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Abstract

Brains at rest generate dynamical activity that is highly structured in space and time. We suggest 

that spontaneous activity, as in rest or dreaming, underlies top-down dynamics of generative 

models. During active tasks, generative models provide top-down predictive signals for perception, 

cognition, and action. When the brain is at rest and stimuli are weak or absent, top-down dynamics 

optimize the generative models for future interactions by maximizing the entropy of explanations 

and minimizing model complexity. Spontaneous fluctuations of correlated activity within and 

across brain regions may reflect transitions between "generic priors" of the generative model: low 

dimensional latent variables and connectivity patterns of the most common perceptual, motor, 

cognitive, and interoceptive states. Even at rest, brains are proactive and predictive.
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What is the brain doing when it (apparently) does nothing?

Brains are constantly active, even when they receive no sensory stimuli or are not task

engaged [1,2]. Studies of the brain at rest or in periods of relative inactivity reveal that 

sophisticated dynamical patterns of activity emerge spontaneously across cortical and 

subcortical structures [3,4] (Figure 1). The functional significance of spontaneous brain 

activity (also called intrinsic or endogenous) is largely unknown.
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Mainstream models of cortical processing describe the brain as a sensory-motor analyzer 

[5]. In these models, the content of sensory representations only becomes available through 

feedforward processing, as photons reflected from objects hit the retina and are transduced 

into increasingly complex features in visual cortex (e.g., edges, geometric features, object 

parts, faces), as exemplified in convolutional deep neural networks [6]. Endogenous 

processes such as attention modulate the feedforward transduction, but do not elicit or 

maintain representational content in the absence of stimuli [7,8]. Within this traditional view, 

spontaneous activity dynamics are modeled as random noise fluctuations that modulate 

feedforward post-synaptic recruitment [9,10].

However, it is now well established that neural noise is correlated in space and time, 

and different explanations have been offered to explain spontaneous patterns of correlated 

activity among brain regions. One idea is that they represent emergent properties of 

anatomical circuitries driven by noise [11,12]. Other theories suggest that they represent 

homeostatic mechanisms related to the history of task activation [13–15] and possibly serve 

as a scaffold (or prior) for the execution of behaviorally relevant tasks [3,14–18].

Nonetheless, we experience a rich mental life event in the absence of any task or sensory 

stimulation. For example, when dreaming of people, we engage in sophisticated forms of 

cognition spanning from theory of mind to moral reasoning and language. When dreaming 

of actions like flying or falling, we anticipate their outcome like preparing to hit the floor 

and even experience feelings of vertigo. Similarly, lying awake in bed in the dark, we can 

recall events from the past, but also create novel events in the future by flexibly recombining 

bits of old memories or creating novel ones never experienced before. Hence, in the absence 

of any task, sensory stimulus and even consciousness, the brain can generate spontaneously 

complex scenes and manipulate them in cognitively sophisticated ways – prompting a 

reconsideration of the richness of the brain’s "secret life".

Four indications of the functional importance of spontaneous activity

At least four research lines suggest the functional importance of spontaneous brain 
activity.

First, the brain consumes about 20% of the body energy, upwards of 50% in the developing 

brain, vis-à-vis only 2% of the body weight [1,19]. While 25–40% of this budget goes to 

house-keeping functions (e.g. microtubule remodeling, lipid turnover, and protein synthesis), 

most (60–75%) goes to electrochemical signals: resting potentials (neurons, glia), and 

signaling (spikes, subthreshold excitatory and inhibitory potentials) [20]. However spikes 

are metabolically expensive, and given a fixed metabolic budget, only about 10% of the 

energy goes to spikes with very few neurons (1–10%) simultaneously firing in cortex during 

sensory processing [21]. This explains the relatively small changes of metabolism and 

blood flow measured in PET and fMRI experiments during task activation [1]. Theoretical 

calculations and recent simultaneous neuronal recordings from thousands of neurons show 

that the activity of most neurons concentrates in a more metabolically convenient infra-slow 

frequency range (<0.1 Hz) [22–24]. These observations agree with the prominent infra

slow fluctuations of activity (<0.1 Hz) measured from the whole brain with fMRI blood 
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oxygenation level dependent (BOLD) and EEG signals [25] (Figure 1A; Figure 2A). If most 

of the energy budget goes to resting potentials and infra-slow signaling, this activity must 

play a fundamental, yet unknown, role in function. In this article, we use “spontaneous 

activity” to refer to infra-slow activity, unless otherwise specified.

The second clue on the functional importance of spontaneous activity comes from studies 

of its spatial and temporal organization. Brain activity at rest (either eyes open or closed), 

measured through the BOLD fMRI signals, is organized in distinct spatiotemporal patterns 

known as resting state networks (RSNs). These networks are formed by groups of regions 

that show temporally correlated activity and co-activation during behavioral tasks [14,26]. 

The functional architecture of RSNs reflects anatomical connectivity, especially in sleep 

and anesthesia, but in the awake state the similarity between anatomical and functional 

connectivity patterns is low [11,12]. These findings suggest that arousal and cognition enrich 

a static anatomical architecture. In the temporal domain, RSNs fluctuate at slow frequencies 

(~0.01 Hz) as measured in EEG [27], MEG [28], local field potentials [29], and calcium 

imaging [23,24]. Also in time the electrophysiological topography of RSNs is relatively 

stable during task performance albeit frequency specific interactions between task-specific 

regions occur [30].

Third, spontaneous activity patterns covary with individual differences in cognitive functions 

[31,32], change with learning [13,33], and predict individual predisposition to a new 

behavior [34]. An enormous clinical literature has reported correlations between behavioral 

abnormalities in innumerable clinical conditions and alterations of spontaneous activity 

patterns. Particularly insightful are alterations that show both network- and behavior-specific 

correlations, such as a double dissociation in the motor and dorsal attention networks, 

respectively for motor and spatial attention deficits [35].

Fourth, spontaneous and task-evoked activity are similar at the level of single neurons within 

cortical and subcortical regions. The statistics of spontaneous activity in sensory cortex 

are well aligned to the statistics of visual or auditory scenes [36,37] and this alignment 

increases with development [38,39]. Task-evoked and spontaneous activity influence each 

other: visually evoked response reverberate in spontaneous activity [40], while spontaneous 

activity explains the variability of stimulus evoked responses [41]. This is not only a 

cortical phenomenon. Single cell recordings in rodents [42–45] and human neuroimaging 

studies [46,47] show that spontaneous activity in the hippocampus during sleep or wakeful 

rest resembles sequences of neuronal activation for places or events experienced in the 

awake state ("replays" [48]). Furthermore, in certain conditions, spontaneous activity 

before navigation of novel mazes resembles sequential patterns observed during subsequent 

navigation ("preplays" [49]). Spontaneous hippocampal sequences are not epiphenomenal. 

Their manipulation through optogenetics changes memory content and spatial decisions 

[50–52]. Replay sequences involve high frequency activity (>150 Hz) but can be temporally 

coordinated with low frequency spontaneous dynamics in other brain structures, such as 

prefrontal cortex, visual cortex and ventral striatum, possibly supporting systems-level 

cognitive functions [53–56].
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In summary, spontaneous activity (both in individual regions and whole brain networks) 

play a fundamental, yet poorly understood, role in brain function. Here we propose 

that spontaneous brain activity patterns, such as those observed during resting state and 

hippocampal replays, may be the signature of a class of computational models called 

generative models [57] and the top-down and recurrent dynamics that they produce.

Top-down brain processes and spontaneous activity: a generative 

modeling perspective

Top-down and recurrent brain dynamics have been mostly studied during task performance, 

where they may support prediction, attention, and the contextualization of stimulus 

processing [17,58–61]. Top-down processes are triggered by internal (e.g. the memory we 

are out of fruit at home) or external (e.g. the sign of a grocery store) signals and can be 

maintained for long periods of time to guide visual exploration and perception; in part, 

by modulating ongoing rhythms [62,63]. At the moment of search, they modulate sensory 

representations toward relevant/attended stimuli (e.g. apples) and away from irrelevant ones 

(e.g. breads, meats) [7,8].

According to an influential perspective, top-down dynamics may reflect the brain’s 

generative model of the environment and its own body [64,65]. From a generative modeling 

perspective, perception, action selection, and learning are problems of statistical inference. 

For example, perception corresponds to the unconscious inference [66] of the latent (i.e., 

unobserved) causes of our observations; e.g., which object (e.g., apple or frog) caused 

our retinal activity patterns (e.g., red rounded or green elongated). This problem is solved 

using a generative model that comprises two elements: a prior probability of the objects 

in the visual scene, which specifies how probable are apples or frogs in the context; and a 

(likelihood) mapping between objects and stimuli, which specifies which stimuli are more 

likely given the presence of a specific object (e.g., that seeing red is more likely under the 

apple than the frog hypothesis). Bayes’ rule prescribes how to use these two elements plus 

sensory data (e.g., red stimuli) to infer the posterior probability of apple and frog hypotheses 

– hence adjudicating between them.

In the most widely used biological implementation of the above inferential scheme – 

predictive coding – top-down activity updates perceptual representations by integrating 

top-down predictions and bottom-up stimuli (Box 1). Similarly, in the hierarchical recurrent 

neural network known as Deep Boltzmann Machine (Figure 3), top-down signals generate 

fictive data that guide learning and later convey information that help resolve uncertainty 

at lower levels during inference [67]. The above theories focus on top-down processes 

during online tasks, not spontaneous activity at rest. However, this dichotomy may be only 

apparent. If brain networks implement generative models, they will constantly perform 

inferential and generative processes, not only for cognition and sensory-motor interactions, 

but also during rest [17,44,68].

Our proposal highlights however a fundamental difference between generative processes 

during task performance and rest. During task performance, top-down processes prepare the 

brain to process specific stimuli and upcoming actions. For example, top-down signals in 
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visual cortex encode the location, feature, objects, and decisions for expected stimuli at the 

expense of unexpected stimuli [8,69,70]. Hence, preparatory signals during active behavior 

encode context-specific task information. In contrast, spontaneous activity dynamics at rest 

are not confined to recapitulating the history of task activations, but prepare the brain 

to process a wider range of stimuli and responses for future behavior, largely in a context

independent manner.

Formally, the disengagement from current action-perception cycles allows the optimization 

of generative models for future use. Statistical inference balances constantly two 

imperatives: maximizing the accuracy of explanations (to fit data) and minimizing model 

complexity (to avoid overfitting). However, the balance of accuracy and complexity may 

change between task and resting states. During resting states, when stimuli are weak or 

absent, accuracy loses importance, favoring the reduction of model complexity. Furthermore, 

the statistical framework mandates that in the absence of data we should adopt maximally 

uncertain beliefs about the state of the world, that is, maximize the entropy of explanations 

and “keep options open” (i.e., maximum entropy principle [71]).

In the next two sections, we unpack this hypothesis. We argue that the imperative to 

maximize entropy of explanations leads to the formation of generic priors, which become 

apparent as transitions between low-dimensional brain states. Furthermore, the imperative to 

minimize model complexity may govern model reduction and synaptic pruning.

Inferring generic and low-dimensional spatiotemporal priors for future 

interactions

A key function of spontaneous activity during offline periods may be the inference of 

generic and low-dimensional spatiotemporal priors for future interactions.

In predictive coding and similar schemes, priors encoded at high hierarchical levels are 

propagated top-down to predict incoming stimuli at lower levels; and are corrected if 

prediction errors are generated. During offline periods, bottom-up stimuli are weak or 

absent; they cannot elicit prediction errors to correct priors, which are therefore continuously 

reiterated. During these periods, the brain’s generative model may recirculate (or resample) 

the model’s priors, or the spatiotemporal patterns acquired during sensorimotor behavior and 

the exposition to external stimuli [13,17,72–74]. This hypothesis explains the resemblance 

(at the level of average statistics) between brain activations during spontaneous and evoked 

cortical activity [31,36–39,41,75–77] but does not fully specify the content of the priors. 

We argue that offline activity reflects two kinds of priors: representations and connectivity 

patterns. For simplicity, we discuss them separately, even though they are closely integrated 

in the brain [78].

Representations as generic priors

During offline periods, there are fewer stimuli to "explain away" and this may favor 

the formation of generic priors, i.e., prior representations not tied to the explanation of 

any specific data point, but to the data distribution and their natural statistics, such as 

the distribution of natural image features, objects, behavioral and interoceptive patterns 
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previously experienced [68,79]. Within generative neural networks, generic priors may 

correspond to information-compressed, low dimensional states that summarize a large 

amount of information, abstracting away from specific stimuli [57]. Because hierarchical 

networks operate successive information compressions, they encode simpler to more 

complex (e.g., time- and position-invariant) summary representations at increasingly higher 

hierarchical levels – and can recycle them across cognitive tasks [80]. Generic priors 

therefore embed low dimensional representations of perceptual, cognitive, or motor patterns 

that summarize the statistics of various natural tasks and have general use, for example, 

prototypes of object categories or features rather than individual instances, or action pattern 

categories and synergies rather than individual movements. While the ontology of this 

low dimensional representation is unknown, anatomical considerations suggest that the 

information compression may be operated along a hierarchy that has primary sensory and 

motor regions (highly granular cortex) at its bottom, and less granular heteromodal regions 

(including limbic cortices) at its apex. The fact that limbic cortices lie at the apex of the 

architectural gradient suggests that the brain’s generative model may organize information 

along behaviorally relevant and interoceptive dimensions (Box 2) and model "the body in 

the world" [18] rather than just reflect exteroceptive statistics, as often assumed [17,38]. 

In keeping, the notion of generic prior used here is broad and encompasses environmental, 

behavioral, interoceptive and cognitive patterns (see Box 2).

At the neuronal level, growing evidence indicates that stimuli or movements in cortex are 

not coded individually (e.g. a neuron coding for a specific face [81]), but through low 

dimensional hidden variables that summarize the variability of individual stimuli or actions. 

For instance, activity in monkey inferotemporal cortex can be described as the weights of 

principal components that represent the variability of hundreds of face or object stimuli 

[82]. The same occurs in monkey motor cortex for complex movement [83]. Similarly, in 

humans the fMRI response of association visual cortex to many different stimuli can be 

summarized by relatively few dimensions (e.g. animacy vs. non-animacy, [84]). In motor 

cortex, the response to principal components of complex hand movements summarize 

the fMRI response to individual movements [85]. In association cortex, a similar low 

dimensionality has been shown for semantic stimuli [86,87].

This compression strategy is efficient because the apparent heterogeneity of behavioral 

patterns in our everyday tasks may hide a much simpler lower dimensionality of input 

and output statistics (Box 2). Critically, this low dimensionality of neural (and behavioral) 

patterns shall be also apparent at rest. Accordingly, spontaneous activity in mouse visual 

cortex replays principal components of exploratory face movements [23] (Figure 2A). In 

human association visual cortex spontaneous multivoxel fMRI activity represents more 

likely domain-specific prototype-like stimuli rather than individual exemplars [77] (Figure 

2B). In human motor cortex common hand movements are more likely to be represented in 

multi-voxel resting activity than novel uncommon hand movements [88] and learned motor 

sequences are replayed in multi-unit firing activity at rest [89]. Similar observations have 

been made in cat [36] and monkey visual cortex [76]. Critically, these spontaneous patterns 

are not necessarily sensory-specific in sensory cortex or motor-specific in motor cortex, but 

may reflect more general patterns that are statistically associated during natural behavior 
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and linked by structural-functional connections. For instance, regions of visual cortex that 

respond to a specific visual category (bodies) also respond during reaching movements [90].

In summary, we posit that the low dimensionality of spontaneous neural patterns may 

reflect slow transitions between generic priors tuned for low dimensional, general-purpose, 

behavioral patterns [91,92] (Figure 2D). Itinerant dynamics across sequences of brain states 

may reflect the maximization of the entropy of explanations [93] (or in dynamical systems 

parlance, the exploration of the brain’s dynamic repertoire [94]) that generative models 

privilege in the absence of data to explain – to remain flexible.

Connectivity patterns as priors

The notion of generic priors includes not only representations but also connectivity patterns. 

Preconfigured brain networks apparent within spontaneous activity at rest may function as a 

spatiotemporal "scaffolding" or low dimensional basis set of elements that can be selected or 

combined to form task-specific generative architectures.

There is much evidence for this idea [14,26]. First, the organization of the resting brain 

can be readily summarized along few dimensions. Early accounts emphasized a distinction 

between so-called task-positive and task-negative networks, respectively driven by sensory

motor (external) vs. self-referential, emotional, and memory retrieval (internal) tasks 

[31,95,96]. More recently, a gradient of cortical organization going from sensory-motor 

networks, with a faster temporal scale of integration, to polymodal tertiary association 

networks, with a slowest temporal scale, has been proposed [97–99]. This spatiotemporal 

organization is exactly the one mandated by hierarchical generative models. Networks 

that occupy higher levels may continuously generate predictions to suppress prediction 

errors of lower brain networks, such as primary sensory and motor regions – which 

may be engaged when prediction errors cannot be readily cancelled out and disengaged 

otherwise [97,100,101]. Furthermore, task-specific generative architectures can be formed 

by selectively engaging and disengaging network elements.

Second, there is direct experimental evidence that the connectivity patterns of high-level 

association networks at rest are set up in space and time to be ready to process behaviorally 

relevant and meaningful natural stimuli. For example, during a visuospatial attention task 

prefrontal and posterior parietal regions of the dorsal attention network interact more 

strongly, as compared to rest, with visual occipital regions. This top-down modulation 

is necessary for the selection of relevant visual stimuli. However, while the functional 

architecture of occipital visual regions is reorganized when transitioning from rest to task, 

dorsal attention regions‘ topography and directional interactions do not change as if they 

were already at rest pre-set for attention [102]. Other studies have shown that the most 

central regions of the brain (hubs) are commonly recruited across many different tasks 

[103], and that many different task networks reflect the combination of low dimensional rest 

connectivity patterns [16]. These are examples of "spatial connectivity priors".

A similar principle may occur in the temporal domain. At rest, hub regions in the 

dorsal attention, default, and motor network dynamically interact with peripheral sensory 

and motor regions through slow fluctuations of the alpha and beta band limited power 
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(BLP) measured with MEG [104,105]. During the observation of movies, alpha and beta 

BLP connectivity in the visual system decreases, whereas the beta-band connectivity and 

dynamics of hub regions do not change. This stability may reflect a "temporal connectivity 

priors" [91]. Interestingly, the topography and dynamics of hub regions is modified as 

compared to rest if the visual input is not ecological as when the movie is temporally 

scrambled. Priors in spontaneous activity are therefore tuned to both the spatial and 

temporal statistics of the environment. Similar observations have been made in visual cortex 

measuring the similarity of spontaneous neuronal activity to natural vs. synthetic stimuli 

[38,39].

We shall emphasize that the connectivity architecture at rest is not the same as that observed 

during tasks, and that behavior requires the re-organization of resting networks. Spontaneous 

connectivity patterns at rest are thus "scaffolds" that change during tasks. The rules 

governing these modifications are incompletely understood. The distinction above between 

more stable central hub regions and more pliable peripheral sensory regions is one of them. 

Moreover, it is often assumed that resting networks correspond to specific behaviors. This 

idea comes from the similarity of task and rest networks, and the functional nicknames 

resting brain networks were labeled with early on (dorsal attention, visual, motor). However, 

that is not the case. For instance, a "reading" network composed of visual, auditory, 

language, and premotor regions has been well characterized in many task experiments [106], 

but the "visual word form area" in occipital cortex specialized in reading is functionally 

connected at rest with parietal and prefrontal regions of the dorsal attention network [14]. 

Similarly, brain regions that fluctuate at rest in two large clusters (task-positive vs. -negative) 

split in multiple clusters during vision of movies [107,108]. Hence spontaneous activity 

patterns may not be preconfigured for specific tasks but rather in a way that afford rapid 

transitions to many possible task-specific configurations [16,103,109] (Figure 2C), which is 

another manifestation of the maximum entropy principle.

Learning simpler and more accurate generative models without novel data

Another key function of spontaneous activity during offline periods may be the optimization 

of generative models for future interactions, by removing their redundancies and aligning 

them with the spatiotemporal structure of the animal’s ecological niche [2,110].

Generative models can be optimized even without novel data, in at least two ways. The 

first kind of optimization consists in reducing model complexity by pruning unnecessary 

parameters, i.e., those that can be removed without losing accuracy [111,112]. This process 

is analogous to post-hoc (Bayesian) model selection used in data analysis, which permits 

evaluating the evidence for a full model against reduced versions of the model – and 

select the most parsimonious. Spontaneous fluctuations may explore the space of possible 

(reduced) models, thus producing a form of mind wandering [113]. Importantly, since model 

parameters are encoded in neural tissue (e.g., synapses), reducing model complexity entails 

metabolic parsimony. This biological consideration aligns our proposal with theories of 

synaptic pruning and homeostasis during sleep [114].
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The second kind of optimization consists in generating (sampling) fictive data from the 

model probability distribution, and then using these fictive data, as they were real data, to 

optimize the same or other models [73,115]. This method was used in an early algorithm 

to train unsupervised generative models: wake-sleep. While during the "wake" phase the 

algorithm used real data for training, during the "sleep" phase it used fictive data generated 

by the model itself [116]. Recent advancements in "generative replay" show that sampling 

fictive data from a generative model and then using them to train the same or other models is 

an effective strategy to learn multiple tasks, while avoiding catastrophic forgetting (i.e., the 

tendency of neural networks to forget old tasks when they learn novel ones) [73].

Neurophysiological support from this idea comes from studies of "replay" from memory. 

Replays are observed in several cortical and subcortical areas, such as prefrontal cortex 

[117] and visual cortex [118], but are studied more extensively in the hippocampus, 

where they correspond to high-frequency reactivations of previously experienced patterns, 

e.g., sequences of place cells along spatial trajectories [48]. To explain these findings, 

an influential framework posits that the hippocampus is a memory system that stores 

experiences rapidly and then replays them during off-line periods, to train a separate 

(cortical) memory system that learns more slowly but generalizes better [119,120]. This 

theory inspired the widespread use of "experience replays" from a memory buffer to 

improve learning in deep networks [121]. The notion of "generative replay" suggests 

instead that hippocampal replays are generated by resampling from a generative model, not 

rehearsed from verbatim memories [73]. This perspective explains more naturally the fact 

that hippocampal replays can recombine experiences and reorganize them to follow novel 

learned rules [47,122] – possibly, by cross-talking with prefrontal cortex and other areas 

[44,54]. The possibility to recombine experiences may be crucial for prospective functions 

commonly associated to the hippocampus, such as planning and imagination [48,123].

Hippocampal replays occur at very high frequencies [42–45], which seems at odds with 

our emphasis on low frequency dynamics in the previous section. However, the learning 

mechanisms discussed in this section require specific episodic sequences (e.g., place cell 

sequences corresponding to specific trajectories, not average trajectories). Encoding such 

episodic details may require high-frequency activations observed in hippocampal replays, 

in contrast to the low frequencies encoding generic priors. Furthermore, both high and 

low frequencies are elicited during coordinated cortical-subcortical reactivations that occur 

both during sleep and the awake state, potentially favoring the bidirectional integration 

of more generic (cortical) and specific (hippocampal) representations [54,55,124,125]. An 

fMRI study suggests that cortical-hippocampal dialogue could follow a "sender-receiver" 

architecture, with high frequency (delta band) activity conveying information from sender 

to receiver; and low frequency (infra-slow) activity propagating from receiver to sender, 

to coordinate the timing of information transfer [126]. Interestingly, the study shows that 

during wakefulness, the cortex may act as sender and the hippocampus as receiver; but 

during slow-wave sleep, propagation directions reverse – suggesting that the cortex and the 

hippocampus may exchange (sender-receiver) roles when the brain‘s generative model is 

task-engaged or optimized, respectively.
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Concluding remarks

As our vivid dreams exemplify, spontaneous activity in the resting brain can be cognitively 

sophisticated. We proposed that spontaneous activity in cortical and subcortical brain 

networks could be understood in terms of top-down computational processes that generative 

models use to learn and infer states of the world. During offline periods, these processes are 

most useful to refine the model, as opposed to explain data accurately. Spontaneous activity 

is therefore characterized by low-frequency transitions that prepare generic priors, explore 

the brain’s dynamic repertoire, and reduce the complexity of brain generative models; and 

are sometimes punctuated by high-frequency transitions that selectively update the model 

with fictive data. This perspective reconciles two varieties of spontaneous activity (resting 

state activity and replays) that are often studied separately, suggesting that they may operate 

in a coordinated manner to optimize brain generative models.

This view contributes to an emerging framework that puts spontaneous activity at the 

center stage of brain processing [2,39,127,128]. It posits that model learning starts from 

preconfigured circuit dynamics that produce spontaneous activity. This activity is initially 

meaningless and acquires meaning through the constant alignment to statistics and dynamics 

of the external world, realized by acting and perceiving action consequences. During task

evoked activity, we observe the modulation of spontaneous activity by external inputs. 

Rather, during spontaneous activity at rest, we see manifestations of the internal model that 

– our analysis suggests – prepares us for future interactions (see the Outstanding Questions).

In sum, this perspective implies that the main function of spontaneous brain activity is the 

maintenance and optimization of the brain‘s generative models for future interactions. While 

not all our dreams become reality, we always dream for the future.
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Glossary

Bayes’ rule
Bayes’ rule provides us with a way to update a prior belief (the probability of an event 

before new data is collected) into a posterior belief, after collecting new, relevant data

Boltzmann machine
A popular biological implementation of unsupervised learning of generative models. It is a 

stochastic neural network of symmetrically connected neurons, whose dynamics is governed 

by an energy function. One layer or (visible) neurons encodes the input data pattern whereas 

another layer of (hidden) neurons encodes the latent causes of the data, see Figure 3

Pezzulo et al. Page 10

Trends Cogn Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Generative vs. discriminative models
A generative model is a probabilistic model that describes how a set of data is generated. By 

sampling from this model, we can generate new data instances. In contrast, discriminative 

models discriminate between different kinds of data instances (e.g., in a classification task)

Predictive coding
A popular biological implementation of perceptual inference using a hierarchical generative 

model. It explains how perceptual inference can be cast as the minimization of prediction 

errors, which stem from the continuous comparison of top-down sensory predictions and 

stimuli; see Box 1

Resting state networks
Networks of brain regions that activate or deactivate together during spontaneous brain 

activity at rest and are jointly active during behavioral tasks. However the equivalence 

rest-task is not complete as most tasks involve the recombination of resting state networks

Task-evoked versus spontaneous brain activity
This dichotomy usually refers to neuronal activations recorded when a creature is engaged 

in some task, in the presence of external stimuli (task-evoked) versus at rest, when external 

stimuli are weak or absent (spontaneous activity). However, this dichotomy may be slightly 

misleading, if both spontaneous and task-evoked activities are manifestations of generative 

models. Spontaneous activity at rest may reflect the activity of generative models (and 

especially their top-down dynamics) in the absence of external stimuli to "explain away". 

Generative models can also produce spontaneous dynamics immediately before and during 

task-engagement: these create the context for stimulus processing. Accordingly, the evidence 

we review shows that stimuli only explain a portion of task-evoked brain activity, whereas a 

larger portion can be explained by spontaneous activity immediately before stimuli onset

References

1. Raichle ME and Mintun MA (2006) Brain Work and Brain Imaging. Annual Review of 
Neuroscience 29, 449–476

2. Buzsaki G (2019) The brain from inside out, Oxford University Press, USA.

3. Raichle ME (2011) The Restless Brain. Brain Connect 1, 3–12 [PubMed: 22432951] 

4. Buckner RLet al. (2013) Opportunities and limitations of intrinsic functional connectivity MRI. Nat 
Neurosci 16, 832–837 [PubMed: 23799476] 

5. Barlow HB (1961) Possible principles underlying the transformation of sensory messages. Sensory 
communication

6. Yamins DL and DiCarlo JJ (2016) Using goal-driven deep learning models to understand sensory 
cortex. Nature neuroscience 19, 356 [PubMed: 26906502] 

7. Desimone R and Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev 
Neurosci 18, 193–222 [PubMed: 7605061] 

8. Corbetta M and Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the 
brain. Nature Reviews Neuroscience 3, 201–215 [PubMed: 11994752] 

9. Tolhurst DJet al. (1983) The statistical reliability of signals in single neurons in cat and monkey 
visual cortex. Vision Research 23, 775–785 [PubMed: 6623937] 

10. Shadlen MN and Newsome WT (1998) The Variable Discharge of Cortical Neurons: Implications 
for Connectivity, Computation, and Information Coding. J. Neurosci. 18, 3870–3896 [PubMed: 
9570816] 

Pezzulo et al. Page 11

Trends Cogn Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Deco Get al. (2013) Resting-State Functional Connectivity Emerges from Structurally and 
Dynamically Shaped Slow Linear Fluctuations. J. Neurosci. 33, 11239–11252 [PubMed: 
23825427] 

12. Barttfeld Pet al. (2015) Signature of consciousness in the dynamics of resting-state brain activity. 
PNAS 112, 887–892 [PubMed: 25561541] 

13. Lewis CMet al. (2009) Learning sculpts the spontaneous activity of the resting human brain. PNAS 
106, 17558–17563 [PubMed: 19805061] 

14. Petersen SE and Sporns O (2015) Brain Networks and Cognitive Architectures. Neuron 88, 207–
219 [PubMed: 26447582] 

15. Harmelech T and Malach R (2013) Neurocognitive biases and the patterns of spontaneous 
correlations in the human cortex. Trends in Cognitive Sciences 17, 606–615 [PubMed: 24182697] 

16. Shine JMet al. (2019) Human cognition involves the dynamic integration of neural activity and 
neuromodulatory systems. Nature neuroscience 22, 289–296 [PubMed: 30664771] 

17. Fiser Jet al. (2010) Statistically optimal perception and learning: from behavior to neural 
representations. Trends Cogn Sci 14, 119–130 [PubMed: 20153683] 

18. Chanes L and Barrett LF (2016) Redefining the Role of Limbic Areas in Cortical Processing. 
Trends Cogn. Sci. (Regul. Ed.) 20, 96–106

19. Howarth Cet al. (2012) Updated Energy Budgets for Neural Computation in the Neocortex and 
Cerebellum. J Cereb Blood Flow Metab 32, 1222–1232 [PubMed: 22434069] 

20. Engl E and Attwell D (2015) Non-signalling energy use in the brain. The Journal of Physiology 
593, 3417–3429 [PubMed: 25639777] 

21. Harris JJet al. (2012) Synaptic energy use and supply. Neuron 75, 762–777 [PubMed: 22958818] 

22. Mitra Aet al. (2018) Spontaneous Infra-slow Brain Activity Has Unique Spatiotemporal Dynamics 
and Laminar Structure. Neuron 98, 297–305.e6 [PubMed: 29606579] 

23. Stringer Cet al. (2019) Spontaneous behaviors drive multidimensional, brainwide activity. Science 
364, eaav7893

24. Mann Ket al. (2021) Coupling of activity, metabolism and behaviour across the Drosophila brain. 
Nature DOI: 10.1038/s41586-021-03497-0

25. Palva JM and Palva S (2012) Infra-slow fluctuations in electrophysiological recordings, blood
oxygenation-level-dependent signals, and psychophysical time series. Neuroimage 62, 2201–2211 
[PubMed: 22401756] 

26. Smith SMet al. (2009) Correspondence of the brain’s functional architecture during activation and 
rest. PNAS 106, 13040–13045 [PubMed: 19620724] 

27. Mantini Det al. (2007) Electrophysiological signatures of resting state networks in the human 
brain. PNAS 104, 13170–13175 [PubMed: 17670949] 

28. Pasquale F de et al. (2010) Temporal dynamics of spontaneous MEG activity in brain networks. 
PNAS 107, 6040–6045 [PubMed: 20304792] 

29. Leopold DAet al. (2003) Very Slow Activity Fluctuations in Monkey Visual Cortex: Implications 
for Functional Brain Imaging. Cereb Cortex 13, 422–433 [PubMed: 12631571] 

30. Betti Vet al. (2018) Topology of Functional Connectivity and Hub Dynamics in the Beta Band 
As Temporal Prior for Natural Vision in the Human Brain. J Neurosci 38, 3858–3871 [PubMed: 
29555851] 

31. Smith SMet al. (2015) A positive-negative mode of population covariation links brain connectivity, 
demographics and behavior. Nature Neuroscience 18, 1565–1567 [PubMed: 26414616] 

32. Finn ESet al. (2015) Functional connectome fingerprinting: identifying individuals using patterns 
of brain connectivity. Nature Neuroscience 18, 1664–1671 [PubMed: 26457551] 

33. Albert NBet al. (2009) The resting human brain and motor learning. Curr. Biol. 19, 1023–1027 
[PubMed: 19427210] 

34. Baldassarre Aet al. (2012) Individual variability in functional connectivity predicts performance of 
a perceptual task. Proc. Natl. Acad. Sci. U.S.A 109, 3516–3521 [PubMed: 22315406] 

35. Baldassarre Aet al. (2016) Dissociated functional connectivity profiles for motor and attention 
deficits in acute right-hemisphere stroke. Brain 139, 2024–2038 [PubMed: 27225794] 

Pezzulo et al. Page 12

Trends Cogn Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Kenet Tet al. (2003) Spontaneously emerging cortical representations of visual attributes. Nature 
425, 954–956 [PubMed: 14586468] 

37. Luczak Aet al. (2009) Spontaneous Events Outline the Realm of Possible Sensory Responses in 
Neocortical Populations. Neuron 62, 413–425 [PubMed: 19447096] 

38. Berkes Pet al. (2011) Spontaneous cortical activity reveals hallmarks of an optimal internal model 
of the environment. Science 331, 83–87 [PubMed: 21212356] 

39. Fiser Jet al. (2004) Small modulation of ongoing cortical dynamics by sensory input during natural 
vision. Nature 431, 573–578 [PubMed: 15457262] 

40. Han Fet al. (2008) Reverberation of recent visual experience in spontaneous cortical waves. 
Neuron 60, 321–327 [PubMed: 18957223] 

41. Arieli Aet al. (1996) Dynamics of ongoing activity: explanation of the large variability in evoked 
cortical responses. Science 273, 1868–1871 [PubMed: 8791593] 

42. Buzsaki G (2015) Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory 
and planning. Hippocampus 25, 1073–1188 [PubMed: 26135716] 

43. Diba K and Buzsaki G (2007) Forward and reverse hippocampal place-cell sequences during 
ripples. Nat Neurosci 10, 1241–1242 [PubMed: 17828259] 

44. Pezzulo Get al. (2017) Internally generated hippocampal sequences as a vantage point to probe 
future-oriented cognition. Ann. N.Y. Acad. Sci. 1396, 144–165 [PubMed: 28548460] 

45. Pfeiffer BE and Foster DJ (2013) Hippocampal place-cell sequences depict future paths to 
remembered goals. Nature 497, 74–79 [PubMed: 23594744] 

46. Kurth-Nelson Zet al. (2016) Fast Sequences of Non-spatial State Representations in Humans. 
Neuron 91, 194–204 [PubMed: 27321922] 

47. Liu Yet al. (2019) Human Replay Spontaneously Reorganizes Experience. Cell 178, 640–652.el4 
[PubMed: 31280961] 

48. Foster DJ (2017) Replay Comes of Age. Annual Review of Neuroscience 40, 581–602

49. Dragoi G and Tonegawa S (2011) Preplay of future place cell sequences by hippocampal cellular 
assemblies. Nature 469, 397–401 [PubMed: 21179088] 

50. Jadhav SPet al. (2012) Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory. Science 
336, 1454–1458 [PubMed: 22555434] 

51. Liu Xet al. (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. 
Nature 484, 381–385 [PubMed: 22441246] 

52. Ramirez Set al. (2013) Creating a False Memory in the Hippocampus. Science 341, 387–391 
[PubMed: 23888038] 

53. Ji D and Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus 
during sleep. Nat Neurosci 10, 100–107 [PubMed: 17173043] 

54. Penagos Het al. (2017) Oscillations, neural computations and learning during wake and sleep. Curr. 
Opin. Neurobiol. 44, 193–201 [PubMed: 28570953] 

55. Shin JD and Jadhav SP (2016) Multiple modes of hippocampal-prefrontal interactions in memory
guided behavior. Curr. Opin. Neurobiol. 40, 161–169 [PubMed: 27543753] 

56. Sirota Aet al. (2003) Communication between neocortex and hippocampus during sleep in rodents. 
PNAS 100, 2065–2069 [PubMed: 12576550] 

57. Hinton GE (2007) Learning multiple layers of representation. Trends Cogn Sci 11, 428–434 
[PubMed: 17921042] 

58. Gilbert CD and Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 
54, 677–696 [PubMed: 17553419] 

59. Ringach DL (2009) Spontaneous and driven cortical activity: implications for computation. Curr 
Opin Neurobiol 19, 439–444 [PubMed: 19647992] 

60. Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360, 815–836 
[PubMed: 15937014] 

61. Pezzulo Get al. (2018) Hierarchical active inference: a theory of motivated control. Trends in 
cognitive sciences 22, 294–306 [PubMed: 29475638] 

62. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal 
coherence. Trends in Cognitive Sciences 9, 474–480 [PubMed: 16150631] 

Pezzulo et al. Page 13

Trends Cogn Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Jensen Oet al. (2015) Oscillatory mechanisms of feedforward and feedback visual processing. 
Trends Neurosci 38, 192–194 [PubMed: 25765320] 

64. Testolin A and Zorzi M (2016) Probabilistic Models and Generative Neural Networks: Towards an 
Unified Framework for Modeling Normal and Impaired Neurocognitive Functions. Front Comput 
Neurosci 10, [PubMed: 26903851] 

65. Friston Ket al. (2015) Active inference and epistemic value. Cogn Neurosci 6, 187–214 [PubMed: 
25689102] 

66. Helmholtz H von (1866) Concerning the perceptions in general. In Treatise on physiological optics 
3 (Southall JPC, ed), Dover

67. Salakhutdinov R (2015) Learning Deep Generative Models. Annual Review of Statistics and Its 
Application 2, 361–385

68. Barrett LF (2017) How emotions are made: The secret life of the brain, Houghton Mifflin 
Harcourt.

69. Ress Det al. (2000) Activity in primary visual cortex predicts performance in a visual detection 
task. Nature Neuroscience 3, 940–945 [PubMed: 10966626] 

70. Carrasco M (2011) Visual attention: The past 25 years. Vision Research 51, 1484–1525 [PubMed: 
21549742] 

71. Jaynes ET (1957) Information theory and statistical mechanics. II. Physical review 108, 171

72. Buesing Let al. (2011) Neural Dynamics as Sampling: A Model for Stochastic Computation in 
Recurrent Networks of Spiking Neurons. PLoS Computational Biology 7, e1002211 [PubMed: 
22096452] 

73. Stoianov Iet al. (2020) The hippocampal formation as a hierarchical generative model supporting 
generative replay and continual learning. bioRxiv DOI: 10.1101/2020.01.16.908889

74. Stoianov I and Zorzi M (2012) Emergence of a “visual number sense” in hierarchical generative 
models. Nat Neurosci 15, 194–196 [PubMed: 22231428] 

75. Romano SAet al. (2015) Spontaneous Neuronal Network Dynamics Reveal Circuit’s Functional 
Adaptations for Behavior. Neuron 85, 1070–1085 [PubMed: 25704948] 

76. Omer DBet al. (2019) Dynamic Patterns of Spontaneous Ongoing Activity in the Visual Cortex 
of Anesthetized and Awake Monkeys are Different. Cereb Cortex 29, 1291–1304 [PubMed: 
29718200] 

77. Kim Det al. (2020) Spontaneously emerging patterns in human visual cortex and their functional 
connectivity are linked to the patterns evoked by visual stimuli. Journal of Neurophysiology 124, 
1343–1363 [PubMed: 32965156] 

78. Kamps FSet al. (2020) Connectivity at the origins of domain specificity in the cortical face and 
place networks. Proc Natl Acad Sci U S A 117, 6163–6169 [PubMed: 32123077] 

79. Kaiser Det al. (2019) Object Vision in a Structured World. Trends in Cognitive Sciences 23, 
672–685 [PubMed: 31147151] 

80. Testolin Aet al. (2017) Letter perception emerges from unsupervised deep learning and recycling of 
natural image features. Nature Human Behaviour 1, 657

81. Quiroga RQet al. (2005) Invariant visual representation by single neurons in the human brain. 
Nature 435, 1102–1107 [PubMed: 15973409] 

82. Chang L and Tsao DY (2017) The Code for Facial Identity in the Primate Brain. Cell 169, 1013–
1028.el4 [PubMed: 28575666] 

83. Churchland MMet al. (2012) Neural population dynamics during reaching. Nature advance online 
publication,

84. Kriegeskorte Net al. (2008) Matching Categorical Object Representations in Inferior Temporal 
Cortex of Man and Monkey. Neuron 60, 1126–1141 [PubMed: 19109916] 

85. Leo Aet al. (2016) A synergy-based hand control is encoded in human motor cortical areas. eLife 
5, el3420

86. Huth AGet al. (2012) A Continuous Semantic Space Describes the Representation of Thousands 
of Object and Action Categories across the Human Brain. Neuron 76, 1210–1224 [PubMed: 
23259955] 

Pezzulo et al. Page 14

Trends Cogn Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



87. Lescroart MD and Gallant JL (2019) Human Scene-Selective Areas Represent 3D Configurations 
of Surfaces. Neuron 101, 178–192.e7 [PubMed: 30497771] 

88. Livne Tet al. (2020) Spontaneous emergence of behaviorally relevant motifs in human motor 
cortex. bioRxivDOI: 10.1101/2020.10.25.353326

89. Eichenlaub J-Bet al. (2020) Replay of Learned Neural Firing Sequences during Rest in Human 
Motor Cortex. Cell Reports 31, 107581 [PubMed: 32375031] 

90. Astafiev SVet al. (2004) Extrastriate body area in human occipital cortex responds to the 
performance of motor actions. Nat Neurosci 7, 542–548 [PubMed: 15107859] 

91. Betti Vet al. (2020) Spontaneous Beta Band Rhythms in the Predictive Coding of Natural Stimuli. 
Neuroscientist DOI: 10.1177/1073858420928988

92. Corbetta Met al. (2018) On the low dimensionality of behavioral deficits and alterations of brain 
network connectivity after focal injury. Cortex 107, 229–237 [PubMed: 29357980] 

93. Friston KJet al. (2014) On nodes and modes in resting state fMRI. Neuroimage 99, 533–547 
[PubMed: 24862075] 

94. Ghosh Aet al. (2008) Noise during Rest Enables the Exploration of the Brain’s Dynamic 
Repertoire. PLoS Comput Biol 4,

95. Buckner RLet al. (2008) The brain’s default network: anatomy, function, and relevance to disease. 
Ann. N. Y. Acad. Sci. 1124, 1–38 [PubMed: 18400922] 

96. Fox MDet al. (2005) The human brain is intrinsically organized into dynamic, anticorrelated 
functional networks. PNAS 102, 9673–9678 [PubMed: 15976020] 

97. Margulies DSet al. (2016) Situating the default-mode network along a principal gradient of 
macroscale cortical organization. PNAS 113, 12574–12579 [PubMed: 27791099] 

98. Raut RVet al. (2020) Hierarchical dynamics as a macroscopic organizing principle of the human 
brain. PNAS 117, 20890–20897 [PubMed: 32817467] 

99. Mitra Aet al. (2016) Human cortical-hippocampal dialogue in wake and slow-wave sleep. PNAS 
113, E6868–E6876 [PubMed: 27791089] 

100. Carhart-Harris RL and Friston KJ (2010) The default-mode, ego-functions and freeenergy: a 
neurobiological account of Freudian ideas. Brain 133, 1265–1283 [PubMed: 20194141] 

101. Zhang Jet al. (2019) Intrinsic Functional Connectivity is Organized as Three Interdependent 
Gradients. Sci Rep 9, 15976 [PubMed: 31685830] 

102. Spadone Set al. (2015) Dynamic reorganization of human resting-state networks during 
visuospatial attention. PNAS 112, 8112–8117 [PubMed: 26080395] 

103. Cole MWet al. (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 
83, 238–251 [PubMed: 24991964] 

104. Betti Vet al., (2013) Natural Scenes Viewing Alters the Dynamics of Functional Connectivity in 
the Human Brain. Neuron79, 782–797 [PubMed: 23891400] 

105. de Pasquale Fet al. (2012) A cortical core for dynamic integration of functional networks in the 
resting human brain. Neuron 74, 753–764 [PubMed: 22632732] 

106. Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard 
speech, spoken language and reading. Neuroimage 62, 816–847 [PubMed: 22584224] 

107. Kim Det al. (2018) A New Modular Brain Organization of the BOLD Signal during Natural 
Vision. Cereb Cortex 28, 3065–3081 [PubMed: 28981593] 

108. Meer JN van der et al. (2020) Movie viewing elicits rich and reliable brain state dynamics. Nature 
Communications 11, 5004

109. Krienen FMet al. (2014) Reconfigurable task-dependent functional coupling modes cluster around 
a core functional architecture. Philos Trans R Soc Lond B Biol Sci 369,

110. Northoff G (2018) The Spontaneous Brain: From the Mind-Body to the World-Brain Problem, 
MIT Press.

111. Friston Ket al. (2017) Active Inference, Curiosity and Insight. Neural Comput DOI: 10.1162/
neco_a_00999

112. Hobson JA and Friston KJ (2012) Waking and dreaming consciousness: neurobiological and 
functional considerations. Progress in neurobiology 98, 82–98 [PubMed: 22609044] 

Pezzulo et al. Page 15

Trends Cogn Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



113. Sadaghiani Set al. (2010) The relation of ongoing brain activity, evoked neural responses, and 
cognition. Front. Syst. Neurosci. 4,

114. Cirelli C and Tononi G (2017) The Sleeping Brain. Cerebrum 2017, cer- 07– 17

115. Barron HCet al. (2020) Prediction and memory: a predictive coding account. Progress in 
Neurobiology DOI: 10.1016/j.pneurobio.2020.101821

116. Hinton GEet al. (1995) The “wake-sleep” algorithm for unsupervised neural networks. Science 
268, 1158–1161 [PubMed: 7761831] 

117. Peyrache Aet al. (2009) Replay of rule-learning related neural patterns in the prefrontal cortex 
during sleep. Nature neuroscience 12, 919–926 [PubMed: 19483687] 

118. Wittkuhn L and Schuck NW (2021) Dynamics of fMRI patterns reflect sub-second activation 
sequences and reveal replay in human visual cortex. Nature Communications 12, 1795

119. McClelland JLet al. (1995) Why there are complementary learning systems in the hippocampus 
and neocortex: insights from the successes and failures of connectionist models of learning and 
memory. Psychol Rev 102, 419–457 [PubMed: 7624455] 

120. Kumaran Det al. (2016) What Learning Systems do Intelligent Agents Need? Complementary 
Learning Systems Theory Updated. Trends in Cognitive Sciences 20, 512–534 [PubMed: 
27315762] 

121. Mnih Vet al. (2015) Human-level control through deep reinforcement learning. Nature 518,529–
533 [PubMed: 25719670] 

122. Gupta ASet al. (2010) Hippocampal replay is not a simple function of experience. Neuron 
65,695–705 [PubMed: 20223204] 

123. Buckner RL (2010) The role of the hippocampus in prediction and imagination. Annu Rev 
Psychol 61, 27–48, C1-8 [PubMed: 19958178] 

124. Tang Wet al. (2020) Multiple time-scales of decision making in the hippocampus and prefrontal 
cortex. bioRxivDOI: 10.1101/2020.10.17.343699

125. Yu JYet al. (2018) Specific hippocampal representations are linked to generalized cortical 
representations in memory. Nature Communications 9, 2209

126. Mitra Aet al. (2016) Human cortical-hippocampal dialogue in wake and slow-wave sleep. Proc 
Natl Acad Sci U S A 113, E6868–E6876 [PubMed: 27791089] 

127. Buzsaki Get al. (2014) Emergence of Cognition from Action. Cold Spring Harb. Symp. Quant. 
Biol. 79, 41–50 [PubMed: 25752314] 

128. Dragoi G and Tonegawa S (2014) Selection of preconfigured cell assemblies for representation 
of novel spatial experiences. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369, 20120522 [PubMed: 
24366134] 

129. Gordon EMet al. (2016) Generation and Evaluation of a Cortical Area Parcellation from Resting
State Correlations. Cereb Cortex 26, 288–303 [PubMed: 25316338] 

130. Zorzi Met al. (2013) Modeling language and cognition with deep unsupervised learning: a tutorial 
overview. Front. Psychol. 4, [PubMed: 23378839] 

131. Rao RP and Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation 
of some extra-classical receptive-field effects. Nat Neurosci 2, 79–87 [PubMed: 10195184] 

132. Muckli Let al. (2015) Contextual Feedback to Superficial Layers of VI. Current Biology 
25,2690–2695 [PubMed: 26441356] 

133. Feldman H and Friston KJ (2010) Attention, uncertainty, and free-energy. Front. Hum. Neurosci 
4, 215 [PubMed: 21160551] 

134. Bastos AMet al. (2012) Canonical microcircuits for predictive coding. Neuron 76, 695–711 
[PubMed: 23177956] 

135. Pezzulo Get al. (2015) Active Inference, homeostatic regulation and adaptive behavioural control. 
Progress in Neurobiology 136, 17–35

136. Schneider DM (2020) Reflections of action in sensory cortex. Current Opinion in Neurobiology 
64, 53–59 [PubMed: 32171079] 

137. Egger SWet al. (2019) Internal models of sensorimotor integration regulate cortical dynamics. 
Nature Neuroscience 22, 1871–1882 [PubMed: 31591558] 

Pezzulo et al. Page 16

Trends Cogn Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



138. Engel AKet al. (2013) Where’s the action? The pragmatic turn in cognitive science. Trends in 
Cognitive Sciences 17, 202–209 [PubMed: 23608361] 

139. Musall Set al. (2019) Single-trial neural dynamics are dominated by richly varied movements. 
Nature Neuroscience 22, 1677–1686 [PubMed: 31551604] 

140. Shenoy KVet al. (2013) Cortical control of arm movements: a dynamical systems perspective. 
Annu. Rev. Neurosci. 36, 337–359 [PubMed: 23725001] 

141. d’Avella Aet al. (2003) Combinations of muscle synergies in the construction of a natural motor 
behavior. Nature Neuroscience 6, 300–308 [PubMed: 12563264] 

142. Leo Aet al. (2016) A synergy-based hand control is encoded in human motor cortical areas. Elife 
5,

143. Poynter Wet al. (2013) Individuals exhibit idiosyncratic eye-movement behavior profiles across 
tasks. Vision Research 89, 32–38 [PubMed: 23867568] 

144. Zangrossi Aet al. (2020), Eye Movements Abnormalities as Early Biomarker of Alzheimer’s 
Disease: An Ecological Approach., presented at the Behavioral Neurology

145. Pappalardo Let al. (2015) Returners and explorers dichotomy in human mobility. Nature 
Communications 6, 8166

146. Cona Get al. (2019) Archetypes of human cognition defined by time preference for reward and 
their brain correlates: An evolutionary trade-off approach. Neuroimage 185, 322–334 [PubMed: 
30355533] 

147. Corbetta Met al. (2015) Common behavioral clusters and subcortical anatomy in stroke. Neuron 
85, 927–941 [PubMed: 25741721] 

148. Karolis VRet al. (2019) The architecture of functional lateralisation and its relationship to callosal 
connectivity in the human brain. Nature Communications 10, 1417

149. Seth AK and Friston KJ (2016) Active interoceptive inference and the emotional brain. Phil. 
Trans. R. Soc. B 371, 20160007 [PubMed: 28080966] 

150. Barrett LF and Simmons WK (2015) Interoceptive predictions in the brain. Nat Rev Neurosci 16, 
419–429 [PubMed: 26016744] 

Pezzulo et al. Page 17

Trends Cogn Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Outstanding Questions Box

• Do low- and high-frequency spontaneous activity serve separable functional 

roles? Do they reflect a difference between coarse-grained, prototype-like 

patterns that average across many stimuli, responses and events vs. detailed, 

episodic-like patterns encoding single events or sequences? Do they reflect 

key differences in spontaneous activity between cortical and subcortical 

systems?

• What is the relation between neural priors and metabolism? A recent 

study shows that metabolism prospectively increases in recently active 

circuits, raising the possibility that the brain encodes “metabolic priors” 

that help allocating energy in anticipation of future needs. Moreover, 

theoretical calculations indicate that in the cerebellum, most energy is 

spent in maintaining potential sensory-motor associations on-line rather than 

controlling current movements – does the same happen in cortex?

• Do development and learning shape not only novel functional connections, 

but also multivariate prior representations? What is the ontogeny of 

spontaneous activity patterns? Brain generative models may reflect more than 

the natural statistics of exteroceptive signals; for example, low dimensional 

memory and interoceptive patterns. Does spontaneous activity reflect a 

weighted contribution of these different signals?

• What are the implications of our hypothesis for education, learning theory and 

addiction? In education and drug rehabilitation the notion of task control is 

often emphasized, e.g., the idea to use ‘slow’ thinking over ‘fast’ reflexive 

behavior. However, if it is true that spontaneous activity patterns entrained by 

the frequency of a certain behavior shape future behavior, then the challenge 

is not to train control, but to train good adaptive habits.

• Is it possible that some disorders such as depression, obsessive-compulsive 

disorder or schizophrenia reflect excessively strong priors that render patients 

insensitive to low-level stimuli or abnormally sensitive to prediction error 

signals? This idea might explain why brain networks are dysfunctional across 

a variety of disorders, even in the presence of relatively local damage. A 

paucity or simplification of priors may also be an explanation for loss of 

memory or semantic information in neurodegeneration, trauma, and stroke.
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Highlights box

• Spontaneous brain dynamics are manifestations of top-down dynamics of 

generative models detached from action-perception cycles

• Generative models constantly produce top-down dynamics, but we call them 

expectations and attention during task engagement and spontaneous activity at 

rest

• Spontaneous brain dynamics during resting periods optimize generative 

models for future interactions, by maximizing the entropy of explanations 

in the absence of specific data and reducing model complexity

• Low-frequency brain fluctuations during spontaneous activity reflect 

transitions between generic priors consisting of low-dimensional 

representations and connectivity patterns of the most frequent behavioral 

states

• High-frequency fluctuations during spontaneous activity in the hippocampus 

and other regions may support generative replay and model learning
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Box 1.

Examples of biological implementations of generative modeling

A popular biological implementation of perceptual inference is predictive coding 

[60,131]. Predictive coding uses a hierarchical architecture, where different perceptual 

hypotheses at higher levels (e.g., about which objects exist in a visual scene) compete 

to explain bottom-up stimuli. The competition requires reciprocal interactions between 

top-down and bottom-up streams. Top-down predictions from hierarchically higher levels 

(i.e., what object one expects to see) are continuously compared with incoming stimuli. 

Prediction errors emerging from this comparison are propagated bottom-up, to revise 

perceptual hypotheses (e.g., change mind about what object one is seeing); and the 

process continues until prediction error is minimal – and the best interpretation of the 

perceptual scene emerges.

In predictive coding, top-down dynamics are key to maintain the representation of a 

task, predict sensory inputs at lower hierarchical levels and replace them if missing 

[132]. Furthermore, they play a modulatory role, by conveying precision signals through 

neuromodulation and NMDAR-dependent plasticity. Precision signals are second-order 

predictions about the precision (inverse variance) of prediction errors. They render the 

inference flexible by modulating the gain of prediction error units in proportion to their 

reliability, permitting (for example) to ignore noisy stimuli [133,134].

Active Inference extends the above scheme to the inference of the sequence of actions 

or policy expected to minimize the discrepancy between current and desired (goal) states 

[111]. It requires endowing the generative model with a (transition) mapping between 

actions and their expected outcomes; and a prior preference over outcomes, which 

encodes the agent’s goals (e.g., homeostatic goals, such as having optimal glucose levels 

in the blood). This prior preference is analogous to a set-point in cybernetics: it acts as 

a constant source of (high-precision) top-down predictions, which the agent fulfills by 

acting (e.g., eating a cake) [61,135].

Top-down dynamics also support unsupervised learning, and the update of the parameters 

of generative models. One example is the Restricted Boltzmann Machine (RBM): 

a stochastic recurrent neural network that learns to reconstruct its sensory input by 

gradually adjusting the connection weights, so that the top-down signals better match the 

inputs. Learning consists in maximizing the likelihood of the observed data under the 

generative model, which is equivalent to discovering efficient ways of coding the sensory 

data. The RBM is also the building block of Deep Belief Networks (DBNs) and Deep 

Boltzmann Machines (DBMs) [57,67], a class of deep networks that learn a hierarchical 

generative model with latent features that are increasingly more complex and abstract 

as a function of network depth (Figure 3). DBNs/DBMs are appealing because they 

entail a more psychologically plausible learning regimen [64,130] compared to classic 

deep feed-forward networks that rely on discriminative learning and therefore require an 

external teaching signal (i.e., labeled data) at each learning event.
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Box 2.

Brain generative models beyond the natural statistics of external stimuli: 
behaviorally relevant and interoceptive states

Mounting evidence suggests that the patterns of activity of the brain are guided by 

control demands rather than just the imperative to represent the external world, as in 

classical interpretations of predictive coding [136–139]. Similarly, spontaneous activity 

can represent the ensemble of brain states driven by behavior [23,75] rather than just the 

natural statistics of external stimuli [37–39,41,75]. Behaviorally-relevant brain patterns 

may result from the progressive internalization of action-perception loops, which can be 

later spontaneously reactivated to support future-oriented cognition [127].

If behaviorally relevant states are internalized in the brain‘s generative model, they 

should undergo compression. This would explain why many task patterns can be 

summarized with low dimensional vectors of neural activities [16] and low dimensional 

dynamics for the control of movements [140]. Such compression may be effective 

because also behavior, despite its apparent heterogeneity and individual variability, is 

low dimensional. Theoretically, thousands of linear combinations of degrees of freedom 

of joints and muscles during arm and hand movements can be summarized by a dozen 

or so of correlated patterns of joint movements and muscle activation (motor synergies) 

[141]. These synergies are represented in motor cortex [142] and at rest [88]. The pattern 

of eye movement exploration during laboratory and ecological exploration tasks can be 

described with a small number of correlated features that explain most of the intersubject 

variability [143]. Notably, components identified during visual exploration also describe 

spontaneous eye movements to a blank screen suggesting the role of intrinsic dynamics 

in shaping active behavior [144]. Two styles across hundreds of participants (returners, 

explorers) describe human navigation in natural surroundings [145]. The ability to 

inhibit immediate reward is also described by three archetypes across more than a 

thousand subjects [146]. Finally, behavioral deficits after focal lesions are correlated 

across patients identifying two axes–action/attention vs. language/memory—[147] that 

nicely match key dimensions of inter-hemispheric activation [148]. In summary, low 

dimensional neural patterns discussed in the main article nicely match low dimensional 

behavioral organization.

Furthermore, the brain’s generative model may support interoceptive inference, based on 

interoceptive signals from the internal of the body [149,150]. Interoceptive inference may 

be guided by strong, primordial priors (e.g., about viable ranges for body temperature and 

sugar level in the blood) that ensure allostasis. Interoceptive prediction errors (signaling 

that e.g., the body is too hot) may steer a cascade of error-correction processes, ranging 

from autonomic reflexes such as ventilation to goal-directed plans such as buying a cold 

drink. These activities may manifest themselves also during spontaneous activity (also 

given that the brain remains relatively more connected to interoceptive than exteroceptive 

signals) and possibly contribute to consolidate interoceptive models and priors.

Finally, an intriguing possibility is that spontaneous activity connectivity patterns may 

reflect not only a generative neural model, but also a metabolic prior to anticipate future 

Pezzulo et al. Page 21

Trends Cogn Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity and energetic demands in the same circuitry. In keeping, a recent study reveals a 

deep connection between neural activity and metabolism, by showing that neural activity 

drives metabolic signals like intracellular pyruvate and ATP; and that transient sensory 

stimulation causes an allocation of energy to recently activated connections [24].
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Figure 1. Two examples of spontaneous brain dynamics.
(A) An example of resting state spontaneous activity measured with fMRI. Static 

connectivity: a map of the ’static’ (time-averaged) temporal correlation of the blood 

oxygenation level dependent (BOLD) signal between a region in medial parietal cortex 

(black arrowhead), and the rest of the cortex over many minutes. Inset: fluctuations of 

the BOLD signal in two cortical networks: DMN-default mode network, and DAN-dorsal 

attention network. Dynamic connectivity: the maps represent the main patterns of correlated 

activity across the brain as identified through a sliding window analysis, a winner-take

all classification, and the projection on the cortical surface of the first eigenvector. The 

fluctuations (time-course) have a frequency of about 1/10 seconds (0.1 Hz). Low frequency 

activity is also evident in single cell recordings from rat neocortex, where they appear 

to encode behaviorally relevant information (Figure 2A).(B) A schematic illustration of 

internally generated hippocampal sequences. The middle part of the figure shows a (fictive) 

spatiotemporal sequence of spikes from seven hippocampal place cells (represented by 

different colors), whose place fields are located in different portions of the corridor. These 

sequences are visible within the hippocampal theta rhythm, while the animal navigates 

through the corridor. However, sequential activity from the same ensemble – sometimes in 

the same (or reverse) order as during navigation – can be decoded during animal sleep or 

awake rest before ("preplays") and after ("replays") navigation, respectively. These internally 

generated hippocampal sequences are often embedded in network events called sharp-wave 

ripple (SWR) complexes [42–45].
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Figure 2. Supporting evidence and schematic of the novel proposal.
(A) Similarity of spontaneous activity in visual cortex and low dimensional behavioral 

components of mouse movements. Calcium imaging recordings of 10,000 neurons from 

mouse visual cortex during natural exploration (from courtesy of Matteo Carandini). Facial 

movements are summarized by a few patterns of correlated movements of whiskers, facial 

expressions, eye movements, and pupil area. Bottom shows raster plots of activity in 

visual cortex without visual stimulation (spontaneous). Note slow correlated fluctuations 

(~1/10 seconds). The intermediate panel shows how the first principal component of 

activity (violet timeseries) correlates with behavioral components (green timeseries). (B) 
Spontaneously emerging patterns in human visual cortex and their functional connectivity 

are linked to the patterns evoked by visual stimuli. Visual objects (faces, scenes, bodies, 

words) produce multivariate patterns of activity recorded with fMRI in visual association 

cortex. The left inset shows the multivariate pattern in a scene-processing region of human 

cortex. At rest, scene specific patterns, i.e. yielding strong spatial correlation with the 

task pattern—see time-course of correlation values—occur more frequently than patterns 

representing other objects or null patterns. The same occur in other regions of visual 

cortex, e.g. more face patterns at rest in face specific regions and so on. Critically, object 

specific patterns emerge at rest in a synchronized manner across multiple regions [77]. 

(C) Resting networks as connectional priors of task networks, from [107]. Reorganization 

of cortical regions and networks when observers go from visual fixation (rest) to movie 

watching. Top: Spring embedded representation of the temporal correlation strength of the 
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BOLD fMRI signal between individual regions of RSNs according to the parcellation of 

[129]. Note that networks that are segregated at rest combine during tasks. Bottom: data 

driven hierarchical clustering. Two large resting communities (task-positive, task-negative) 

split in multiple communities during movie watching. (D) Schematic illustration of the 

novel hypothesis. Brain generative models continuously incorporate the statistical history 

of brain co-activation patterns experienced during behavioral experience. The endogenous 

regeneration of brain co-activation patterns at rest supports the offline optimization (e.g., 

compression) of the brain‘s generative model, and the preparation of "generic spatiotemporal 

priors" for future tasks. These comprise both representations and connectivity patterns; and 

become apparent as transitions between low-dimensional states of the network. These are 

shown in the right part of the figure a series of brain co-activation patterns (which possibly 

average across multiple episodes) nested within low-frequency fluctuations of the resting 

brain. The inset suggests that a large variety of task representations can be summarized in 

low dimensional states.
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Figure 3. Hierarchical generative neural networks.
(A) Deep Boltzmann Machines (DBMs) are deep neural networks of symmetrically 

coupled stochastic neurons organized in a hierarchy of multiple layers. The DBM learns 

a hierarchical generative model of the input (e.g., sensory) data presented on the "visible 

layer". "Hidden layers" contain neurons that encode latent causes of the data: when 

trained on images (here, handwritten digits) they become tuned to visual features that 

are increasingly more complex in deeper layers (examples of receptive fields of individual 

neurons are shown in the right panels [130]). Learning is unsupervised (i.e., it does not 

require external teaching or reward signal): its objective is to learn a probability distribution 

that approximates the true probability distribution of the training data. Recurrent connections 

convey the information sampled from the upper layers downstream to generate data on the 

visible layer, in a top-down fashion. The divergence between real input and its top-down 

reconstruction drives the change of connection weights during learning, using Hebbian rules. 

After learning, recurrent interactions support stochastic inference that leads to denoising, 

completion or "filling in" of ambiguous (or missing) inputs, in the same sensory modality 

or in different modalities if the architecture is multimodal (e.g., learns visual and linguistic 

inputs). Discriminative tasks (here, digit classification) can be learned by adding a layer of 

neurons representing the class labels. During learning, the model acquires "generic priors": 

here, prototypical digit shapes that abstract away from many input details [57,130]. (B) 
After learning, sampling can be conditioned by the class labels to generate prototypical digit 

shapes "spontaneously", i.e., in the absence of sensor inputs.
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