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Background. Glioblastoma multiforme (GBM) is the most common and aggressive primary malignancy in adults with high
aggression. The prognosis of GBM patients is poor. There is a critical need for novel biomarkers for the prognosis and therapy
of GBM. Methods. Differentially expressed genes (DEGs) in GBM were screened using TCGA cohort. Univariate and
multivariate Cox regression analyses were performed on DEGs to identify the optimal prognosis-related genes. qRT-PCR was
performed to verify the result. Results. A total of 5216 DEGs, including 2785 upregulated and 2458 downregulated genes, were
obtained. Enrichment analysis revealed that these DEGs were mainly involved in the p53 signaling pathway and cell cycle,
immune response, and MAPK signaling pathways. Moreover, the top 50 DEGs were associated with drug resistance or drug
sensitivity. Prognosis analysis revealed that GBM patients with a high expression of CD163 and CHI3L2 had a poor overall
survival, prognosis-free survival, and disease-specific survival. The univariate and multivariate analyses revealed that CD163 and
age were independent factors affecting the prognosis of GBM patients. A validation study revealed that CD163 was upregulated
in GBM tissues and associated with poor overall survival. Moreover, further analysis revealed that CD163 showed significant
correlation with immune cells, immune biomarkers, chemokines, and chemokine receptors. We also identified several CD163-
associated kinase, miRNA, and transcription factor targets in GBM, including LCK, miR-483, and ELF1. Conclusions. In
conclusion, our study suggested CD163 as a prognostic biomarker and associated it with immune infiltration in GBM.

1. Introduction

Glioblastoma multiforme (GBM) is the most common and
aggressive primary malignancy in adults with high aggres-
sion [1]. Until now, the etiology and pathogenesis of GBM
are still far from clarified [2]. The standard treatment for
GBM includes surgical tumor removal followed by ionizing
radiation and alkylating chemotherapy [3]. However, there
is no prognosis in the standard treatment for glioblastoma
in the past two decades [4, 5]. The prognosis of glioblastoma
patients is poor, with a median survival timeline of about 12
months, with a 5-year survival of about 10% [6]. These sober-

ing data illustrate a critical need for novel biomarkers for the
prognosis and therapy of GBM.

The immune microenvironment has been chronicled to
exert a significant function in biological progress in cancer [7].
Immunotherapy based on immune checkpoint blockade is
ever-increasingly suggested as the most promising therapy for
GBM in addition to operative treatment, especially for patients
with advanced GBM [8]. Though many immunotherapy
methods, such as GBM vaccines, oncolytic viral therapies,
immune-checkpoint suppressors, and chimeric antigen recep-
tor T cell therapy, have been conducted in clinical trials, none
of these have been applied for clinical treatment [7, 8]. Similarly,
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though some prognosis biomarkers, including MLK3 and
P4HA1, have been identified in GBM at the genetic level, little
of these have been applied for the prediction of the prognosis
of patients [9–11]. Thus, it is necessary to identify novel bio-
markers for the prognosis and therapy of GBM.

In recent years, with the development of sequencing
technology and the establishment of various cancer data-
bases, genomic research has become one of the most reliable
means to accelerate the clinical and translational research
and treatment of cancer. In our study, we aim to identify
the prognosis biomarkers and therapy targets for GBM by
mining databases. Our result may provide more suitable
strategies to improve the anti-immune performance and
prognosis prediction of GBM by using a high-throughput
sequencing database.

2. Materials and Methods

2.1. Database and Gene Expression. Level 3 gene expression
profiles (level 3 data) for GBM patients were isolated from
The Cancer Genome Atlas (TCGA) data portal (https://
tcga-data.nci.nih.gov/tcga/) and Chinese Glioma Genome
Atlas (CGGA) data portal (http://www.cgga.org.cn/). The
limma package (version: 3.40.2) of R software was used to
explore the differential expression genes. The adjusted p
value was analyzed to correct for false positive results in
TCGA. “Adjusted p < 0:05 and log ðfold changeÞ > 2 or log
ðfold changeÞ < −2” were defined as the thresholds for the
screening of differential expression genes (DEGs).

2.1.1. Heat Maps and Volcano Plots. Heat maps and volcano
plots about DEGs were obtained using an R Project.

2.2. Enrichment Analysis. To further confirm the underlying
function of potential targets, the data were analyzed by func-
tional enrichment. Gene Ontology (GO) is a widely used tool
for annotating genes with functions, especially molecular
function (MF), biological pathways (BP), and cellular com-
ponents (CC). Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis is a practical resource for ana-
lytical study of gene functions and associated high-level
genome functional information. To better understand the
carcinogenesis of mRNA, the clusterProfiler package in R
was employed to analyze the GO function of potential targets
and enrich the KEGG pathway.

2.3. Drug Sensitivity Analysis. To analyze the correlation of
DEGs and drug sensitivity, we collected 265 small molecules
from the Genomics of Drug Sensitivity in Cancer (GDSC).
We downloaded the area under the dose-response curve
(AUC) values for drugs and gene expression profiles for all
cancer cell lines. The Pearson correlation analysis was
utilized to explore the correlation between DEGs and small
molecules or drugs.

2.4. Survival Analysis. After separating the high/low expres-
sion group of GBM with the medium expression of DEGs,
we used the Kaplan-Meier survival analysis to analyze the
survival difference between these two groups. Log-rank tests
were used to calculate p values and hazard ratio (HR) with

95% confidence interval (CI). Univariate and multivariate
cox regression analyses were conducted to detect the proper
terms to build the nomogram. The forest was used to show
the p value, HR, and 95% CI of each variable through the
“forestplot” R package. A nomogram was developed based
on the results of a multivariate Cox proportional hazard anal-
ysis to predict the 1-year, 2-year, and 3-year overall survival.
The nomogram provided a graphical representation of the
factors, which can be used to calculate the risk of survival
for an individual patient by the points associated with each
risk factor through the “rms” R package. p < 0:05 was consid-
ered as statistically significant.

2.5. Genetic Mutation Landscape. The genetic mutation data
was obtained from the TCGA database. The “maftools” pack-
age in R software was applied to analyze and visualize the
genetic mutation landscape. A horizontal histogram showed
that the genes have the higher mutation frequency in GBM
patients.

2.6. Immune Infiltration Analysis. Spearman correlation analy-
sis was performed to explore the relation between gene expres-
sion and immune cell infiltration and the expression of
immune biomarkers as well as immune checkpoints in TIMER
(https://cistrome.shinyapps.io/timer/) [12] and CIBERSORT
(https://cibersortx.stanford.edu/) [13]. These gene markers of
tumor-infiltrating immune cells included markers of CD8+ T
cells, T cells (general), B cells, monocytes, TAMs, M1 macro-
phages, M2macrophages, neutrophils, natural killer (NK) cells,
dendritic cells (DCs), T-helper 1 (Th1) cells, T-helper 2 (Th2)
cells, follicular helper T (Tfh) cells, T-helper 17 (Th17) cells,
Tregs, and exhausted T cells [14]. A p value of less than 0.05
was considered statistically significant.

2.7. LinkedOmics. LinkedOmics (http://www.linkedomics
.org/) is a bioinformatics platform for genomic analysis based
on the TCGA dataset [15]. The “interpreter module” of Lin-
kedOmics performs pathway and network analyses of
CD163. Data from the LinkFinder results were signed and
ranked, and GSEA was used to perform analyses of GO
(CC, BP, and MF), KEGG pathways, kinase-target enrich-
ment, miRNA-target enrichment, and transcription factor-
target enrichment. The rank criterion was a p value < 0.05,
and 500 simulations were performed.

2.8. GeneMANIA.GeneMANIA (http://www.genemania.org/)
is a bioinformatics tool developed for protein-protein interac-
tion (PPI) network analysis and for promoting understanding
of the functional association data of target genes [16]. In
order to better understand the function behind the CD163-
associated kinase_LCK network, miR-483 network, and tran-
scription factor ELF1 network, we submitted these genes to
GeneMANIA to construct a PPI network.

2.9. Validation of the Expression and Prognosis Value. The
immunohistochemistry staining of target genes in GBM
tissues and normal tissues was obtained from The Human
Protein Atlas (https://www.proteinatlas.org/), a bioinformat-
ics tool aimed at mapping all the human proteins in cells,
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Figure 1: Continued.
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Figure 1: Differentially expressed genes in GBM and enrichment analysis. (a) Volcano plots showing differentially expressed genes in GBM
with fold-change of 2 and a p value of 0.05. The red point in the plot represents the overexpressed mRNAs and the blue point indicates the
downexpressed mRNAs with statistical significance. (b) Hierarchical clustering analysis of the top 50 differentially expressed genes in GBM.
(c) The enriched KEGG signaling pathway and Gene Ontology (GO) analyses of upregulated genes. (d) The enriched KEGG signaling
pathway and Gene Ontology (GO) analyses of downregulated genes.
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Figure 2: Genetic mutation landscape of differentially expressed genes in GBM. (a) Oncoplot displaying the somatic landscape of the GBM
cohort. (b) Cohort summary plot displaying distribution of variants according to variant classification, type, and SNV class. Bottom part
(from left to right) indicates mutation load for each sample and variant classification type. A stacked barplot shows top ten mutated genes.
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tissues, and organs using an integration of various omics
technologies [17].

GBM and normal brain tissues (n = 52) were obtained from
patients from the Shengjing Hospital of China Medical Univer-
sity. All patients provided informed consent. Each patient did
not receive any treatment before operation. Total RNA of
human tissues was extracted with a TRIzol reagent (Vazyme,
Nanjing, China). The synthesis of cDNAs corresponding to
the mRNAs of interest depended on PrimeScript RT-
polymerase (Vazyme) and SYBR-Green Premix (Vazyme) with
specific PCR primers (Sangon Biotech Co., Ltd., Shanghai,
China). Glyceraldehyde-3-phosphate dehydrogenase was used
as an internal control. The 2−ΔΔCt method was used to calculate
fold changes. Primer sequences were as follows: GAPDH, for-
ward: GCACCGTCAAGGCTGAGAAC, reverse: TGGTGA
AGACGCCAGTGGA, and CD163, forward: CTACGAACT
TCAGCCAGAGTGCACCTCAT, reverse: GTCATAATGAA

CTTCAGCTATTGCACAC. The differences of the CD163
expression and the prognosis of CD163 in GBM were evalu-
ated with Student’s t-test and Kaplan-Meier analysis in Graph-
Pad Prism 7 software (GraphPad, Inc., La Jolla, CA, USA).

3. Results

3.1. Identification of DEGs and Associated Functions in GBM.
The DEGs between GBM tissues and brain tissues were
explored using TCGA GBM dataset. As a result, we obtained
5216 DEGs including 2785 upregulated and 2458 downregu-
lated genes (Figure 1(a)). Figure 1(b) shows the top 50 upreg-
ulated and downregulated genes. In order to explore the
potential functions of DEGs in GBM, we performed enrich-
ment analysis, including GO analysis and KEGG pathway
analyses. As shown in Figure 1(c), these upregulated genes
were mainly involved in the p53 signaling pathway and
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ribosome, proteoglycans in cancer, focal adhesion, DNA rep-
lication, and cell cycle in KEGG pathways. Moreover, GO
analysis revealed that upregulated genes were mainly involved
in vital transcription, vital gene expression, translational initia-
tion, neutrophil activation involved in immune response, T cell
activation, and DNA replication (Figure 1(c)). As for the result
of downregulated genes, KEGG pathway analysis suggested
that these genes were mainly involved in cAMP signaling path-
ways, the synaptic vesicle cycle, oxytocin signaling pathways,
MAPK signaling pathways, and calcium signaling pathways
(Figure 1(d)). Furthermore, GO analysis suggested that these
downregulated genes were mainly involved in vesicle-
mediated transport in synapse, synaptic vesicle exocytosis,
signal release from synapse, regulation of neurotransmitter
levels, potassium ion transport, cognition, and axonogenesis
(Figure 1(d)).

3.2. Somatic Mutations in the GBM. To identify the somatic
mutations of the patients with GBM in the TCGA database,
we downloaded mutation data from TCGA and visualized
using the “maftools” package in R software. A horizontal
histogram showed that the genes have a higher mutation fre-
quency in GBM patients, including TTN (25%), TP53 (30%),
PTEN (30%), EGFR (24%), and MUC16 (14%) (Figures 2(a)
and 2(b)). Missense mutations and nonsense mutations were

the two most common types of mutation in GBM patients
(Figures 2(a) and 2(b)). Scanning the variant types of muta-
tions in GBM, single nucleotide polymorphism (SNP) was
the most common type (Figure 2(b)). Moreover, C>T was
the predominant mutation type in GBM (Figure 2(b)).

3.3. Drug Sensitivity Analysis of Top 50 DEGs in GBM. To
develop cancer pharmacotherapy, a crucial way is to assess
the link between DEGs and existing drug targets. In our study,
we selected the top 50 DEGs (Supplementary Table 1) for
further analysis and performed a drug sensitivity analysis. To
explore the correlation of DEGs and drug sensitivity, the
Pearson correlation coefficients of transcript levels and
AUCs were used and normalized based on Fisher’s Z
transformation based on 265 small molecules from the
Genomics of Drug Sensitivity in Cancer (GDSC), which was
used before [18]. We observed that most of the top 50 DEGs
show drug resistance (positive correlation) or drug sensitivity
(negative correlation) (Figure 3).

3.4. Prognosis Value of Top 50 DEGs in GBM. We then per-
formed prognosis value of top 50 DEGs in GBM, and the
genes that were statistically significant in the overall survival,
prognosis-free survival, and disease-specific survival are
shown in Table 1. In overall survival, a total of 14 genes were

Table 1: Prognosis analysis top 50 differentially expressed genes in GBM.

Genes
Overall survival Progression-free survival Disease-specific survival

p value HR (95% CI) p value HR (95% CI) p value HR (95% CI)

CD163 0.0437 1.45 (1.01-2.09) 0.012 1.60 (1.11-2.30) 0.048 1.48 (1.00-2.17)

CHI3L2 0.0077 1.61 (1.12-2.33) 0.0063 1.64 (1.14-2.37) 0.022 1.58 (1.07-2.35)

TOP2A — — 0.006 0.60 (0.42-0.86)) — —

MMP9 — — 0.044 1.45 (1.01-2.09) — —

NUSAP1 — — 0.029 0.67 (0.47-0.96) — —

PIMREG — — 0.007 0.60 (0.42-0.87) — —

F2R — — 0.038 0.68 (0.47-0.98) — —

AURKB — — 0.026 0.66 (0.46-0.95) — —

PDPN — — 0.002 1.79 (1.24-2.59) — —

ANXA1 — — 0.022 1.53 (1.06-2.21) — —

KIFC1 — — 0.038 0.68 (0.48-0.98) — —

PI3 — — 0.033 1.48 (1.03-2.13) — —

SAA1 0.033 1.49 (1.03-2.15) 0.042 1.46 (1.01-2.11) — —

TGFBI 0.019 1.55 (1.07-2.24) — — 0.016 1.62 (1.09-2.40)

PACSIN1 0.027 1.51 (1.05-2.18) — — 0.035 1.52 (1.03-2.26)

SULT4A1 0.023 1.52 (1.06-2.19) — — 0.025 1.56 (1.06-2.30)

VSNL1 0.012 1.59 (1.11-2.27) — — 0.039 1.50 (1.02-2.20)

SV2B 0.006 1.66 (1.15-2.39) — — 0.018 1.60 (1.08-2.37)

CHGA 0.016 1.57 (1.09-2.27) — — 0.033 1.54 (1.04-2.28)

SNCB 0.010 1.61 (1.12-2.32) — — 0.039 1.51 (1.02-2.22)

SLC12A5 0.005 1.70 (1.18-2.46) — — 0.005 1.76 (1.19-2.62)

NRGN 0.035 1.48 (1.03-2.14) — — 0.099 1.39 (0.94-2.06)

CPLX2 0.039 1.48 (1.02-2.14) — — — —

CREG2 0.031 1.49 (1.04-2.15) — — — —
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Figure 4: Continued.
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associated with the prognosis of GBM patients. In
prognosis-free survival, a total of 13 genes were associated
with the prognosis of GBM patients. In disease-specific
survival, a total of 11 genes were associated with the prog-
nosis of GBM patients. Interestingly, the result revealed
that GBM patients with a high expression of CD163 and
CHI3L2 had a worse overall survival, prognosis-free sur-
vival, and disease-specific survival (Table 1, all p < 0:05).
To be more specific, GBM patients with a high expression
of CD163 had a poor overall survival (Figure 4(a), p =
0:0437, HR ð95%CIÞ = 1:45ð1:01 − 2:09Þ), prognosis-free
survival (Figure 4(b), p = 0:012, HR ð95%CIÞ = 1:60ð1:11 −
2:30Þ), and disease-specific survival (Figure 4(c), p = 0:048
, HR ð95%CIÞ = 1:48ð1:00 − 2:17Þ) with a 3-year AUC of
0.744 (Figure 4(a)), 0.63 (Figure 4(b)), and 0.749
(Figure 4(c)), respectively. And the risk score of each
patient is shown in Figure 4. Moreover, GBM patients with
a high expression of CHI3L2 had a poor overall survival

(Figure 5(a), p = 0:0077, HR ð95%CIÞ = 1:61ð1:12 − 2:33Þ),
prognosis-free survival (Figure 5(b), p = 0:0063, HR ð95%
CIÞ = 1:64ð1:14 − 2:37Þ), and disease-specific survival
(Figure 5(c), p = 0:022, HR ð95%CIÞ = 1:58ð1:07 − 2:35Þ)
with a 3-year AUC of 0.664 (Figure 5(a)), 0.678
(Figure 5(b)), and 0.698 (Figure 5(c)), respectively. And the
risk score of each patient is shown in Figure 5. In order to
further verify our result, we then submitted CD163 and
CHI3L2 to the CGGA cohort and performed a prognosis
analysis. As expected, GBM patients with a high expression
of CD163 (Figure 6(a), p < 0:0001) and CHI3L2 (Figure 6(b),
p < 0:0001) had a poor prognosis in the CGGA cohort. These
data demonstrated that CD163 and CHI3L2 might serve as
prognostic biomarkers in GBM.

3.5. Building a Predictive Nomogram. We then resorted to a
nomogram to construct a predictive model, considering clin-
icopathologic features and potential prognostic biomarkers,
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Figure 4: The prognosis analysis of differentially expressed genes in GBM in TCGA cohort. (a) Overall survival analysis of CD163 in GBM.
(b) Progression-free survival analysis of CD163 in GBM. (c) Disease-specific survival analysis of CD163 in GBM.
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to construct a clinically applicable method that could predict
the survival probability of the GBM patient. The univariate
and multivariate analyses revealed that CD163 and age were
independent factors affecting the prognosis of GBM patients
(Figures 6(c) and 6(d)). We generated a nomogram to predict
the 1-year, 2-year, and 3-year OS rates in the discovery group
using the Cox regression algorithm (Figure 6(e)). The
calibration plots for the 1-year and 3-year OS rates were
predicted relatively well compared with an ideal model in
the entire cohort (Figure 6(f)).

3.6. Validation of the Expression and Prognostic Value of
CD163 in GBM. CD163 was selected for further study, and
we performed validation research then. The immunohisto-
chemistry staining from The Human Protein Atlas revealed
that the immunohistochemistry staining of CD163 in GBM
tissues and normal tissues was medium and not detected
(Supplementary Figure 1A). Due to a similar role of CD8

and CD163 in immune infiltration, we also detected CD8
expression in GBM. The immunohistochemistry staining of
CD8 in GBM tissues and normal tissues was medium and
not detected (Supplementary Figure 1B). Moreover, qRT-
PCR was performed to verify the expression and prognostic
value of CD163 in GBM. As expected, CD163 expression
was increased in GBM tissues (Supplementary Figure 2A, p
= 1:2 ∗ 10−6). Further analysis suggested and GBM patients
with a high CD163 level had a poor overall survival
(Supplementary Figure 2B, p = 0:026) with an AUC of
0.723 in the ROC curve (Supplementary Figure 2C). These
data further verified our result obtained above.

3.7. CD163 Were Associated with Immune Infiltration in
GBM. Increasing evidences revealed that immune infiltration
is an independent predictor of sentinel lymph node status
and survival in cancers [14, 19, 20]. In order to explore the
role of CD163 in GBM, we then detect the association
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Figure 5: The prognosis analysis of differentially expressed genes in GBM in TCGA cohort. (a) Overall survival analysis of CHI3L2 in GBM.
(b) Progression-free survival analysis of CHI3L2 in GBM. (c) Disease-specific survival analysis of CHI3L2 in GBM.
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Figure 6: The prognosis analysis of differentially expressed genes in GBM in CGGA cohort. (a) Overall survival analysis of CD163 in GBM.
(b) Overall survival analysis of CHI3L2 in GBM. (c, d) Hazard ratio and p value of constituents involved in univariate and multivariate Cox
regressions considering clinical parameters and CD163 and CHI3L2. (e, f) Nomogram to predict the 1 y, 2 y, and 3 y overall survival of GBM
patients. Calibration curve for the overall survival nomogram model in the discovery group. A dashed diagonal line represents the ideal
nomogram, and the blue line, red line, and orange line represent the 1 y and 2 y observed nomograms.

15BioMed Research International



16

CD
16

3 
ex

pr
es

sio
n 

le
ve

l (
lo

g2
 T

PM
)

12

8

4

0.0 0.5 1.0 1.5 0.00 0.25 0.50
Infiltration level

0.75 0.00 0.25 0.50 0.75 0.0 0.3 0.6 1.2  0 1 20.91.00

CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

Partial.cor = 0.498
p = 1.42e−27

Partial.cor = 0.498
p = 2.45e−03

Partial.cor = 0.174
p = 3.39e−04

Partial.cor = 0.132
p = 6.89e−03

Partial.cor = −0.252
p = 1.80e−07

G
BM

(a)

CCL2
CCL3
CCL4
CCL5
CCL7
CCL8

CCL11
CCL13
CCL14
CCL15
CCL16
CCL17
CCL18
CCL19
CCL20
CCL21
CCL22
CCL23
CCL24
CCL25
CCL26
CCL27
CCL28

CX3CL1
CXCL1
CXCL2
CXCL3
CXCL5
CXCL6
CXCL8
CXCL9

CXCL10
CXCL11
CXCL12
CXCL13
CXCL14
CXCL16
CXCL17

XCL1
XCL2

AC
C

BL
CA

BR
CA

CE
SC

CH
O

L
CO

A
D

ES
CA

G
BM

H
N

SC
KI

CH
KI

RC
KI

RP
LG

G
LI

H
C

LU
A

D
LU

SC
M

ES
O

O
V

PA
A

D
PC

PG
PR

A
D

RE
A

D
SA

RC
SK

CM
ST

A
D

TG
CT

TH
CA

U
CE

C
U

CS
U

V
M

1

0

−1

(b)

Figure 7: Continued.

16 BioMed Research International



between CD163 expression and immune infiltration in GBM.
The result suggested that the CD163 expression was associated
with the abundance of CD8+ T cells (Cor = −0:252, p = 1:80
E − 7), CD4+ T cells (Cor = 0:132, p = 6:89E − 3), macro-
phage (Cor = 0:174, p = 3:39E − 4), neutrophils (Cor = 0:148,
p = 2:45E − 3), and dendritic cells (Cor = 0:498, p = 1:42E −
27) (Figure 7(a)). We then verify this result using the CIBER-
SORT dataset, which revealed that the CD163 expression was
associated with the abundance of neutrophils (Cor = 0:62, p
= 1:38E − 17), macrophages (Cor = 0:64, p = 1:76E − 18),
dendritic cells (Cor = 0:54, p = 7:41E − 54), and CD4+ T cells
(Cor = 0:22, p = 0:006) (Supplementary Figure 3A).

Moreover, we also explore the association between CD163
expression and gene markers of tumor-infiltrating immune
cells. As expected, the CD163 expression was positively corre-
lated with most of gene markers of these tumor-infiltrating
immune cells in both the TCGA and CGGA cohorts, includ-
ing CD8A, CD8B, CD3D, CD3E, CD2, CD79A, CD86,
CSF1R, CCL2, CD68, IL10, IRF5, COX2, VSIG4, MS4A4A,
ITGAM, CCR7, KIR2DL4, HLA-DPB1, HLA-DQB1, HLA-
DRA, HLA-DPA1, CD1C, NRP1, ITGAX, GATA3, STAT6,
STAT5A, BCL6, STAT3, FOXP3, PDCD1, CTLA4, HAVCR2,
and GZMB (Table 2). Immune checkpoints also play a vital
role in immune infiltration of cancer [21]. In the current
study, we found that CD163 expression increased as the

expression of SIGLEC15, TIGFT, CD247, HAVCR2, PDCD1,
CTLA4, and PDCD1LG2 increased (Supplementary
Figure 3B, all p < 0:05). Chemokines and their receptors
modulate immune surveillance in oncogenesis, metastasis,
and response to immunotherapy [22]. Interestingly, the
result demonstrated a strong correlation between CD163 and
chemokines as well as chemokine receptors (Figures 7(b)
and 7(c)). These evidences indicated the possible association
between CD163 and immune infiltrates in GBM.

3.8. CD163-Associated Functions in GBM. In order to clarify
the CD163-associated functions in GBM, we performed
enrichment analysis using GSEA. The items in GO analysis
are shown in Figure 8(a), revealing that CD163 were mainly
involved in adaptive neutrophil-mediated immunity, immune
response, leukocyte cell-cell adhesion, cytokine receptor bind-
ing, cytokine binding, and immunoglobulin binding. Further-
more, CD163 were mainly involved in cytokine-cytokine
receptor interaction, NOD-like receptor signaling pathway,
NF-kappa B signaling pathway, and TNF signaling pathway
in KEGG pathway analysis (Figure 8(b)).

3.9. CD163-Associated Kinase, miRNA, or Transcription Factor
Targets in GBM. In order to further clarify the underlining
mechanisms about how CD163 affected the tumorigenesis
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Figure 7: The association between CD163 and immune infiltration. (a) The association between CD163 expression and the abundance of B
cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. (b) The correlation between CD163 and the expression of
chemokines in GBM. (c) The correlation between CD163 and the expression of chemokine receptors in GBM. ∗p < 0:05, ∗∗p < 0:01, and
∗∗∗p < 0:001.
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Table 2: Correlation analysis between CD163 and gene biomarkers of immune cells in GBM.

Immune cells Gene markers
GBM

TCGA CGGA
Cor p value Cor p value

CD8+ T cell
CD8A 0.202 ∗ 0.441 ∗∗∗

CD8B 0.241 ∗∗ 0.516 ∗∗∗

T cell (general)

CD3D 0.378 ∗∗∗ 0.55 ∗∗∗

CD3E 0.392 ∗∗∗ 0.628 ∗∗∗

CD2 0.422 ∗∗∗ 0.624 ∗∗∗

B cell
CD19 0.097 0.231 0.321 ∗∗∗

CD79A 0.187 ∗ 0.32 ∗∗∗

Monocyte
CD86 0.58 ∗∗∗ 0.673 ∗∗∗

CD115 (CSF1R) 0.617 ∗∗∗ 0.462 ∗∗∗

TAM

CCL2 0.567 ∗∗∗ 0.652 ∗∗∗

CD68 0.677 ∗∗∗ 0.746 ∗∗∗

IL10 0.593 ∗∗∗ 0.662 ∗∗∗

M1 macrophage

INOS (NOS2) -0.037 0.649 0.206 ∗∗

IRF5 0.317 ∗∗∗ 0.498 ∗∗∗

COX2 (PTGS2) 0.558 ∗∗∗ 0.447 ∗∗∗

M2 macrophage
VSIG4 0.798 ∗∗∗ 0.735 ∗∗∗

MS4A4A 0.835 ∗∗∗ 0.851 ∗∗∗

Neutrophils

CD66b (CEACAM8) 0.002 0.977 — —

CD11b (ITGAM) 0.607 ∗∗∗ 0.613 ∗∗∗

CCR7 0.475 ∗∗∗ 0.497 ∗∗∗

Natural killer cell

KIR2DL1 0.13 0.11 — —

KIR2DL3 0.009 0.911 — —

KIR2DL4 0.236 ∗∗ 0.346 ∗∗∗

KIR3DL1 0.021 0.799 — —

KIR3DL2 0.002 0.985 — —

KIR3DL3 0.105 0.195 — —

KIR2DS4 0.184 0.0228 — —

Dendritic cell

HLA-DPB1 0.57 ∗∗∗ 0.666 ∗∗∗

HLA-DQB1 0.328 ∗∗∗ 0.424 ∗∗∗

HLA-DRA 0.573 ∗∗∗ 0.736 ∗∗∗

HLA-DPA1 0.467 ∗∗∗ 0.687 ∗∗∗

BDCA-1 (CD1C) 0.349 ∗∗∗ 0.413 ∗∗∗

BDCA-4 (NRP1) 0.585 ∗∗∗ 0.763 ∗∗∗

CD11c (ITGAX) 0.171 ∗ 0.385 ∗∗∗

Th1

T-bet (TBX21) 0.031 0.707 0.233 ∗∗∗

STAT4 0.318 ∗∗∗ 0.017 0.794

STAT1 -0.022 0.783 0.45 ∗∗∗

IFN-g (IFNG) 0.134 0.0977 — —

TNF-a (TNF) 0.135 0.0967 0.126 0.0595

Th2

GATA3 0.277 ∗∗∗ 0.273 ∗∗∗

STAT6 0.442 ∗∗∗ 0.651 ∗∗∗

STAT5A 0.399 ∗∗∗ 0.623 ∗∗∗

IL13 -0.169 ∗ 0.09 0.18
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and progression of GBM, we finally explore CD163-associated
kinase, miRNA, or transcription factor targets in GBM using
GSEA in LinkedOmics. As a result, the result indicated that
the top 5 most significant CD163-associated kinase targets in
GBM were LCK, LYN, SYK, HCK, and ATR (Table 3, All p
< 0:05). The PPI network based on the correlated genes of
kinase LCK constructed by GeneMANIA indicated that kinase
LCK was mainly related to the antigen receptor-mediated
signaling pathway, immune response, and T cell receptor
signaling pathway and activation (Figure 9). Moreover, the
top 5 most significant CD163-associated miRNA targets in
GBM were miR-483 (AGGAGTG), miR-485-5P (CAGC
CTC), miR-197 (GTGGTGA), miR-499 (AGTCTTA), and
miR-331 (CCAGGGG) (Table 3, All p < 0:05). The PPI net-
work based on the correlated genes of miR-483 constructed
by GeneMANIA indicated that miR-483 were mainly related
to the regulation of lymphocyte activation, regulation of cell
activation, and immune response (Supplementary Figure 4).
The top 5 most significant CD163-associated transcription
factor targets in GBM were V$ELF1_Q6, V$PEA3_Q6,
V$E2F1_Q6, V$BACH2_01, and V$TEL2_Q6 (Table 3, All
p < 0:05). The PPI network based on the correlated genes of
ELF1 constructed by GeneMANIA indicated that ELF1 were
mainly related to the regulation of transcription initiation
from RNA polymerase II promoter, mediator complex, and
nuclear hormone receptor binding (Supplementary Figure 5).

4. Discussion

The oncogenesis and progression of GBM is a complex
multistep process, involved in a variety of gene expression
patterns and other factors. Considering the heterogeneity
and complex mechanism of GBM, clarifying the molecular
mechanism of GBM is of significant importance for the ther-

apy of GBM patients [23]. Moreover, the prognosis of GBM
patients was poor. Though multidisciplinary comprehensive
treatment, including surgery and chemo- and radiation ther-
apy, had been used for GBM patients, the median survival
time of GBM patients is only about 15 months [24]. And
the five-year survival rate of GBM is about 0.05% to 4.7%
[25]. Thus, it is quite necessary to explore new therapeutic
targets and prognostic markers of GBM.

In order to explore new therapeutic targets and prognos-
tic markers of GBM, we first identify the DEGs by comparing
GBM tissues with normal tissues in the TCGA cohort. As a
result, a total of 5216 DEGs including 2785 upregulated
and 2458 downregulated genes were obtained. We then
selected the top 50 DEGs for further analysis. In order to
explore the potential of the 50 DEGs as the therapy targets
of GBM patients, we detect the relation between DEGs and
existing drug targets. Interestingly, we observed that most
of the top 50 DEGs show drug resistance (positive correla-
tion) or drug sensitivity (negative correlation). Therefore,
these 50 DEGs had potential as the therapy targets of GBM
patients, and further study should be performed to verify this
result.

We explore the potential of the 50 DEGs as the prognos-
tic biomarkers of GBM patients by performing prognosis
analysis. And the data indicated that CD163 and CHI3L2
may serve as prognostic biomarkers in GBM and GBM
patients with a high expression of CD163 and CHI3L2 which
predicted a poor overall survival, prognosis-free survival, and
disease-specific survival. These were consistent with a previ-
ous result, which found that CD163 predicts poor prognosis
in glioma patients [26]. Actually, these CD163 and CHI3L2
have been suggested as prognostic biomarkers in other types
of cancers. In oral squamous cell carcinoma, CD163 was a
prognostic biomarker and associated with poor survival

Table 2: Continued.

Immune cells Gene markers
GBM

TCGA CGGA
Cor p value Cor p value

Tfh
BCL6 0.218 ∗∗ 0.295 ∗∗∗

IL21 -0.009 0.91 — —

Th17
STAT3 0.248 ∗∗ 0.681 ∗∗∗

IL17A -0.019 0.82 — —

Treg

FOXP3 0.296 ∗∗∗ 0.263 ∗∗∗

CCR8 0.393 ∗∗∗ — —

STAT5B -0.103 0.204 -0.079 0.238

TGFb (TGFB1) 0.427 ∗∗∗ 0.62 ∗∗∗

T cell exhaustion

PD-1 (PDCD1) 0.354 ∗∗∗ 0.516 ∗∗∗

CTLA4 0.429 ∗∗∗ 0.362 ∗∗∗

LAG3 0.023 0.777 0.37 ∗∗∗

TIM-3 (HAVCR2) 0.442 ∗∗∗ 0.622 ∗∗∗

GZMB 0.332 ∗∗∗ 0.565 ∗∗∗
∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001. —: no data.
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[27]. Another study suggested that high CD163 expression
indicated a poor prognosis of patients with urothelial cell
carcinoma [28]. In breast cancer, CD163 was related to post-
operative radiotherapy and poor prognosis, indicating
CD163 as a prognostic marker in breast cancer [29]. CHI3L2
was suggested as a prognostic biomarker for renal cell carci-
noma, predicting high risk for postoperative progression
[30]. Moreover, univariate and multivariate analyses were
performed and demonstrated that CD163 and age were inde-
pendent factors affecting the prognosis of GBM patients. And
we select CD163 for further analysis.

Another important finding of our study is that CD163
was positively correlated with immune cells, immune bio-

markers, chemokines, and chemokine receptors. We found
that CD163 expression was associated with the abundance
of CD8+ T cells, CD4+ T cells, macrophages, neutrophils,
and dendritic cells. Moreover, CD163 expression was posi-
tively correlated with most gene markers of these tumor-
infiltrating immune cells in both the TCGA and CGGA
cohorts, including CD8A, CD8B, STAT6, STAT5A, and
PDCD1. Actually, increasing evidences revealed that these
immune cells and immune biomarkers exerted vital
functions in tumor immune infiltration or served as a
therapy target in GBM. The CD4+ T cell was linked to tumor
angiogenesis and tumor progression in glioma patients [31].
Another study suggested that neutrophil-induced ferroptosis
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Figure 8: GO and KEGG pathway analyses of CD163 in GBM: (a) BP analysis; (b) CC analysis; (c) MF analysis; (d) KEGG pathway analysis.

Table 3: The kinase and transcription factor-target networks of CD163 in GBM.

Enriched category Gene set LeadingEdgeNum p value

Kinase target

Kinase_LCK 26 0

Kinase_LYN 23 0

Kinase_SYK 18 0

Kinase_HCK 9 0

Kinase_ATR 34 0

miRNA target

AGGAGTG, miR-483 24 0

CAGCCTC, miR-485-5P 54 0

GTGGTGA, miR-197 27 0

AGTCTTA, miR-499 17 0

CCAGGGG, miR-331 38 0

Transcription factor target

V$ELF1_Q6 20 0

V$PEA3_Q6 10 0

V$E2F1_Q6 98 0

V$BACH2_01 73 0

V$TEL2_Q6 62 0
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promotes tumor necrosis in the progression of GBM [31].
Moreover, monocytes could serve as a promising predictor
for therapy responses of glioma patients [32]. Hung et al.
suggested that PDCD1 and TIGIT dual checkpoint blockade
enhances antitumor immunity and survival in GBM [33].
Moreover, STAT5A was a prognosis marker for GBM and
involved in immune infiltration in GBM [34]. These evi-
dences indicated that the possible association between
CD163 and immune infiltrates in GBM and CD163 may
serve as an immunotherapy target of GBM patients.

There is no doubt that our study had some limitations.
Firstly, most analysis was performed at the mRNA level but
not the protein level, and double immunohistochemistry

staining should be performed to verify the protein expression
of CD163 in GBM. Furthermore, it would be better to
validate our results by performing in vivo and in vitro
experiments.

In conclusion, our study suggested CD163 as a prog-
nostic biomarker and associated it with immune infiltra-
tion in GBM.

Data Availability

The analyzed datasets generated during the study are avail-
able from the corresponding author on reasonable request.

SOCS3

NCR3

IL21

DGKA

FOX93

NFKBIA

ESR1PTPN22

TEC

THEMIS

CTLA4

CD5 CD247

LCP2
SIGLEC10

ITGAX

CD33 SH2D1A

FYB

SIGLEC5
SLAMF1

SH2D2A

DAPP1 PLCG2

VAV1

TYROBP

LAT

STAT5A WAS

PTPN6

LCK

MAP3K2

ITGB2ZAP70

CD3E

CD3G

CD3DPTPRC
CD2 CD8A

ITK

JUN

SHC1

IL2RB
INPP5D PECAM1

Functions
Antigen receptor-mediated signaling pathway
Immune response activating cell surface receptor signaling pathway
T cell receptor signaling pathway
Immune response-regulating cell surface receptor signaling pathway
T cell activation
Regulation of T cell activation
Regulation of cell activation

Networks
Coexpression
Physical Interactions
Pathway
Colocalization
Predicted
Shared protein domains

Figure 9: PPI network of LCK kinase-target networks. PPI network and functional analysis of the gene sets of LCK kinase-target networks.
The different colors for the network nodes indicate the biological functions of the set of enrichment genes.

22 BioMed Research International



Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Hao Li and Zhen Li were responsible for the design of the
study and the writing the manuscript. Di Wang, Bolong Yi,
Heng Cai, Zhuo Xi, and Xin Lou were responsible for the
data analysis work. All authors read and approved the final
manuscript.

Supplementary Materials

Supplementary Table 1 The top 50 different expression genes
in GBM. Supplementary Figure 1: the protein expression of
CD163 and CD8A in GBM and normal tissue (The Human
Protein Atlas). (A) The immunohistochemistry staining of
CD163 in GBM tissues and normal tissues. (B) The immuno-
histochemistry staining of CD8 in GBM tissues and normal
tissues. Supplementary Figure 2: validation of the expression
and prognostic value of CD163 in GBM. (A) The relative
expression of CD163 in GBM tissues and normal tissues.
(B) The overall survival in STAD patients with a high and
low expression of CD163. (C) The ROC curve of CD163 in
predicting the prognosis of GBM patients. Supplementary
Figure 3: the association between CD163 and immune infil-
tration. (A) The association between CD163 expression and
the abundance of CD4+ T cells, macrophages, neutrophils,
and dendritic cells. (B) The correlation between CD163 and
the expression of immune checkpoints in GBM. ∗p < 0:05,
∗∗p < 0:01, ∗∗∗p < 0:001. Supplementary Figure 4: PPI
network of miR-483-target networks. PPI network and
functional analysis of the gene sets of miR-483-target net-
works. The different colors for the network nodes indicate
the biological functions of the set of enrichment genes. Sup-
plementary Figure 5: PPI network of transcription factor
target of ELF1 networks. PPI network and functional analysis
of the gene sets of transcription factor target of ELF1-target
networks. The different colors for the network nodes indicate
the biological functions of the set of enrichment genes.
(Supplementary Materials)

References

[1] H. G. Wirsching, E. Galanis, and M. Weller, “Glioblastoma,”
Handbook of Clinical Neurology, vol. 134, pp. 381–397, 2016.

[2] J. Yang and Q. Yang, “Identification of core genes and screen-
ing of potential targets in glioblastoma multiforme by inte-
grated bioinformatic analysis,” Frontiers in Oncology, vol. 10,
p. 615976, 2020.

[3] D. J. Voce, G. M. Bernal, K. E. Cahill et al., “CDK1 is up-
regulated by temozolomide in an NF-κB dependent manner
in glioblastoma,” Scientific Reports, vol. 11, p. 5665, 2021.

[4] R. Stupp, M. E. Hegi, W. P. Mason et al., “Effects of radiother-
apy with concomitant and adjuvant temozolomide versus
radiotherapy alone on survival in glioblastoma in a rando-
mised phase III study: 5-year analysis of the EORTC-NCIC
trial,” The Lancet Oncology, vol. 10, no. 5, pp. 459–466, 2009.

[5] B. Campos, L. R. Olsen, T. Urup, and H. S. Poulsen, “A com-
prehensive profile of recurrent glioblastoma,” Oncogene,
vol. 35, pp. 5819–5825, 2016.

[6] A. O. Sasmita, Y. P. Wong, and A. P. K. Ling, “Biomarkers and
therapeutic advances in glioblastoma multiforme,” Asia-
Pacific Journal of Clinical Oncology, vol. 14, pp. 40–51, 2018.

[7] L. Hu, Z. Han, X. Cheng, S. Wang, Y. Feng, and Z. Lin,
“Expression profile analysis identifies a novel seven immune-
related gene signature to improve prognosis prediction of glio-
blastoma,” Frontiers in Genetics, vol. 12, p. 638458, 2021.

[8] R. Batash, N. Asna, P. Schaffer, N. Francis, and M. Schaffer,
“Glioblastoma multiforme, diagnosis and treatment; Recent
Literature Review,” Current medicinal chemistry, vol. 24,
no. 27, pp. 3002–3009, 2017.

[9] F. Saadeh, S. El Iskandarani, M. Najjar, and H. I. Assi, “Prog-
nosis and management of gliosarcoma patients: a review of lit-
erature,” Clinical Neurology and Neurosurgery, vol. 182,
pp. 98–103, 2019.

[10] Y. Zhu, J. M. Sun, Z. C. Sun, F. J. Chen, Y. P. Wu, and X. Y.
Hou, “MLK3 is associated with poor prognosis in patients with
glioblastomas and actin cytoskeleton remodeling in glioblas-
toma cells,” Frontiers in Oncology, vol. 10, p. 600762, 2020.

[11] X. Zhu, S. Liu, X. Yang, W. Wang, W. Shao, and T. Ji, “P4HA1
as an unfavorable prognostic marker promotes cell migration
and invasion of glioblastoma via inducing EMT process under
hypoxia microenvironment,” American Journal of Cancer
Research, vol. 11, pp. 590–617, 2021.

[12] T. Li, J. Fan, B. Wang et al., “TIMER: a web server for compre-
hensive analysis of tumor-infiltrating immune cells,” Cancer
Research, vol. 77, no. 21, pp. e108–e110, 2017.

[13] B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, and
A. A. Alizadeh, “Profiling tumor infiltrating immune cells with
CIBERSORT,” Methods in Molecular Biology, vol. 1711,
pp. 243–259, 2018.

[14] F. Liang, H. Liang, Z. Li, and P. Huang, “JAK3 is a potential
biomarker and associated with immune infiltration in kidney
renal clear cell carcinoma,” International Immunopharmacol-
ogy, vol. 86, p. 106706, 2020.

[15] S. V. Vasaikar, P. Straub, J. Wang, and B. Zhang, “LinkedO-
mics: analyzing multi-omics data within and across 32 cancer
types,” Nucleic Acids Research, vol. 46, pp. D956–D963, 2017.

[16] D. Warde-Farley, S. L. Donaldson, O. Comes et al., “The Gen-
eMANIA prediction server: biological network integration for
gene prioritization and predicting gene function,” Nucleic
Acids Research, vol. 38, suppl_2, pp. W214–W220, 2010.

[17] M. Uhlén, L. Fagerberg, B. M. Hallström et al., “Proteomics.
Tissue-based map of the human proteome,” Science, vol. 347,
article 1260419, 2015.

[18] M. G. Rees, B. Seashore-Ludlow, J. H. Cheah et al., “Correlat-
ing chemical sensitivity and basal gene expression reveals
mechanism of action,” Nature Chemical Biology, vol. 12,
no. 2, pp. 109–116, 2016.

[19] Q. Zeng, S. Sun, Y. Li, X. Li, Z. Li, and H. Liang, “Identification
of therapeutic targets and prognostic biomarkers among CXC
chemokines in the renal cell carcinoma microenvironment,”
Frontiers in Oncology, vol. 9, p. 1555, 2019.

[20] L. Zhou, Y. Li, Z. Li, and Q. Huang, “Mining therapeutic and
prognostic significance of STATs in renal cell carcinoma with
bioinformatics analysis,” Genomics, vol. 112, pp. 4100–4114,
2020.

23BioMed Research International

https://downloads.hindawi.com/journals/bmri/2021/8357585.f1.zip


[21] H. Zhang, Z. Dai, W. Wu et al., “Regulatory mechanisms of
immune checkpoints PD-L1 and CTLA-4 in cancer,” Journal
of Experimental & Clinical Cancer Research, vol. 40, no. 1,
p. 184, 2021.

[22] A. E. Vilgelm and A. Richmond, “Chemokines modulate
immune surveillance in tumorigenesis, metastasis, and
response to immunotherapy,” Frontiers in Immunology,
vol. 10, p. 333, 2019.

[23] L. Zhou, H. Tang, F. Wang et al., “Bioinformatics analyses of
significant genes, related pathways and candidate prognostic
biomarkers in glioblastoma,” Molecular Medicine Reports,
vol. 18, pp. 4185–4196, 2018.

[24] S. W. Huang, N. D. Ali, L. Zhong, and J. Shi, “MicroRNAs as
biomarkers for human glioblastoma: progress and potential,”
Acta Pharmacologica Sinica, vol. 39, pp. 1405–1413, 2018.

[25] Q. T. Ostrom, L. Bauchet, F. G. Davis et al., “The epidemiology
of glioma in adults: a "state of the science" review,” Neuro-
Oncology, vol. 16, pp. 896–913, 2014.

[26] S. Liu, C. Zhang, N. R. Maimela et al., “Molecular and clinical
characterization of CD163 expression via large-scale analysis
in glioma,” Oncoimmunology, vol. 8, p. 1601478, 2019.

[27] A. M. Alves, L. F. Diel, and M. L. Lamers, “Macrophages and
prognosis of oral squamous cell carcinoma: a systematic
review,” Journal of Oral Pathology & Medicine, vol. 47,
pp. 460–467, 2018.

[28] Z. Xu, L. Wang, J. Tian, H. Man, P. Li, and B. Shan, “High
expression of B7-H3 and CD163 in cancer tissues indicates
malignant clinicopathological status and poor prognosis of
patients with urothelial cell carcinoma of the bladder,” Oncol-
ogy Letters, vol. 15, pp. 6519–6526, 2018.

[29] S. Garvin, H. Oda, L. G. Arnesson, A. Lindström, and I. Shabo,
“Tumor cell expression of CD163 is associated to postopera-
tive radiotherapy and poor prognosis in patients with breast
cancer treated with breast-conserving surgery,” Journal of
Cancer Research and Clinical Oncology, vol. 144, pp. 1253–
1263, 2018.

[30] C. Pusztai, M. V. Yusenko, D. Banyai, A. Szanto, and
G. Kovacs, “M2 macrophage marker chitinase 3-like 2
(CHI3L2) associates with progression of conventional renal
cell carcinoma,” Anticancer Research, vol. 39, pp. 6939–6943,
2019.

[31] L. Mu, C. Yang, Q. Gao et al., “CD4+ and perivascular Foxp3+
T cells in glioma correlate with angiogenesis and tumor pro-
gression,” Frontiers in Immunology, vol. 8, p. 1451, 2017.

[32] N. Zhang, Z. Dai, W.Wu et al., “The predictive value of mono-
cytes in immune microenvironment and prognosis of glioma
patients based onmachine learning,” Frontiers in Immunology,
vol. 12, p. 656541, 2021.

[33] A. L. Hung, R. Maxwell, D. Theodros et al., “TIGIT and PD-1
dual checkpoint blockade enhances antitumor immunity and
survival in GBM,” Oncoimmunology, vol. 7, article e1466769,
2018.

[34] C. Li, Y. Zhou, H. Deng et al., “Mining database for the thera-
peutic targets and prognostic biomarkers among STAT family
in glioblastoma,” Cancer Biomarkers, vol. 30, pp. 179–191,
2021.

24 BioMed Research International


	Comprehensive Analysis of CD163 as a Prognostic Biomarker and Associated with Immune Infiltration in Glioblastoma Multiforme
	1. Introduction
	2. Materials and Methods
	2.1. Database and Gene Expression
	2.1.1. Heat Maps and Volcano Plots

	2.2. Enrichment Analysis
	2.3. Drug Sensitivity Analysis
	2.4. Survival Analysis
	2.5. Genetic Mutation Landscape
	2.6. Immune Infiltration Analysis
	2.7. LinkedOmics
	2.8. GeneMANIA
	2.9. Validation of the Expression and Prognosis Value

	3. Results
	3.1. Identification of DEGs and Associated Functions in GBM
	3.2. Somatic Mutations in the GBM
	3.3. Drug Sensitivity Analysis of Top 50 DEGs in GBM
	3.4. Prognosis Value of Top 50 DEGs in GBM
	3.5. Building a Predictive Nomogram
	3.6. Validation of the Expression and Prognostic Value of CD163 in GBM
	3.7. CD163 Were Associated with Immune Infiltration in GBM
	3.8. CD163-Associated Functions in GBM
	3.9. CD163-Associated Kinase, miRNA, or Transcription Factor Targets in GBM

	4. Discussion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Supplementary Materials

