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O P T I C S

Jones matrix holography with metasurfaces
Noah A. Rubin1*†, Aun Zaidi1†, Ahmed H. Dorrah1, Zhujun Shi2,3, Federico Capasso1*

We propose a new class of computer-generated holograms whose far-fields have designer-specified polarization 
response. We dub these Jones matrix holograms. We provide a simple procedure for their implementation using 
form-birefringent metasurfaces. Jones matrix holography generalizes a wide body of past work with a consistent 
mathematical framework, particularly in the field of metasurfaces, and suggests previously unrealized devices, 
examples of which are demonstrated here. In particular, we demonstrate holograms whose far-fields implement 
parallel polarization analysis and custom waveplate-like behavior.

INTRODUCTION
In a 1965 paper (1), Adolf Lohmann, a pioneer of the computer-
generated hologram (CGH), remarked that while “holography” 
translates as “total recording” from Greek, “a hologram is not really 
a total recording, since only one amplitude and one phase are re-
corded, which would be adequate if light were a scalar wave.” As this 
suggests, light’s polarization is often omitted in the study of ho-
lography and diffractive optics. However, a variety of holographic 
materials and technologies do permit the control of polarization in 
a spatially varying fashion. Over the past five or so decades, these 
have taken on various forms and names, among them polarization 
holograms (2,  3), polarization gratings (4,  5), stress-engineered 
optical elements (6), a variety of liquid crystal devices (7), and, more 
recently, metasurfaces (8, 9). These metasurfaces, subwavelength- 
spaced arrays of phase-shifting elements that may be strongly form- 
birefringent, are the specific focus and implementation medium of 
this work. However, the generalized viewpoint we discuss here has 
broader applicability.

In the paraxial regime—often an unstated assumption in holography 
and Fourier optics—a propagator, commonly the Fourier transform 
ℱ, links the “near-field,” an electric field with a phase and/or ampli-
tude distribution created by the hologram (though not to be confused 
with the optical near-field owing to evanescent waves), with the 
“far-field,” a desired phase and/or amplitude (though more commonly, 
amplitude-only) distribution some distance many wavelengths away. 
In this work, for clarity’s sake, “hologram” refers to the physical 
field-modifying object rather than a holographic image in the far-
field, which might also be more colloquially referred to as a holo-
gram. Often, a hologram is described by its spatially varying, aperture 
transmission (or reflection) function t(x, y), a single complex-valued 
scalar function given by an amplitude and a phase. For normal-
ly incident, plane wave–like light, t(x, y) can be used as a stand-in 
for the field itself (an assumption that, if necessary, is easily relaxed 
with the convolution theorem). This picture can be generalized to 
handle polarization by describing the hologram instead by a 2 × 
2 Jones matrix transfer function J(x, y) (matrix-valued quantities 
are denoted by bold lettering here), permitting the analysis of 
polarization-sensitive holographic media like those above. J(x, y), 

which describes the polarization response at each point (x, y), 
contains four complex numbers, in contrast to the single complex 
number t(x, y).

In a common approach, the response of a metasurface (or other 
polarization-sensitive holographic element) is considered separately 
upon illumination with one of two orthogonal “basis” polarization 
states, which can be elliptical in general. An incident plane wave in 
one of the basis states, after passing through the metasurface, is de-
signed to create a scalar field that is everywhere uniform in polariza-
tion, with a designer-specified overall phase profile. This approach 
permits the realization of optical elements—gratings, lenses, and, in 
general, holograms—whose far-field function can switch on the ba-
sis of incident polarization [as in (8, 9), to name only a few examples 
from what is now a vast literature]. However, this switchability is 
global in nature: One entire far-field response is ascribed to each 
polarization state in the chosen basis, and the polarization-dependent 
response cannot vary over the far-field. For all other polarizations, the 
response is a weighted superposition of the two. In other words, 
what is inherently a polarization-dependent problem is, in this scheme, 
reduced to two scalar ones (imparting two scalar phase profiles); 
accordingly, we dub this the “scalar” approach.

In another now-common approach, the metasurface is de-
signed to produce a distribution of polarization ellipses, described 
by the Jones vector function ∣j(x, y)⟩, so that the far-field is given by 
∣a(kx, ky)⟩ = ℱ{∣j(x, y)⟩}, where ℱ now denotes the Fourier trans-
form operator distributed over both elements of the Jones vector (Jones 
vectors are denoted throughout by kets in the bra-ket notation). In 
this way, the polarization state of the far-field can be made to vary 
in a desired fashion (10–16). However, this vectorial approach as-
sumes that the incident light has a particular polarization state. If 
this changes, so too does the carefully choreographed far-field po-
larization distribution.

JONES MATRIX HOLOGRAPHY
Concept
Neither the scalar nor vector approaches recognize the most gener-
al polarization control enabled by the ability to spatially manipulate 
light’s polarization (e.g., with a metasurface). In this work, we rely 
instead on a top-level design of the metasurface, specified without 
regard for any particular incident polarization state. In particular, 
the metasurface is described by a spatially varying Jones matrix J(x, y) 
and a far-field A(kx, ky) = ℱ{J(x, y)} where the Fourier transform 
now distributes over all four elements (four complex-valued func-
tions) of the Jones matrix as
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	​ A(​k​ x​​, ​k​ y​​ ) = [​ℱ { ​J​ 11​​(x, y ) }​  ℱ { ​J​ 12​​(x, y ) }​  
ℱ { ​J​ 21​​(x, y ) }

​ 
ℱ { ​J​ 22​​(x, y ) }

​]​
	 (1)

If we assume plane wave incidence, A(kx, ky)—itself a Jones matrix—
gives the polarization-dependent behavior of each plane wave 
(kx, ky) component of the far-field (Fig. 1A). In other words, in this 
approach, rather than trying to control the far-field’s intensity for 
some incident polarization or its polarization state, we seek to con-
trol its polarization transfer function. For instance, if A(kx, ky) cor-
responds to an x polarizer, light will be directed into the plane wave 
component with direction (kx, ky) in a way that depends on the in-
cident polarization state in accordance with a polarizer—bright if it 
is∣x〉, dark if it is∣y〉.

This matrix approach encompasses the aforementioned vector 
and scalar ones as subcases: ∣j(x, y)〉 = J(x, y)∣〉 is a distribution of 
polarization states for a chosen incident polarization∣〉, and 
⟨j(x, y)∣⟩ is a scalar field for a chosen analysis polarization state∣〉. 
This approach thus provides a simple language in which to frame 
light’s interaction with polarization-sensitive metasurfaces and clas-
sify past works.

Now, if a far-field with a polarization-dependent response de-
scribed by some A(kx, ky) is desired, a Jones matrix hologram imple-
menting it is given by inverse Fourier transform as

	​ J(x, y ) = ​ℱ​​ −1​ { A(​k​ x​​, ​k​ y​​ ) }​	 (2)

The J so-obtained (and, for that matter, any Jones matrix) can be 
decomposed as

	​ J  =  HU​	 (3)

where H is a Hermitian (lossy, polarizer-like) Jones matrix with H† = H 
and U is a unitary (lossless, waveplate-like) Jones matrix with ​​
U​​ †​ U  =  𝕀​ (​𝕀​ being the 2 × 2 identity matrix and † being the Hermi-
tian conjugate). This is known as the matrix polar decomposition, 
derived from the more common singular value decomposition, and 
is the matrix analog of the scalar polar decomposition of a complex 
number into amplitude and phase with U playing the role of a pha-
sor and H playing the role of an amplitude (17). In general, the 
near-field J(x, y) corresponding to a desired far-field A(kx, ky) by Eq. 
2 will be neither strictly Hermitian nor unitary.

Metasurface implementation
To extend beyond mathematics into the regime of application, how-
ever, the Jones matrix function J(x, y) so-obtained must be physically 
realizable as an optic. In this work, this is accomplished with meta-
surfaces composed of dielectric pillars. In a now-common imple-
mentation, these pillars are everywhere uniform in height (for ease 
of fabrication), with cross sections having two perpendicular mirror 
symmetry axes (e.g., rectangles or ellipses). These metasurfaces exhibit 
form birefringence, implementing a local Jones matrix of the form

	​​ J(x, y ) = R(−  ) ​[​​​​e​​ i​​ ​x ′ ​​​​​  0​ 
0

​ 
​e​​ i​​ ​y ′ ​​​​

​​]​​R()​​	 (4)

where x′ and y′ are phases imparted on light polarized along the 
symmetry axes of the pillar, controlled by varying the elements’ 
transverse dimensions, and  is its angular orientation (8) (Fig. 1B). 
Equation 4 has just three scalar degrees of freedom, while an arbitrary 
Jones matrix (with its four complex entries) has eight. A pillar-based 
dielectric metasurface, then, cannot implement any desired Jones 
matrix at a given point (x, y). Equation 4 instead describes a Jones 
matrix subject to two key restrictions, those being (i) unitarity, such 
that ​​J​​ †​ J  =  𝕀​, and (ii) symmetry, such that JT = J, where T denotes a 
matrix transpose. The former is a matrix generalization of the 
statement for scalar light that certain holographic media are 
phase-only. The latter is a way of stating that the eigen-polarizations 
of Eq. 4 must be linear (no chirality).

These two restrictions imposed by this particular metasurface 
platform themselves impose restrictions on the far-field polariza-
tion function A(kx, ky) achievable with such a metasurface. Any de-
sired far-field function Ades(kx, ky) we ask of the metasurface must 
first be compatible with these. The first restriction (matrix symme-
try) is easily accounted for: J(x, y) will only be symmetric if the 
far-field behavior specified by A(kx, ky) is everywhere a symmetric 
Jones matrix, too, since the matrix Fourier transform linking the 
two, being essentially an (infinitesimal, exponential-weighted) 
summation, preserves matrix symmetry. A metasurface whose local 
Jones matrix is of the form of Eq. 4, then, may only implement 
polarization behavior in the far-field described by symmetric Jones 
matrices; some practical consequences of this rule are elaborat-
ed below.

However, in general, even if we limit ourselves to a desired far-
field behavior A(kx, ky) that is symmetric everywhere, the hologram 
J(x, y) obtained by Eq. 2 will contain both Hermitian and unitary 
behavior in general, incompatible with the second restriction im-
posed by Eq. 4. This issue is less easily addressed. However, progress 
can be made by recognizing the problem’s simpler, scalar analog: 
the phase problem.

A

B

...

...
...

...

Pillar Jones matrix:

Mandates:

1

2

(unitarity)

(symmetry)

At all points              
on the metasurface

Fig. 1. Jones matrix holography. (A) A Jones matrix hologram implements a 
polarization-dependent mask (J(x, y)) with a far-field, plane wave spectrum polar-
ization response (A(kx, ky)) whose behavior can be controlled. The far-field response 
to an incident polarization state with Jones vector ∣j〉in can be found by matrix 
multiplication. (B) These can be implemented with metasurfaces composed of di-
electric pillars, whose Jones matrices, as discussed in the text, are subject to certain 
mathematical constraints. An example SEM (scanning electron micrograph) of a small 
section of a sample from this work is shown. Scale bar, 500 nm.
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Jones matrix phase retrieval
The phase problem describes the inverse problem of finding a scalar 
function that is strictly phase-only, which may, nonetheless, have a 
Fourier transform (far-field) whose amplitude can be arbitrarily 
specified (while its phase is allowed to freely vary). This problem is 
well known in holography, where the Fourier transform is over 
space, but also appears in time domain problems, for instance, in 
determining modal phases from autocorrelation in lasers (18).

The phase problem is inherently one of variational calculus, of 
finding a function (x, y) such that the functional ℱ{ei(x, y)} is opti-
mum with respect to some merit criterion and given constraints. 
Rather than resorting to a brute-force gradient optimization (which 
would be numerically impractical over the scale of a large CGH, where 
the phase at each grid location becomes a free parameter), a number 
of “gradient-free” numerical techniques have emerged that are in wide 
use in diffractive optics to implement arbitrary far-fields with phase-
only platforms [see, e.g., (19, 20)]. By far, the best-known among these 
is iterative phase retrieval (21), most commonly implemented with 
the well-known Gerchberg-Saxton (GS) algorithm (22). The GS al-
gorithm repeatedly switches between the near- and far-fields by Fourier 
transform, keeping the near-field phase and neglecting amplitude 
variations while retaining the far-field phase and replacing its am-
plitude with the desired CGH pattern. It can be shown that the GS 
algorithm implements gradient descent on the phase function (x, y), 
optimizing deviation from a desired far-field intensity pattern in 
the least-squares sense, without ever computing a Jacobian (21).

Unitarity is the matrix analog of “phase-only.” Here, we general-
ize the scalar GS algorithm to operate on matrix quantities using the 
matrix polar decomposition (for which highly efficient numerical 
schemes exist) in place of the scalar one. The modified algorithm is 
shown in Fig. 2. An initial near-field Jones matrix distribution J(x, y) 
is chosen and Fourier-transformed, yielding A′(kx, ky). Its polar de-
composition is found everywhere, and its Hermitian (lossy) part is 
discarded. From the remaining unitary part, an overall phase  is 
extracted. This is the overall phase of the matrix and can be taken 
from any element of the Jones matrix (such as the upper left element) 
so long as this choice is consistently applied. The designer-specified, 
desired far-field polarization behavior, described by Ades(kx, ky), is 
multiplied by this overall phase distribution (kx, ky). The resultant 
quantity is inverse Fourier-transformed to yield J′(x, y). After a ma-
trix polar decomposition, the unitary part can be extracted, becoming 
the new near-field Jones matrix hologram. This cycle continues it-
eratively until the far-field converges to a distribution of Jones ma-
trices that is, ideally, everywhere proportional to Ades(kx, ky) up to 
an overall phase profile (kx, ky), a free parameter that evolves upon 
iteration (Fig. 2).

The Fourier transform and the matrix polar decomposition both 
preserve matrix symmetry. That is, if the desired far-field behavior 
Ades(kx, ky) = AT(kx, ky) ∀ (kx, ky) [and the initial guess for J(x, y) is 
as well], no asymmetric matrices are introduced into the iterative 
scheme of Fig. 2. The resultant J(x, y) will, by definition, be of the 
form of Eq. 4 so that x′, y′, and  can be extracted at each point, 
and a metasurface may be designed and fabricated in a dielectric 
platform of choice. The metasurfaces of this work are made of TiO2 
pillars for operation at  = 532 nm using a process documented else-
where (23); what is described here could apply at any wavelength 
given a suitable material platform.

In short, the matrix GS algorithm of Fig. 2 permits Jones matrix 
holograms whose far-fields exhibit designer-specified polarization 

behavior (so long as they obey the above symmetry constraint) to be 
straightforwardly realized with conventional, pillar-based dielectric 
metasurfaces. It is a higher-dimensional generalization of previous 
GS-like algorithms used for polarization-dependent metasurface 
design, enabled by the matrix polar decomposition that does not 
require the incident polarization state to be known a priori.

RESULTS
The preceding discussion has been purely hypothetical. What de-
sired polarization functionality Ades(kx, ky) should a metasurface be 
designed to implement as an experimental proof of concept? By the 
polar decomposition (Eq. 3), any Jones matrix can be decomposed 
into a Hermitian (polarizer-like, amplitude-modulating) and a uni-
tary (waveplate-like, phase-modulating) component. This provides 
a natural categorization of possible experimental test cases. In what 
follows, we demonstrate Jones matrix holograms whose far-fields 
implement both polarizer- and waveplate-like behaviors, beginning 
with the former. The examples that follow are specifically enabled 
by the Jones matrix approach of this work (see Discussion and Con-
clusion and section S2 of the Supplementary Materials).

Polarization-analyzing holograms
An ideal polarizer passes its preferred polarization state ∣〉 (elliptical 
in general) without attenuation while extinguishing ∣⊥〉 with 〈∣ ⊥〉 = 
0. If this extinction is imperfect, the device is known as a diattenuator 
(17). Diattenuators are described by Hermitian Jones matrices.

We seek here to demonstrate Jones matrix holograms whose far-
fields implement designer polarizer-like behavior. A conventional 
polarizer transmits light at its output whose polarization state 
matches that being analyzed. In other words, a conventional polar-
izer is of the form

Initial
guess

Design
metasurface

Matrix polar
decomposition

Unitary part Hermitian part

DiscardOverall phase

Desired polarization
behavior

Discard

Matrix polar
decomposition

Unitary partHermitian part Iterative 
Jones matrix

phase retrieval

Fig. 2. Jones matrix phase retrieval. The Gerchberg-Saxton (GS) algorithm can 
be generalized to allow a unitary Jones matrix mask to implement a far-field whose 
polarization dependence A(kx, ky) may be arbitrary. Much like the scalar GS algo-
rithm, this matrix generalization uses a division into phase-like (unitary) and amplitude-
like (Hermitian) components using the matrix polar decomposition.
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	​ A ∝∣〉〈 ∣​	 (5)

It can be shown that the Jones matrix of Eq. 5 is only symmetric 
if ∣〉 is a linear polarization state. The presence of any chirality in 
the pass polarization ∣〉 destroys the symmetry of the polarizer’s 
Jones matrix and, consequently, its ability to be implemented in the 
far-field of a conventional pillar-based metasurface Jones matrix 
hologram (a rule elaborated above). However, it can also be shown 
that a Jones matrix A ∝∣*〉〈∣, where * denotes complex conjugation, 
will always be symmetric, irrespective of whether ∣〉 is linear, cir-
cular, or elliptical. Such a Jones matrix matches a polarizer’s output 
intensity transfer characteristic but differs in that the polarization of 
exiting light is always of flipped-handedness relative to that being 
analyzed. We refer to this as a polarization analyzer, to distinguish 
from a true polarizer.

In this section, then, we demonstrate devices whose far-fields 
can be described by the target Jones matrix function

	​​ A​ des​​(​k​ x​​, ​k​ y​​) = a(​k​ x​​, ​k​ y​​ )∣​​​ *​(​k​ x​​, ​k​ y​​ )〉〈(​k​ x​​, ​k​ y​​)∣​	 (6)

Equation 6 describes a far-field where each point receives light as 
though a virtual polarizer were placed there—the overall amplitude 
of light directed there a and the incident polarization ∣〉 analyzed 
for can be controlled and may vary arbitrarily from point to point.

Figure 3 makes this capability tangible with a simple example. 
Using the methods above (i.e., matrix phase retrieval, see Supple-
mentary Materials S1), a dielectric metasurface can be designed and 
fabricated based on a given design. In this case, the metasurface imple-
ments a Jones matrix mask J(x, y) whose far-field contains holographic 
images of different polarization ellipses (eight linear states of varying 
orientation and both circular polarization states). The region con-
taining each image acts as a polarization analyzer for its respective, 
depicted polarization state. For example, the holographic image of 
∣x〉 (horizontal arrow) is brightest when the incident polarization 
∣j〉in = ∣x〉 and dark when ∣j〉in = ∣y〉, as though the pixels contained 
within the drawing act as an analyzer of ∣x〉 polarized light. The 
schematic of the far-field shown in Fig. 3A shows all polarization 
ellipses equally bright for clarity’s sake; this would be the case in 
reality only if the incident light were perfectly unpolarized, with equal 
projection onto all polarization states.

As shown in Fig. 3A, the fabricated metasurface is illuminated 
with collimated laser light ( = 532 nm in this case) of variable po-
larization. The angular spectrum (far-field) that results is imaged 
onto a digital image sensor using a relay setup described in the Sup-
plementary Materials (section S1D), filtering out the undiffracted zero 
order along the way. Images are acquired for many input polariza-
tion states (without saturation), permitting a full polarimetric char-
acterization of the grating’s response.

Figure 3B depicts the far-field produced by the metasurface ho-
logram for six incident polarization states, each of which is denoted 
in the bottom left corner of its image by a white label. As can be 
seen, each incident polarization state prompts the strongest response 
in the region of the hologram corresponding to itself. For example, 
∣j〉in = ∣45° 〉 prompts the hologram to direct most power to the 
drawing of diagonal, linearly polarized light, while the image of an-
tidiagonal polarization is dark with a gradient in between, while 
drawings of ∣x〉, ∣y〉, ∣R〉, and ∣L〉 are all about half as bright. When 
each circular polarization is incident, all linear polarizations are 
about equally bright (and half as bright as the image of the incident 

circular state). The intensity of each polarization depiction is pro-
portional to the projection of the incident polarization state onto 
the depicted state in accordance with Malus’ law. In a way, then, the 
hologram of Fig. 3 is a “visual full-Stokes polarimeter” from which 
an incident polarization state can be simply read out by inspection 
(this behavior would generalize to partial polarization states as well).

In Fig. 4, three additional examples showcasing this design free-
dom are shown. Figure 4A depicts the response of a polarization-
analyzing hologram that is, in some sense, a continuous version of 
Fig. 3. Light is directed into an annular ring with A(kx, ky) acting as 
a linear polarizer that “turns” with azimuthal angle. The brightest 
and darkest parts of the ring rotate with incident linear polarization, 
always remaining 180° apart with Malus’ law governing the intensity 
in between; for incident circular polarization, the ring appears equally 
bright everywhere, with half the power of the maxima observed un-
der linearly polarized illumination.

Collimated incident light of
variable polarization

Bright when
Dark when 

Bright when
Dark when 

Screen in

A

B

Fig. 3. Illustrative example of a polarization-analyzing hologram. (A) When il-
luminated with collimated laser light, a suitably designed metasurface hologram 
implements a far-field in which light is directed on the basis of its incident polariza-
tion state. In this particular example, the hologram is designed to produce a pat-
tern of illustrations of different polarization states. Each drawing acts as an 
“analyzer” for its depicted polarization state. For instance, the drawing of x-polarized 
light (horizontal line) is bright when ∣j〉in = ∣x〉 and dark when ∣j〉in = ∣y〉; this part 
of the far-field implements the Jones matrix Ades = ∣x〉〈x∣. SEM scale bar, 1 m. 
(B) The far-field measured on a digital image sensor reflects this desired behavior 
for six incident polarization states (∣j〉in is denoted in white at the lower left of 
each image). The right scale bar shows the cone angle subtended by the far-field, 
while a color bar denotes the image intensity.
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Figure 4B, on the other hand, is a more sophisticated version of 
the hologram of Fig. 3, depicting a polar projection of the northern 
and southern hemispheres of the Poincaré sphere. Each drawing of 
a polarization ellipse again acts as an analyzer for its own state. Un-
like the example in Fig. 3, Fig. 4B shows that this approach extends 
to arbitrary, in-general elliptical polarization states and, moreover, 
permits features (in particular, the grid lines) that are not sensitive 
to polarization at all (that is, ​​A​ des​​  ∝  𝕀​ there) to be mixed with those 
that are. Supplementary movies S1 to S3 show animations of the response 
of this hologram to variable linear polarization states, light from a 
polarizer/rotating quarter-waveplate combination, and partially polar-
ized light, respectively (described in their captions and section S3C).

Last, the example of Fig. 4C reprises the holographic images 
from (9) showing that this Jones matrix control can be extended to 
CGHs with rich features. Here, different parts of the image act as 
polarization analyzers for linear polarization states. The azimuth of 
these linear polarization states changes smoothly in the vertical di-
rection from ∣y〉 at the bottom, to ∣45∘〉, ∣x〉 in the middle, to ∣135∘〉, 
and finally ∣y〉 again at the top. Consequently, the image is uniformly 
bright (subject to the underlying holographic image) under circu-
larly polarized illumination.

In each example in Fig. 4 (and Fig. 3), a scale bar denotes the 
extent of the image in angle space with each division denoting 15∘ of 

cone angle (a length scale is not appropriate, as the hologram ex-
pands and contracts depending on the screen’s placement). The 
maximum angular bandwidth over which holographic control can 
be exerted is dictated by the interelement separation of the metasur-
face’s phase shifters (see Supplementary Materials S1). The intensity 
color map defined in Fig. 3 applies throughout this work. The imag-
es in Figs. 3 and 4 are difficult to decipher clearly in this small format 
(especially Fig. 4B); larger-form images are provided in the Supple-
mentary Materials and in the Supplemental Movies. An infinity of 
other similar examples are possible subject to energy conservation 
through a modified form of Parseval’s identity (section S1).

Waveplate-like holograms
The examples of the previous section involve a redirection of light 
depending on its polarization state. A given location in the far-field 
of these polarization-analyzing holograms receives or does not re-
ceive incident light depending on its polarization state, akin to the 
behavior of a polarizer.

This differs fundamentally from waveplate-like behavior in which 
output polarization state, rather than intensity, varies with chang-
ing input polarization. Waveplates—phase retarders—in contrast, 
are represented by unitary operators that represent a dephasing 
of the components of the incident polarization projected onto 

 A

 B

 C

Fig. 4. Parallel polarization analysis by a metasurface Jones matrix hologram. Four examples of Jones matrix holograms (A, B, and C, each described in Results) are 
shown in which incident light is directed to the far-field in accordance with its projection onto arbitrarily selected analyzer polarizations across the far-field. Each column 
corresponds to an incident polarization (depicted at the top). Scale bars at the right side of each row show the angular bandwidth of the hologram, with each division 
corresponding to 15∘ centered about 0∘. These holograms are measured with a polarimetric relay imaging system described in the Supplementary Materials (section S1D). 
Larger-form versions of the images—and animations of their response with changing polarization—are also provided in the Supplementary Materials (movies S1 to S3). 
The color map of this figure is identical to that of Fig. 3.
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an orthogonal basis of polarization states (with a possible overall 
phase shift).

In this section, we demonstrate a Jones matrix hologram whose 
far-field implements operators of the form

	​​ A​ des​​(​k​ x​​, ​k​ y​​ ) = ​e​​ i​
 _ 2 ​​∣〉〈∣+ ​e​​ −i​ _ 2 ​​∣​​​ ⊥​ 〉〈 ​​​ ⊥​∣​	 (7)

where  is a retardance angle, while ∣〉 and ∣⊥〉 are the eigen-
polarizations of the waveplate representing its “fast axis.” Equation 7 
projects incoming light into the eigen-basis and retards the two 
components by the angle  before reconstructing the output. The 
retardance  and orthogonal eigen-polarization basis defined by 
∣〉 can vary across the far-field (along with an overall, polarization-
independent amplitude). Equation 7 will always represent a sym-
metric Jones matrix and can be implemented in the far-field of a 
dielectric metasurface, if the eigen-polarizations ∣〉 and ∣⊥〉 rep-
resent strictly linear polarization states, as is the case with a conven-
tional birefringent waveplate (as opposed to a crystal possessing, e.g., 
optical activity).

This capability is demonstrated in Fig. 5. A metasurface is de-
signed to diffract light into a disk in the far-field of uniform inten-
sity. As sketched in Fig. 5A, each point in the disk is designed to 
implement a different waveplate operation (cf. Eq. 7) whose retar-
dance  varies from 0 to  along the radial direction and whose 
fast-axis direction ∣〉 corresponds to the azimuthal coordinate. For 
example, the outer edge of the disk is an isoline of all retarders with 
 = , i.e., the set of all half-wave (/2) plates with all possible orien-
tations. The circle halfway between the origin and the edge, denoted 
by a red dotted line in Fig. 5A, is similarly the set of all quarter-wave 
(/4) plates with  = /2. All other linearly birefringent waveplates 
are present, too. The blue dot in Fig. 5A, for example, denotes a 3/8 
plate whose fast axis is oriented at 90∘. In other words, the disk, through 
a proper parameterization of Eq. 7, contains all linearly birefringent 
waveplates, at all possible angular orientations, within its extents.

In contrast to the polarization-analyzing holograms of the previ-
ous section, the far-field produced by this waveplate-like hologram 
does not appear to vary (in an intensity sense) when ∣j〉in changes. 
However, the changes are revealed when the disk is viewed through 
a polarization analyzer, which is also allowed to vary. Figure  5B 
shows the patterns produced for six different incident polarization 
states (again, the cardinal polarization states, ∣x〉, ∣y〉, ∣45∘〉, ∣135∘〉, 
∣R〉, and ∣L〉) viewed through six polarization analyzers (a turning 
linear polarizer paired with a /4 plate, for the circular columns). 
The diverse array of patterns in Fig. 5B make intuitive sense when 
the incident polarization is “propagated through” the desired be-
havior of the far-field as described in Fig. 5A. For instance, consider 
the far-field image produced when ∣45∘〉 is incident on the meta-
surface viewed through an ∣R〉 analyzer (second column from right). 
When diagonally polarized light passes through a quarter-waveplate 
oriented at 0∘, one circular polarization state is produced; if the 
quarter-waveplate is oriented at 45∘, the opposite handedness re-
sults. This explains the successive maxima and minima of the imag-
es along the quarter-waveplate circle at half the disk’s radius, 90∘ 
apart. Theoretical versions of these images, derived from the de-
sign, are also given in the Supplementary Materials for comparison 
(section S3).

Each image in Fig. 5B could be similarly intuited. There is, how-
ever, a simpler and more direct way of verifying that the far-field 
behaves in accordance with design. By illuminating the metasurface 

with a number of different polarization states and viewing these 
through a number of different polarization analyzers, the 4 × 4 
Mueller matrix describing each point in the far-field can be derived. 
This Mueller matrix maps the Stokes vector of the polarization 
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Fig. 5. Hologram with a far-field exhibiting waveplate-like behavior. (A) A 
metasurface is designed whose far-field diffracts light into a circular disk. Each 
point in this disk is designed to implement a Jones matrix Ades that acts as a bire-
fringent waveplate. The retardance  of this virtual waveplate increases from 0 to 
 along the radial coordinate, while its fast-axis orientation matches the azimuthal 
coordinate (as denoted by arrows outside the circle). Within this disk, all possible 
linearly birefringent waveplates can be found. For example, the perimeter of the 
disk represents all possible half-waveplate operations, while the red dotted circle 
in the center represents the set of all possible quarter-waveplates. A blue dot de-
notes a 3/8 plate oriented at 90∘ as a specific example. (B) The metasurface is illu-
minated with light of variable input polarization (rows) and its far-field viewed 
through several polarization analyzers (columns), producing a diverse array of pat-
terns. An angular scale bar denotes the cone angle subtended by the far-field with 
15∘ divisions. The center of each image is black because the zero order has been 
filtered away. The color map is identical to that of Fig. 3. (C) Illuminating the meta-
surface with different input polarization states and imaging its far-field through 
different polarization analyzers permit reconstruction of the retardance and fast-axis 
orientation at each point. These closely match design.
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state incident on the metasurface to the measured polarization state 
(Stokes vector) at each location in the far-field. The Lu-Chipman 
decomposition (24) can be applied to each Mueller matrix so that 
the measured retardance and the fast-axis orientation exhibited by 
each point in the far-field can be compared to design. This is shown 
in Fig.  5C. As designed, the retardance exhibited by the “wave-
plates” within the far-field disk increases from 0 to  at its edge. The 
orientation rotates smoothly from 0 to /2 and back again twice 
around the circle (due to the twofold angle degeneracy of polariza-
tion states; an azimuthal orientation of 3/2 is the same as /2). In 
the images acquired of the disk, the center is missing due to undif-
fracted zero-order light being filtered out in the experimental setup 
by a physical block. Further details on this measurement and analy-
sis are provided in the Supplementary Materials (section S1D).

DISCUSSION AND CONCLUSION
Dielectric metasurfaces exhibiting form birefringence and, for that 
matter, a number of other technologies enabling spatially varying 
control of optical polarization already constitute an active area of 
research with an established literature and are not in themselves a 
novel contribution of this work. Here, we have instead focused on a 
way of viewing these optical elements. A description at the level of 
the Jones calculus permits the polarization operations enacted by 
individual elements to be mapped to the polarization transfer func-
tion of the far-field.

The idea of merging Fourier optics and the Jones calculus in this 
way does have some precedent [such as (25), and in the analysis of 
polarization aberrations of optical systems (17)]. However, to our 
knowledge, it has not been widely applied as a tool for the design of 
polarization-sensitive diffractive elements [with one notable exception, 
in which some of us (26) used similar methods based on a brute-
force optimization to design polarization-sensitive diffraction grat-
ings rather than holograms]. The methods of this work provide a 
unified mathematical framework that generalizes past work in this 
area and suggests new possibilities.

For instance, past works have extensively discussed “polarization 
switchable” metasurfaces, that is, metasurfaces that exhibit separate 
responses or act as an independent optical element depending on 
the polarization state of illuminating light. In this way, metasurfaces 
have been shown to enable, e.g., lenses that focus in separate loca-
tions for x and y polarized light (8), holograms with independent 
far-fields for incident circular polarization of opposite handedness 
(9), and gratings directing light to either the +1 or −1 order depend-
ing on which of two orthogonal polarizations is incident. In these 
works, the polarization basis to which the metasurface is sensitive 
is fixed across the far-field. The response to a general incident 
polarization is governed by its projection onto these two chosen ba-
sis states.

This work (and, in particular, the polarization-analyzing holograms 
of section S3 of the Supplementary Materials) shows that this 
“switchability” need not be limited to just two polarization states. 
Rather than ascribing two global responses to one orthogonal polar-
ization basis, the polarization basis can itself change over the extent 
of the far-field, as in the holograms of Figs. 3 and 4. The “polarization-
analyzing” behavior exhibited there, as described through the Jones 
matrix formalism, is a generalization of the “polarization switch-
ability” of previous works, one which would not have been possible 
with previous design strategies. Rather than being limited to just two 

discrete polarization states, the far-field can “switch” on the basis of 
N in general. This is described in more detail in the Supplementary 
Materials (section S2). This is achieved without interlacing multi-
ple separately designed metasurfaces together (often dubbed “spatial 
multiplexing”), a now-common strategy (14–16, 27).

Moreover, the ability to enact customizable unitary waveplate-
like transformations in the far-field is a possibility overlooked by 
these previous works. Several previous works enable control of the 
polarization state of the far-field, e.g., on a set of diffraction orders 
(11) or over whole holographic images (10, 12), but only for a given 
incident polarization state. This work instead suggests that far-field 
polarization transformation, rather than just polarization state, may 
be controlled.

In this work, we have introduced Jones matrix holography, in 
which a polarization-sensitive mask generates a far-field with cus-
tomizable polarization response. A treatment based on the Jones 
calculus enables the design and analysis of these holograms without 
specification of the incident polarization state. Consequently, this 
generalizes a wide body of past work in polarization-sensitive dif-
fractive optics and metasurfaces. Moreover, the formalism provides 
a clear link between recent research in this area and extensive work 
in (scalar) holography of decades past. We have additionally shown 
how the traditional GS phase retrieval algorithm may be extended 
to matrix quantities.

Several possible future directions could broaden this work. For 
example, the requirement that strictly unitary and symmetric Jones 
matrix behavior be realized by the far-field could be relaxed with 
more advanced nanophotonic structures. Metasurfaces composed of, 
for instance, two cascaded layers of dielectric pillars would strongly 
break mirror symmetry along the z direction, allowing for chiral 
behavior and thus eliminating the restriction of Jones matrix sym-
metry. Moreover, lossy structures incorporating, e.g., metals, can im-
plement Hermitian behavior that, when paired with other structures, 
would afford the designer more freedom to create fully general J(x, y) 
with mixed Hermitian and unitary responses, perhaps without the 
use of iterative phase retrieval.

This work may find application in a variety of areas. A Jones 
matrix hologram could add custom polarization dependence to an 
optical system’s point spread function, either to address systematic 
polarization aberrations (17) in precision imaging systems or to en-
able wholly new functionality. Elements based on spatially varying 
liquid crystals are already used in astrophysical measurements for, 
e.g., exoplanet detection (28); the present work and the expanded 
control it offers may suggest new possibilities there. Active photonic 
platforms provide a second promising application area. Light distri-
bution in the holograms of this work is governed by linearity and 
Malus’ law. Gain-associated nonlinearities in, e.g., a laser cavity could 
potentially surmount this. This could enable polarization-controlled 
beamsteering if a far-field pattern such as the annular ring of  Fig. 4A 
is used. Last, this work bears qualitative similarity to research sur-
rounding structured light and optical orbital angular momentum 
(e.g., the images of Fig. 5B), an area where it may find additional 
interest.

MATERIALS AND METHODS
Hologram design
A desired far-field Jones matrix distribution Ades(kx, ky) (everywhere 
symmetric with AT = A) is passed through the matrix-valued phase 
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retrieval algorithm described above and in the Supplementary Ma-
terials. This gives a Jones matrix profile J(x, y) defined on a lattice, 
which can be implemented with a single-layer dielectric metasur-
face since it is everywhere symmetric and unitary. J(x, y) can be 
converted to the form of Eq. 4, allowing the parameters x, y, and  
to be extracted at each point. Referring to a library of structures of 
varying sizes simulated at the design wavelength, a structure is cho-
sen at each point that best implements x and y, allowing for a 
complete design of the metasurface. This process is described in de-
tail in section S1 of the Supplementary Materials (A to C).

Device fabrication
The metasurface holograms of this work consist of TiO2 pillars on a 
fused silica substrate. TiO2 exhibits high refractive index contrast 
with air (n ∼ 2.3) and low loss across the visible spectrum, enabling 
flexible shape-birefringent phase control at this work’s design wave-
length ( = 532 nm). The TiO2 pillars are fabricated and patterned 
by a combination of electron beam lithography, atomic layer depo-
sition, and reactive ion etching. Process parameters and details are 
identical to the description provided in (23). We emphasize that 
while TiO2 here serves as a convenient implementation medium for 
demonstration purposes, its use is not fundamental to the work’s 
conclusions. Jones matrix holograms could be realized at other wave-
lengths by metasurfaces composed of a suitable high-index, low-loss 
dielectric [such as, e.g., amorphous silicon for near-IR wavelengths 
(8) or hafnium dioxide for the near- and middle-ultraviolet (29)] or 
by a nonmetasurface device exhibiting polarization control (some 
of which are mentioned in Introduction).

Experimental characterization
Each hologram is illuminated by laser light at  = 532 nm whose 
polarization state can be varied. The hologram’s far-field is imaged 
onto a CMOS sensor using an afocal relay setup, allowing undif-
fracted zero order to be blocked. As the input polarization is varied, 
the far-field intensity response of the hologram is recorded on the 
sensor. The input polarization states are known, having been premea-
sured with a commercial polarimeter. This permits determination 
of the polarization state to which each part of the hologram’s far-field 
is sensitive (Stokes polarimetry). For the waveplate-like hologram, 
light also passes through a variable polarization analyzer (composed 
of a quarter-waveplate and polarizer) before the sensor, allowing 
for measurement of the far-field’s polarization transfer characteris-
tic (Mueller polarimetry). This is described in detail in section S1 
of the Supplementary Materials (D and E).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/33/eabg7488/DC1
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