGBM) isocitrate dehydrogenase wild-type (IDH-WT). 

a PPS of recurrent GBM IDH-WT by TTFields therapy b PPS of recurrent GBM IDH-WT 

patients treated with TTFields by PTEN status. c PPS of PTEN-mutant rGBM IDH-WT by 

TTFields therapy. d PPS of PTEN-WT rGBM IDH-WT by TTFields therapy. TTF TTFields.
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Table 2

Multivariate analysis of post-progression survival of patients with recurrent glioblastoma (rGBM) IDH-WT 

treated with tumor treating fields (TTFields) (n = 29)

Variables HR (CI 95%) p-value

Age (years) 0.95 (0.90–1.01) 0.128

Preoperative KPS ≥ 80 0.30 (0.11–0.87) 0.026

PTEN mutation 0.23 (0.09–0.63) 0.003

Significant p-values are bolded

Multivariate analysis was performed using a Cox regression model HR hazard ratio, CI confidence interval, KPS Karnofsky Performance Status, 
WT wildtype
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Table 3

Multivariable analysis of post-progression survival of patients with PTEN-mutant recurrent glioblastoma 

(rGBM) IDH-WT (N = 70)

Variables HR (CI 95%) p-value

Age (years) 1.00 (0.98–1.03) 0.778

Male 0.77 (0.42–1.42) 0.404

Preoperative KPS ≥ 80 0.59 (0.30–1.17) 0.130

Non-GTR 1.72 (0.85–3.48) 0.134

Salvage TMZ 0.84 (0.43–1.65) 0.610

Salvage bevacizumab 0.91 (0.48–1.73) 0.775

Salvage TTFields 0.29 (0.12–0.66) 0.003

Significant p-values are bolded

Multivariate analysis was performed using a Cox regression model

TTFields tumor treating fields, KPS Karnofsky Performance Status, GTR Gr oss-total resection TMZ temozolomide, HR hazard ratio, CI 
confidence interval, WT wildtype
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