
Facial Analysis Technology for the Detection of Down Syndrome 
in the Democratic Republic of the Congo

Antonio R. Porrasa,b,§, Matthew S. Bramblec,§, Kizito B.A. Mosemac,d, D’Andre Spencerc, 
Cécile Dakandec,e, Hans Manyac,e, Neerja Vashistc, Esther Likubae, Joachim Mukau Ebwelf, 
Celeste Musasac,g, Helen Malherbeh, Bilal Mohammeda, Carlos Tor-Dieza, Dieudonné 
Mumba Ngoyie,i, Desire Tshala Katumbaye,j, Marius George Lingurarua,k, Eric Vilainc,l,m

aSheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, 
Washington, DC, USA

bDepartment of Biostatistics and Informatics, Colorado School of Public Health, University of 
Colorado Anschutz Medical Campus, Aurora, CO, USA

cCenter for Genetic Medicine Research, Children’s Research Institute, Children’s National 
Hospital, Washington, DC, USA

dBiamba Marie Mutombo Hospital, Kinshasa, Democratic Republic of Congo

eInstitut National de Recherche Biomédicale (INRB), Kinshasa, DR. Congo

fUniversite Pedagogique Nationale, Kinshasa, DR. Congo

Address for correspondence: Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, 111 
Michigan Ave NW, Washington, DC, 20010, USA. Contact phone number: (+1) 202-751-0690, Corresponding authors: Dr. 
Antonio R. Porras, antonio.porras@cuanschutz.edu, Dr. Marius George Linguraru, mlingura@childrensnational.org, Dr. Eric Vilain, 
evilain@childrensnational.org.
§These authors contributed equally to this work
Antonio R. Porras: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data Curation, Writing - 
Original Draft, Visualization, Supervision, Project administration
Matthew S. Bramble: Conceptualization, Methodology, Formal analysis, Investigation, Data Curation, Writing - Review & Editing, 
Visualization, Supervision, Project administration
Kizito B.A. Mosema: Investigation, Supervision, Project Administation
D’Andre Spencer: Investigation, Formal Analysis
Cécile Dakande: Investigation
Hans Manya: Investigation
Neerja Vashist: Investigation, Data Curation, Formal Analysis
Esther Likuba: Investigation
Joachim Mukau Ebwel: Investigation, Supervision
Celeste Musasa: Investigation
Helen Malherbe: Writing, Review and Editing, Investigation
Bilal Mohammed: Formal analysis, Data Curation
Carlos Tor-Diez: Formal analysis, Data Curation
Dieudonné Mumba Ngoyi: Project Administration, Supervision
Desire Tshala Katumbay: Project Administration, Supervision
Marius George Linguraru: Conceptualization, Methodology, Resources, Investigation, Data Curation, Writing - Review & Editing, 
Project administration, Supervision, Funding acquisition
Eric Vilain: Conceptualization, Resources, Investigation, Data Curation, Writing - Review & Editing, Project administration, 
Supervision, Funding acquisition

This technology is protected by the following US patents: US patent no. 9,443,132 (Linguraru) and US patent no. 10,204,260 
(Linguraru).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Eur J Med Genet. Author manuscript; available in PMC 2022 September 01.

Published in final edited form as:
Eur J Med Genet. 2021 September ; 64(9): 104267. doi:10.1016/j.ejmg.2021.104267.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gFaculty of Medicine, Congo Protestant University, Kinshasa, DR. Congo

hUniversity of KwaZulu Natal, Durban, South Africa

iDepartment of Tropical Medicine, University of Kinshasa, Kinshasa, DR. Congo

jDepartment of Neurology and School of Public Health, Oregon Health & Science University, 
Portland, OR, USA

kDepartments of Radiology Pediatrics and Biomedical Engineering, George Washington 
University. Washington, DC, USA

lInternational Research Laboratory of Epigenetics, Data, Politics, Centre National de la 
Recherche Scientifique, Washington, DC, USA and Paris, France

mDepartment of Genomics and Precision Medicine, George Washington University School of 
Medicine and Health Sciences, Washington, DC, USA

Abstract

Down syndrome is one of the most common chromosomal anomalies affecting the world’s 

population, with an estimated frequency of 1 in 700 live births. Despite its relatively high 

prevalence, diagnostic rates based on clinical features have remained under 70% for most of 

the developed world and even lower in countries with limited resources. While genetic and 

cytogenetic confirmation greatly increases the diagnostic rate, such resources are often nonexistent 

in many low- and middle-income countries, particularly in Sub-Saharan Africa. To address 

the needs of countries with limited resources, the implementation of mobile, user-friendly and 

affordable technologies that aid in diagnosis would greatly increase the odds of success for 

a child born with a genetic condition. Given that the Democratic Republic of the Congo is 

estimated to have one of the highest rates of birth defects in the world, our team sought to 

determine if smartphone-based facial analysis technology could accurately detect Down syndrome 

in individuals of Congolese descent. Prior to technology training, we confirmed the presence 

of trisomy 21 using low-cost genomic applications that do not need advanced expertise to 

utilize and are available in many low-resourced countries. Our software technology trained on 

132 Congolese subjects had a significantly improved performance (91.67% accuracy, 95.45% 

sensitivity, 87.88% specificity) when compared to previous technology trained on individuals who 

are not of Congolese origin (p < 5%). In addition, we provide the list of most discriminative 

facial features of Down syndrome and their ranges in the Congolese population. Collectively, our 

technology provides low-cost and accurate diagnosis of Down syndrome in the local population.
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Introduction

Down syndrome (DS), caused by a trisomy of chromosome 21, has a prevalence of 

approximately 1 in 700 live births (1) and is the most common aneuploidy in the population. 

The phenotype of subjects with this chromosomal disorder has been extensively described 
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in the literature and includes congenital heart defects, respiratory problems, intellectual 

disability, physical dysmorphology, gastrointestinal tract anomalies, hearing and vision 

problems, and immune system defects (2–4). Early detection of DS is essential to prevent 

life-threatening complications in these patients, usually related to their pulmonary and 

cardiac anomalies. In developed countries, prenatal screening using non-invasive testing is 

widely available and includes ultrasonography(5). When screening shows an increased risk 

for DS, more invasive diagnostic tests such as amniocentesis or chorionic villus sampling 

are used for confirmation(5). However, in regions where access to screening and diagnostic 

resources is limited, DS is usually identified after birth based on characteristic dysmorphic 

features observed during physical examination. Although the facial appearance is a key 

feature used by specialists to identify DS, dysmorphic features are often subtle in young 

babies and variable among populations with different ancestry. As a consequence, the 

reported accuracy of identifying DS by family physicians and pediatricians using only 

physical examination is as low as 64%(6). Hence, there is a need for more accurate alternate 

methods of diagnosis to improve outcomes through early intervention.

There are still large regions in the world with limited-to-no-access to screening and 

diagnostic resources for DS(7–9). Not surprisingly, some of those areas have been reported 

to present high rates of birth defects compared to developed countries. Specifically, the 

Democratic Republic of the Congo (DRC) has an estimated birth defect rate of 71 per 1,000 

children born(10), which is the highest regionally and one of the highest in the world. If 

affordable and fast screening resources were available, early detection of genetic syndromes 

in the DRC has the potential to reduce child mortality and morbidity associated with such 

conditions.

In our previous studies, we showed the potential of one such screening method, facial 

analysis technology, to identify dysmorphic facial features that are indicative of the presence 

of genetic syndromes in patients with diverse ancestry with an accuracy of 89% or higher 

(11–17). Although we found that models trained to identify facial dysmorphology in ethnic- 

and race-specific groups outperformed models trained in the global population, those former 

models did not account for phenotypical variations within groups with similar ancestry. For 

instance, the DS facial model specific to the Asian population was trained with patients 

from China, Malaysia, Thailand and India, which requires accounting for an important 

facial phenotype variability. Besides our previous studies, another facial analysis software, 

Face2Gene (FDNA, Boston, MA) has also been used to report on for the diagnosis of 

genetic syndromes in specialized (genetic) clinics. Its reported accuracy ranged between 

60–69% (18, 19). Lumaka et al (20) evaluated the performance of Face2Gene when 

trained with a dataset that incorporated photographs of African patients from the DRC, 

Rwanda and France, similarly concluding that patient ancestry influences the evaluation 

of facial morphology. However, that study performed differential diagnosis between DS 

and other syndromes. Hence, no comparisons were made with normative populations, and 

no interpretable and quantitative reference metrics that could be used at the clinics were 

provided. In average, DS was identified as the fifth most likely syndrome in African patients 

with confirmation of DS after training Face2Gene on African populations.
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In the current work, we focus on the DRC to implement a screening technology to identify 

DS in the local population. We use our technology to create a facial model specific to the 

populations seen in the capital Kinshasa, and to identify the facial features that are most 

discriminative of DS and their ranges in this population.

Materials

After approval by the ethical committees in the DRC and the US, we collected frontal facial 

photographs of presumed normative controls and suspected cases of DS using an in-house 

mobile phone application. Photographs of cases and controls were obtained from Maternité 

de Binza, Clinique Bondeko, Hôpital Saint Joseph, Hôpital Pédiatrique de Kalembelembe, 

Centre Mère et Enfant de Bumbu, Pédiatrie de Kimbondo, Village Bondeko network 

schools, CEIEHMA school and Kikesa School in Kinshasa, DRC. Prior to recruitment at 

hospital sites, the DRC-based pediatrician visited these establishments and held information 

sessions with nurses and administrators on the scopes and goals of our study and acquired 

approval from hospital administrators to conduct the study at these sites. This was followed 

by short educational sessions with nurses to better train on clinical features to be aware of 

for newborns and babies that may present with DS. In addition to these sessions, brochures 

were also given to nurses at our study sites which used text and photographs to highlight 

some of the facial phenotype characteristics associated with DS, to help identify newborns 

who may harbor trisomy 21. Once the hospital-based nurses suspected a baby or newborn 

of having DS, the DRC-based pediatrician was called and consulted with the parents of the 

child to explain the scope and goals of the study and acquired consent for participation in the 

study. As this was a pilot study, the pediatrician discussed DS with the parents, however, was 

unable to offer an official diagnosis, as one had yet to be made at the time of collection.

Sites outside of hospital settings were visited by the local pediatrician on the research 

team who discussed the scope and goals of this study with center directors and parents for 

the recruitment of children with DS. The research study was explained in detail to both 

parents and center administrators prior to obtaining consent for participation. While the 

participants at these centers were suspected of harboring trisomy 21, genetic confirmation 

had not been established and children presenting with features of DS at these centers 

were determined by both the administrators (Joachim Mukau Ebwel) and the DRC-based 

pediatrician (Kizito B.A. Mosema). Local medical doctors administered and explained the 

consent to photograph, analyze and publish findings in French or Lingala to the parents/

guardians of the subjects. After informed consent, photographs were taken with the mobile 

phone application and buccal swabs (Zymo Research DNA/RNA Shield Collection tubes, 

Cat # R1107) were collected for downstream genetic confirmation of suspected cases of 

Trisomy 21. After genetic confirmations were established downstream, the DRC-based 

pediatrician contacted/attempted to contact parents of those children in the study to relay 

such findings (while not an expectation of the study, the DRC-pediatrician determined the 

best course of action on this matter).

We excluded photographs that were not frontal or had motion/blurring artifacts. In addition, 

we discarded any photographs with poor illumination or presence of shadows in the face 

of the patients, as they may affect the quantification of the facial appearance. In total, we 
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included 74 patients (25 females, age 9.60 ± 4.32 years, range 5 days – 18 years) with 

genetic testing being negative for eight of these patients and trisomy 21 was confirmed for 

66 of the suspected cases (25 females, age 9.33 ± 4.46 years, range 5 days – 18 years).

We also acquired facial photographs of 66 normative subjects from the same local 

population matched to the patients with diagnosis confirmation of DS by sex (age 6.79 

± 4.14 years, range 16 days – 18 years). A flowchart summarizing our data collection 

approach can be found with our supplementary material (Fig. 1).

Methods

Genetic confirmation of suspected DS cases using capillary electrophoresis:

Genetic confirmation for the DS training set was conducted by polymerase chain 

reaction (PCR) and capillary electrophoresis previously described by Sun et al (21). 

Conserved regions of segmental duplications of TTC3 on chromosome 21 and KDM2A 

on chromosome 11 were targeted for amplification. Forward and reverse primers used were 

designed by Sun et al. (21) that annealed to both TTC3 and KDM2A, enabling amplification 

of both segments with the same primer pairs. The forward primer was fluorescently labelled 

with 6-carboxyfluorescein fluorophore on the 5’ end allowing detection during capillary 

electrophoresis. DNA was isolated from buccal swabs (Zymo Research DNA/RNA Shield 

Collection tubes, Cat # R1107) iusing the Quick-DNA Magbead Plus Kit (Zymo Research 

cat # D4081) and 20ng of DNA was used per reaction for each suspected DS case and 

ran in technical triplicate. The PCR product was treated with ExoSAP-IT PCR Product 

Cleanup Reagent (ThermoFisher, Catalog Number: 78201.1.ML), following manufacturer’s 

recommendations, prior to capillary electrophoresis. The PCR products were diluted 1:32 

prior to sequencing on the ABI 3500 Genetic Analyzer (Applied Biosystems). The predicted 

amplicon from TTC3 is 147bp, while the amplicon for KDM2A was predicted at 128bp, 

allowing fragment analysis to distinguish the two segments.

Area under the curve for the appropriate peaks was used to quantify the proportion of 

each segment using Microsatellite analysis software (Applied Biosystems). For trisomy 21 

confirmation, we expect ~1.5 times more of fragment of size 147bp (from chr. 21) compared 

to that of fragment of size 128bp (from chr. 11) due to the duplication of chromosome 21. 

The averages of the ratios were determined for each sample from the triplicates performed. 

DNA from a trisomy 21 sample from the Coriell Institute’s repository was used as a 

positive control (Catalog ID: NG06922), while DNA from a non-trisomy 21 male was used 

a negative control. Statistical analysis of amplicon ratios between confirmed cases, negative 

controls and positive controls was conducted using the Student t-test.

Facial analysis technology:

The facial analysis technology has been described in detail in our previous works (11–17). In 

summary, our technology quantifies a set of geometric measurements normalized to the size 

of the face from 44 anatomical facial landmarks. In addition, it quantifies the appearance 

around each one of the 33 inner facial landmarks using an improved texture descriptor based 

on local binary patterns (22) at different levels of resolution to capture patterns at different 
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scales. Fig. 1 illustrates the inner facial landmarks and metric computed from them. From 

the geometric and appearance features, the most discriminative ones between normative 

subjects and patients with DS were selected using recursive feature elimination (23) and 

a support vector machine classifier (24) with a linear kernel was trained to estimate the 

probability of a subject to present DS.

Experiments:

To characterize quantitatively the facial phenotype of DS in the population of the DRC, we 

created a computational facial phenotyping model specific to the local population using our 

facial analysis technology. We trained our classification model using the photographs of the 

66 patients with diagnostic confirmation of DS and their matched controls. We evaluated 

its accuracy, sensitivity and specificity of the technology using cross-validation. Through 

this process, we trained a facial model using all subjects in our dataset except for one, 

which was used for testing. We repeated this process iteratively until all patients were 

tested. To identify the optimal number of discriminative features used for classification, 

we increased the number of selected features until the area under the receiver operator 

characteristic curve converged (25). Once the optimal number of features was selected, 

we calculated the classification threshold as the one that maximized the accuracy of our 

classifier. For each selected feature, we also estimated its individual discriminative power 

using the non-parametric Mann-Whitney U test (26).

To show the benefits of a model adapted to the local population of the DRC, we calculated 

the performance of two other models developed in our previous work(13): a model trained 

to identify DS in the global population, and a model trained to identify DS in the general 

African descent population. The latter did not include cases from the DRC. After training 

the model, we also tested its performance on the 8 patients that were incorrectly diagnosed 

as DS (based on genetic confirmation) to show the potential of our model in a real setting.

Results

Genetic Confirmation:

To genetically confirm an aneuploidy of chromosome 21 in the DRC patients suspected 

of having DS, we utilized qRT-PCR that targeted segmental duplications on chromosome 

21 and 11. When the ratio of both fragments were plotted (Chr. 21/ Chr. 11), as shown in 

Fig. 2, we observed no overlap between negative and positive samples, enabling accurate 

confirmation. Negative controls had a minimum ratio of 1.03, a maximum ratio of 1.26 

and a mean of 1.14 ± 0.06, whereas positive DS controls had a minimum ratio of 1.46, 

a maximum ratio of 1.64 and a mean of 1.572 ± 0.07. Our confirmed cases of DS from 

DRC had a minimum ratio of 1.43, a maximum ratio of 2.00 with the mean being 1.65 

± 0.10. The ratio of fragments from chromosome 21 to chromosome 11 for both positive 

controls and confirmed cases of DS from our DRC cohort were significantly different 

than the ratios observed for the negative control (p<=0.001). Collectively, using a low-cost 

and user-friendly qRT-PCR our approach confirmed 66 cases of DS out of 74 clinically 

suspected subjects based on ratios of segmental duplications of chromosomes 21 and 11.
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Facial Analysis:

The performance of our three models identifying DS in the local population of the DRC 

is summarized in Table 1. Cross-validation of the model trained for the local population 

of the DRC showed a classification accuracy of 91.67% (95.45% sensitivity and 87.88% 

specificity) for an optimal threshold of 45%. The list of the five optimal discriminative 

features selected by our technology is provided in Table 2 together with their ranges in the 

control population and in the subjects with DS.

The model trained on the general African descent population provided an accuracy of 

77.27% (89.39% sensitivity and 65.15% specificity). On the other hand, the model trained 

with the general population provided an accuracy of 75.76% in the DRC population 

(95.45% sensitivity and 56.06% specificity). The contingency tables used to calculate the 

performance of our classifiers are available in our supplementary material (Table 1). Table 3 

also shows the ranges reported in the global population and in the population with African 

ancestry. Finally, our model discarded correctly the presence of DS in 5 of the 8 patients that 

were diagnosed incorrectly by experts, representing a 62% reduction in the false positive 

rate.

Discussion

Down syndrome is one of the most common chromosomal anomalies in the world’s 

population, resulting from an aneuploidy of fragments or the whole of chromosome 21 

(1). Clinical features associated with DS enable diagnosis to be made early in life in 

most of the developed world, however despite the well-known features associated with this 

condition, diagnostic success rates based on clinician assessments are estimated to be below 

70% (6, 27). Accuracy rates from clinicians are significantly reduced in the developing 

world, particularly in Sub-Saharan Africa, resulting in limited prevalence data and long-term 

patient success in those countries (6, 28, 29). While genetic testing greatly increases the 

odds of accurate diagnosis of DS, the methods come with high financial and technical 

burdens, preventing countries with limited resources from utilizing such technologies. To 

address these deficiencies in clinical diagnosis and limited resources, low-cost and user­

friendly technologies must be implemented to improve clinical diagnostic accuracy and 

reduce mortality and morbidity of those living with a genetic condition. Given that the DRC 

is estimated to have one of the highest rates of birth defects in the world, coupled with 

limited clinical and genetic resources, we sought to determine if facial recognition software 

was capable of accurately identifying cases of DS (10).

Technology training on data from population of local ethnicity increases accuracy:

When assessing the performance of our facial recognition application using study 

populations acquired from Kinshasa, the urban capital of DRC, we see that the performance 

of the software is highly variable depending on the source/ethnicity of the subjects 

individuals used for the training of the facial analysis technology. If the software is trained 

using data from a global general population, the application can distinguish those with DS 

from the DRC with 75.76% accuracy (95.45% sensitivity and 56.06% specificity). These 

performance indices are marginally improved if the software is trained on the general 
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population of African ancestry (including African Americans) resulting in 77.27% accuracy 

(89.39% sensitivity and 65.15% specificity). However, the performance of the technology 

improved significantly (p<5% using a McNemar’s test) when it was trained on data from 

subjects of Congolese origin enabling 91.67% accuracy (95.45% sensitivity and importantly 

87.88% specificity). These findings highlight the importance of utilizing local subjects, 

including controls, for training prior to using the application for diagnostic approaches. If 

trained with global or African descent controls, we see a low specificity in performance, 

indicating that the application misidentifies a large percentage of individuals of Congolese 

descent as being dysmorphic who otherwise are not. These results likely stem from the 

fact that Africa has the highest level of genetic human diversity on the planet, which has 

subsequently resulted in unique characteristics and physical features of the thousands of 

ethno-linguistic subgroups of individuals on the continent. Due to this level of diversity an 

“African” training model is generally unlikely to prove successful, however these challenges 

can be overcome if technology training is performed on a targeted population of interest, as 

our findings demonstrate.

Facial analysis identifies discriminative facial features specific to Down syndrome in the 
DRC:

Our technology utilized geometric and appearance measures derived from facial landmarks 

to effectively distinguish normative controls from those individuals harboring a condition 

that results in a facial phenotype, as illustrated with DS. The classifier identified significant 

differences in three geometric facial features including the distance between medial canthi, 

nose length and philtrum length that were most important for discriminating cases of DS 

from unaffected individuals of Congolese descent. Other geometric facial features such 

as the distance between medial and lateral canthi, the distance between nose alas, upper 

lip width, lower lip width and the angle at the alas of the nose were also found to be 

significantly different between cases of DS and normative DRC controls, however they were 

not needed for accurate distinction.

Study limitations:

Although our facial analysis provided 91.67% accuracy identifying DS in the local 

population from Kinshasa (DRC), its accuracy may be affected by the imperfect matching in 

our dataset. Our patients with DS were matched with controls by sex and race, but they were 

not perfectly matched by age because of data unavailability. Moreover, since our technology 

was designed to distinguish patients with DS from normative subjects, it could potentially 

indicate in the future that patients harboring other syndromes have a similar phenotype to 

DS, if not genetically confirmed as it was done for this study. Although the current study 

focuses on the quantitative characterization of the Congolese facial phenotype of DS, our 

technology is designed for screening purposes and its goal is to identify patients at risk for 

referral to preventive and specialized care. In this scenario, the identification of a patient 

at risk, even if the cause is not DS, may be beneficial to initiate preventive care. Finally, 

although our study covered the full pediatric age range, we believe that the highest potential 

of this technology is the screening of newborns and babies. Future work will focus on these 

populations, to make this technology more impactful.
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Conclusion:

Due to the limited scientific data on the topic of Down syndrome in the DRC, prevalence 

rates and outcomes for those affected with this condition are largely unknown. However, 

reports based on medical expert opinions suggest that the vast majority of those living 

with DS in the Congo frequently do not live past 2 years of age, due to lack of diagnosis, 

treatment options and associated costs (30). While traditional cytogenic testing serves as a 

gold standard to diagnose cases of trisomy 21, other technologies can effectively accomplish 

accurate genetic confirmations at a fraction of the cost and expertise. Here, we demonstrated 

that DS can be successfully diagnosed using smart phone-based applications with high 

sensitivity and specificity, coupled with a much simpler genetic technique of qRT-PCR, 

should genetic confirmations be warranted. Based on local medical opinions, the cost of 

diagnosing DS in the DRC is estimated to cost $500 USD (30), a price that is largely outside 

of the financial capability of a population that resides in one of the most poverty-stricken 

countries in the world (31). Utilizing the user-friendly and accurate applications presented 

here could effectively offer a diagnostic solution for less than $10 USD, as well as greatly 

expanding much needed surveillance data on inborn genetic conditions in countries where 

medical expertise and infrastructure are lacking, as is the case in the DRC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
(a) Landmarks and metrics used by the facial analysis technology to quantify facial 

phenotypes. Blue lines represent distances. Horizontal distances are normalized with respect 

to the distance between the lateral canthi (H), and vertical distances are normalized to 

the distance between the lateral canthi and the oral commisures (V). Dashed green lines 

represent angles centered at the landmarks with green circles. Appearance features are 

calculated at different resolutions around each of the 33 facial landmarks. (b) Metris that 

are significantly different beteween patients with Down syndrome and normative subjecs 

in the population of the DRC. Blue lines and landmarks in red represent the distance and 

appearance metrics, respectively, used by our classifier to identify Down syndrome in the 

population of the DRC (presented in Tables 2 and 3). The other metrics that are significantly 

different between patients with Down syndrome and healthy subjects and that are presented 

in Table 4 are depicted in yellow.
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Fig. 2: 
Distribution of the ratios of segmental duplications of chromosome 11 versus chromosome 

21 for negative controls, independent positive controls and cases of Down syndrome 

identified in the DRC. **** indicates a p value < 0.001 as measured by the t-test.
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Table 1.

Performance of the models trained on the DRC, African descent and global populations when tested on the 

local population of the DRC. P-values were calculated to compare the performance of the models trained 

on the African and Global populations with the one trained with the local population of the DRC using the 

McNemar’s test. PPV and NPV stand for positive predictive value and negative predictive value, respectively.

Accuracy Sensitivity Specificity PPV (precision) NPV p-value

DRC 91.67% 95.45% 87.88% 88.73% 95.08% -

African 77.27% 89.39% 65.15% 71.95% 86.00% 0.037

Global 75.76% 95.45% 56.06% 68.48% 92.50% 0.003
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Table 2.

Features selected by the facial analysis technology to identify DS in the DRC population. Horizontal features 

(H) are normalized to the distance between the lateral canthi. Vertical features (V) are normalized to the 

distance between the oral commissures and the lateral canthi.

Feature Normative DS p-value

Distance between medial canthi (H) 0.41± 0.03 0.46 ± 0.03 <0.001

Nose length (V) 0.76 ± 0.06 0.65 ± 0.06 <0.001

Philtrum length (V) 0.24 ± 0.04 0.22 ± 0.04 0.023

Average texture at lateral canthi N/A N/A 0.0127

Texture at lower border of upper lip N/A N/A 0.502
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Table 3.

Ranges of the geometric features selected to identify DS in the DRC population compared with the global 

population and the African descent population. Horizontal features (H) are normalized to the distance between 

the lateral canthi. Vertical features (V) are normalized to the distance between the oral commissures and the 

lateral canthi.

Normative Down syndrome

Features DRC African Global DRC African Global

Distance between medial canthi (H) 0.41± 0.03 0.42 ± 0.04 0.41 ± 0.04 0.46 ± 0.03 0.44 ± 0.03 0.44 ± 0.04

Nose length (V) 0.76 ± 0.06 0.79 ± 0.13 0.77 ± 0.12 0.65 ± 0.06 0.69 ± 0.10 0.69 ± 0.11

Philtrum length (V) 0.24 ± 0.04 0.25 ± 0.05 0.26 ± 0.05 0.22 ± 0.04 0.22 ± 0.05 0.24 ± 0.05
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Table 4.

Geometric features with significantly different ranges between the normative population and the patients with 

DS in the DRC that were not selected for classification. Horizontal features (H) are normalized to the distance 

between the lateral canthi. Vertical features (V) are normalized to the distance between the oral commissures 

and the lateral canthi.

Feature Mean: Normal Std: Normal Mean: Syndromic Std: Syndromic p-value

Distance between medial and lateral canthi (H) 0.30 0.01 0.27 0.01 <0.001

Distance between nose alas (H) 0.43 0.03 0.46 0.04 <0.001

Upper lip width (V) 0.16 0.03 0.18 0.03 <0.001

Lower lip width (V) 0.18 0.03 0.17 0.04 0.001

Angle at the alas of the nose (degrees) 54.86 5.36 57.56 6.20 0.011

Eur J Med Genet. Author manuscript; available in PMC 2022 September 01.


	Abstract
	Introduction
	Materials
	Methods
	Genetic confirmation of suspected DS cases using capillary electrophoresis:
	Facial analysis technology:
	Experiments:

	Results
	Genetic Confirmation:
	Facial Analysis:

	Discussion
	Technology training on data from population of local ethnicity increases accuracy:
	Facial analysis identifies discriminative facial features specific to Down syndrome in the DRC:
	Study limitations:
	Conclusion:

	References
	Fig. 1:
	Fig. 2:
	Table 1.
	Table 2.
	Table 3.
	Table 4.

