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Abstract

Background: Diffusion MRI is integral to detection of prostate cancer (PCa), but conventional 

apparent diffusion coefficient (ADC) cannot capture the complexity of prostate tissues and tends 

to yield noisy images that do not distinctly highlight cancer. A four-compartment restriction 

spectrum imaging (RSI4) model was recently found to optimally characterize pelvic diffusion 

signals, and the model coefficient for the slowest diffusion compartment, RSI4-C1, yielded greatest 

tumor conspicuity.

Purpose: To evaluate the slowest diffusion compartment of a four-compartment spectrum 

imaging model (RSI4-C1) as a quantitative voxel-level classifier of prostate cancer (PCa).

Study Type: Retrospective

Subjects: Forty-six men who underwent an extended MRI acquisition protocol for suspected 

prostate cancer. Twenty-three men had benign prostates, and the other 23 men had prostate cancer.

Field Strength/Sequence: 3T, multi-shell diffusion-weighted and axial T2-weighted 

sequences.

Assessment: High-confidence cancer voxels were delineated by expert consensus, using 

imaging data and biopsy results. The entire prostate was considered benign in patients with 

no detectable cancer. Diffusion images were used to calculate RSI4-C1 and conventional ADC. 

Classifier images were also generated.
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Statistical Tests: Voxel-level discrimination of PCa from benign prostate tissue was assessed 

via receiver operating characteristic (ROC) curves generated by bootstrapping with patient-level 

case resampling. RSI4-C1 was compared to conventional ADC for two metrics: area under the 

ROC curve (AUC) and false-positive rate for a sensitivity of 90% (FPR90). Statistical significance 

was assessed using bootstrap difference with two-sided α = 0.05.

Results: RSI4-C1 outperformed conventional ADC, with greater AUC [mean 0.977 (95% CI 

0.951–0.991) vs. 0.922 (0.878–0.948)] and lower FPR90 [0.032 (0.009–0.082) vs. 0.201 (0.132–

0.290)]. These improvements were statistically significant (p<0.05).

Data Conclusion: RSI4-C1 yielded a quantitative, voxel-level classifier of PCa that was superior 

to conventional ADC. RSI classifier images with a low false-positive rate might improve PCa 

detection and facilitate clinical applications like targeted biopsy and treatment planning.
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INTRODUCTION

Prostate cancer is the second most frequent malignancy in men worldwide and is a common 

cause of cancer deaths in men (1). Strategies to improve outcomes for men with prostate 

cancer seek to optimize detection, staging, and clinical risk stratification. The 12-core 

systematic biopsy remains a common method for initial diagnosis and Gleason grading 

of prostate cancer, but is prone to sampling errors that can drastically influence risk 

stratification and treatment (2, 3). Multiparametric MRI has become increasingly popular 

for its added value in identifying suspicious lesions for targeted biopsy (4–7). There is also 

recent interest in studying its use for focal ablative treatment (8–10) or treatment escalation 

(11–13). We seek to improve on the limitations of clinical prostate MRI for detection of 

clinically significant prostate cancer using restriction spectrum imaging (RSI), a flexible 

framework that allows for a mixture of restricted intracellular, hindered extracellular, and 

freely diffusing water compartments to be probed with clinically relevant protocols (14, 15).

Clinical multiparametric MRI currently includes diffusion-weighted imaging (DWI) and 

apparent diffusion coefficient (ADC) maps to determine a qualitative risk of clinically 

significant cancer (PI-RADS v2 (16)). However, conventional ADC is a measurement of 

overall diffusion rate of water within a voxel and can be influenced by multiple factors. 

It has shown correlation with presence of malignancy, but remains limited by motion 

sensitivity (17), magnetic field inhomogeneity (18), and high false-positive rates from 

inflammation, hemorrhage, or benign lesions that limit tumor conspicuity and localization 

(15, 19, 20). Twenty-eight percent of PI-RADS v2 category 5 lesions (the highest level of 

suspicion) do not yield a diagnosis of clinically significant cancer, and false positive rates 

are even higher for category 3 and 4 lesions at 88% and 77.9%, respectively (21).

Advanced diffusion models use additional parameters to separate and characterize diffusion 

signals originating from various microstructural compartments within a voxel (22–24). The 

RSI technique models signal intensity as a function of b-value using a series of exponential 
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decay functions, each representing a diffusion compartment with a specific, pre-determined 

ADC (14, 15). Optimal compartmental ADCs were recently estimated for the prostate (and 

seminal vesicles) using RSI models of two to five tissue compartments (25). The overall 

diffusion signal was better characterized in models using more compartments, with the four­

compartment model emerging as the best option by relative Bayesian information criterion 

(25).

The aim of this study was to apply the four-compartment RSI model to the prostate and 

assess voxel-level accuracy for detection of prostate cancer, with a particular focus on 

reducing the false positives seen on ADC.

MATERIALS AND METHODS

This study was approved with waived informed consent by the Institutional Review Board 

(IRB #191878).

Study Population

Eighty-one consecutive men underwent screening pelvic MRI for suspected prostate cancer 

between August and December 2016 using an expanded acquisition protocol (on a single 

scanner) that included a wider array of b-values sufficient to calculate the four-compartment 

RSI model. This was a retrospective study using a subset of 46 men who also had 

available clinical and histopathologic information. The remaining men were excluded due 

to incomplete information, or prior or synchronous malignancy. Standard-of-care evaluations 

determined that 23 men had no detectable cancer, while another 23 men had prostate cancer 

attributable to a PI-RADS v2 category 3–5 lesion on MRI.

MRI Data Acquisition and Post-Processing

Scans were collected on a 3T clinical MRI scanner (Discovery MR750, GE Healthcare, 

Waukesha, WI) using a 32-channel phased-array body coil centered on the pelvis. Each 

patient underwent a high-resolution, T2-weighted fast spin echo sequences with identical 

scan coverage as the multi-shell DWI volume (TR: 6225 ms, TE: 100 ms, resolution: 

0.39×0.39 mm, matrix: 512×512, slice thickness: 3 mm). A multi-shell diffusion-weighted 

spin echo sequence with echo-planar imaging (EPI) readout was also acquired for each 

patient, sampling 5 b-values (0, 200, 1000, 2000, and 3000 s/mm2) at 6 unique gradient 

directions (TR: 5000 ms, TE: 80 ms, resolution: 1.6×1.6 mm, matrix: 128×128, slice 

thickness: 3 mm). The b = 0 s/mm2 volumes were acquired using forward and reverse phase 

encoding to allow for correction of B0-inhomogeneity distortions. The acquisition time for 

the diffusion volume was approximately 5 minutes.

Post-processing of MRI data was completed using in-house programs written in MATLAB 

(The MathWorks, Inc; Natick, MA). Diffusion data were corrected for distortions arising 

from B0 inhomogeneity, gradient nonlinearity, and eddy currents (15, 26). Conventional 

ADC was calculated for each voxel using distortion-corrected DWI sequences performed 

with b-values of 0, 200, and 1000 s/mm2.
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Prostate Data Extraction

The prostate and prostate cancer lesion regions of interest (ROIs) were contoured by 

consensus interpretation of a radiation oncologist, C.H.F. (3 years’ experience), and two 

board-certified sub-specialist radiologists, R.R.P. (4 years’ experience) and M.E.H. (6 years’ 

experience), using all available clinical imaging and pathologic information. Prostate cancer 

ROIs were defined directly on DWI volumes using MIM (MIM Software, Inc; Cleveland, 

OH). Defining ROIs on DWI prevents inadvertent inclusion of benign tissue into the ROI 

due to subtle registration errors. The finalized ROIs were exported as binary masks into a 

MATLAB-compatible format that matched the resolution of the DWI volumes.

RSI Models of Prostate Diffusion

The relationship between corrected signal intensity and b-value was modeled as a linear 

combination of exponential decays, where Scorr(b) represents the noise-corrected DWI 

signal at a particular b value, C represents signal contribution of each compartment to the 

overall signal, and D represents the estimated ADC value for that compartment.

Scorr b = C1e−bD1 + C2e−bD2 + C3e−bD3 + C4e−bD4

Noise correction for DWI volumes was performed as previously described (25). Signal 

intensity was normalized by the median b=0 intensity within the prostate for each subject. 

Optimal D values for each compartment were previously determined by fitting the multi­

shell DWI data from all voxels within the benign body and prostate cancer lesion ROIs 

(25). The compartments are ordered from lowest to highest D, with the first compartment of 

each model describing the most restricted mode of diffusion. Prior work has identified the 

four-compartment RSI model as optimally describing the diffusion signal from the prostate 

and prostate cancer (27). For this model, the optimal ADCs for the compartments for the 

full pelvic field of view were 1.0 e-4, 1.8 e-3, 3.6 e-3, and >>3.0 e-3 mm2/s, approximately 

representing restricted, hindered, free diffusion, and flow, respectively (25; see Supporting 

Information).

Classification of Benign Prostate Tissue and Prostate Cancer

Prostate cancer conspicuity was related to the compartment with slowest diffusion in each 

model, called C1, with increased cancer conspicuity for the four-compartment model. Here, 

C1 for the four-compartment RSI model (RSI4-C1) was assessed for its ability to correctly 

identify benign prostate tissue and prostate cancer at the voxel level. Results with RSI were 

compared to those using standard ADC.

Classification of cancer and benign prostate voxels was assessed via 10,000 bootstrap 

samples with case resampling at the patient level to yield means and 95% confidence 

intervals for performance metrics. Benign subjects contributed voxels from the entire 

prostate, and cancer subjects contributed voxels from only the high-confidence cancer ROIs. 

Voxels outside the high-confidence ROIs in patients with known cancer were excluded 

from statistical analysis because prostate cancer is notoriously multifocal and voxel-level 

ground-truth histopathology was not available.

Feng et al. Page 4

J Magn Reson Imaging. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Voxel-wise classifier maps were created by the logistic regression of RSI4-C1 (RSI4-C1 

classifier) using all subjects. These maps were saved in DICOM format and overlaid on the 

T2 volume for visualization using MIM to indicate degree of suspicion for prostate cancer. 

ADC maps were generated for visual comparison.

Differences in DWI accuracy between the peripheral zone (PZ) and transition zone (TZ) of 

the prostate are well known (16, 20, 28). Generalizable results will likely require a larger 

dataset. Nonetheless, an exploratory analysis was performed for prostate cancers of the PZ 

and TZ, respectively. For the TZ analysis, all controls were included, but any cases with PZ 

cancer were excluded; an analogous analysis was performed for the PZ subset. Men with 

cancers in both the TZ and PZ were excluded from the subset analyses.

Diffusion-weighted images, themselves, are typically interpreted qualitatively using 

subjective, patient-specific window/level settings. High b-value images do not lend 

themselves readily to a quantitative, voxel-level analysis without a model like the one 

described in the present work. Nonetheless, for comparison, we performed secondary 

analyses using signal intensity at each b-value and the same procedures to evaluate voxel­

level classification.

Statistical Analysis

Voxel-level discrimination of PCa from benign prostate tissue was assessed via receiver 

operating characteristic (ROC) curves generated by bootstrapping with patient-level case 

resampling. RSI4-C1 was compared to conventional ADC for two metrics: area under 

the ROC curve (AUC) and false-positive rate for a sensitivity of 90% (FPR90). Similar 

voxel-wise discrimination assessments were performed for cancers in TZ and PZ. Statistical 

significance was assessed using paired bootstrap difference with two-sided α = 0.05.

RESULTS

Patient characteristics for cases with prostate cancer are in Table 1. Of the men with benign 

prostates on biopsy and/or surgical pathology, ten had PI-RADS category 1 prostates, two 

had PI-RADS category 2 lesions, eight had PI-RADS category 3 lesions, two had PI-RADS 

category 4 lesions, and one had a PI-RADS category 5 lesion.

RSI4-C1 outperformed conventional ADC as a quantitative, voxel-level classifier. RSI4-C1 

had a greater AUC: mean 0.977 (95% CI 0.951–0.991), compared to 0.922 (0.878–0.948) 

for ADC (Figure 1A). The false positive rate was also lower for RSI4-C1: mean 0.032 

(0.009–0.082), compared to 0.201 (0.132–0.290) for ADC (Figure 1B). Bootstrapping 

confirmed statistically significant differences in AUC and FPR90 between RSI4-C1 and 

conventional ADC (p<0.05 for each AUC and FPR90). ROC curves for RSI4-C1 and 

ADC are presented in Figure 2 and demonstrate the improvement in false positive rate 

while maintaining high sensitivity. The threshold corresponding to FPR90 was 0.0277 for 

RSI4-C1 and 999.1 ×10−6 mm2/s for ADC. The distribution of benign and cancer voxels 

by normalized signal intensity of RSI4-C1 showed less overlap between the two groups 

of voxels compared to that of ADC (Figure 3). RSI4-C1 classifier output images and 

conventional ADC maps for representative subjects are shown in Figure 4.
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Exploratory subset analyses for prostate zones included 4 cancers in the TZ and 17 cancers 

in the PZ (2 patients had cancers in both the TZ and the PZ and were excluded from 

the subset analyses). The pattern of improved performance with RSI4-C1, compared to 

ADC, was observed in each subset. For TZ cancers, RSI4-C1 had AUC: mean 0.995 

(95% CI 0.990–0.999), compared to 0.873 (0.794–0.950) for ADC. For TZ cancers, RSI4­

C1 had FPR90: mean 0.010 (0.002–0.022), compared to 0.286 (0.084–0.500) for ADC. 

Bootstrapping confirmed statistically significant differences on both metrics (p<0.05), but 

these exploratory results should be interpreted cautiously, as there were only 4 cases to draw 

from for bootstrapping. For PZ cancers, RSI4-C1 had AUC: mean 0.973 (95% CI 0.939–

0.991), compared to 0.928 (0.887–0.951) for ADC. For PZ cancers, RSI4-C1 had FPR90: 

mean 0.039 (0.008–0.115), compared to 0.190 (0.127–0.275) for ADC. Bootstrapping 

confirmed statistically significant differences (p<0.05) for both ADC and FPR90. The 

distributions of benign and TZ or PZ cancer voxel values were also consistent with improved 

discrimination with RSI4-C1 (Figure 5).

Secondary analyses confirmed that DWI, alone, did not yield adequate voxel-level 

classification: the FPR90 for high b-value DWI (1000, 2000, and 3000 s/mm2) was well 

over 0.500 in each case, compared to 0.201 and 0.032 for conventional ADC and RSI4-C1, 

respectively.

DISCUSSION

RSI4-C1 proved a superior voxel-level classifier for prostate cancer than conventional ADC, 

yielding significantly improved AUC and reduced false positives. When requiring 90% 

sensitivity for high-confidence cancer voxels in the cancer patients, conventional ADC 

performed poorly in control patients, falsely classifying approximately 1 in 5 benign voxels 

as cancerous. In contrast, for the same cancer sensitivity, RSI4-C1 gave far fewer false 

positives. This voxel-level classifier can be used to generate quantitative images that can 

be compared across subjects on the same scale and that highlight cancer with less noise 

(false positives) than the current imaging standard. These images may have utility in clinical 

applications such as MRI-guided prostate biopsy (29–31), focal ablative treatment (8–10) 

and targeted radiotherapy planning (11–13).

To develop the RSI model, we selected voxels that were high confidence for either benign 

prostate or prostate cancer, using all available clinical and pathologic information. Surgical 

pathology was not available for all patients, but using consecutive patients and allowing 

heterogeneity in type of pathology specimen avoids the selection bias of a prostatectomy­

only group. High-confidence cancer voxels were chosen to avoid introducing errors into 

the model, as not all voxels in the cancer patients would be cancerous, but all have to be 

considered suspect. Conversely, it is possible that some of the clinically benign patients 

may have actually harbored undiagnosed cancer due to possible sampling error on biopsy. 

Given the high negative predictive value of clinical workup with MRI (4), the number of 

potential erroneous voxels within the clinically benign prostates is expected to be very 

small, and, if present, would only serve to dilute the effects studied here. Because we used 

high-confidence cancer voxels, we also expected high model performance, including high 

sensitivity for detecting these cancer voxels. The choice of FPR90 as a performance metric 
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reflects this expectation: when requiring 90% sensitivity for high-confidence cancer voxels, 

a useful model will have a low false positive rate.

The discriminatory performance of RSI4-C1 relies on the RSI approach of separating the 

overall diffusion signal into compartments believed to correspond to restricted diffusion, 

hindered diffusion, free water, and rapid pseudo-diffusion. A prior study demonstrated 

improved characterization of diffusion signal within the normal prostate and prostate 

tumors with this four-compartment model, especially within the most diffusion-restricted 

compartment, C1 (25). By using this most restricted compartment, the vast majority of 

benign prostate tissue signal is suppressed, and output images have noticeably less noise 

than conventional ADC maps. Prior studies have also investigated the performance and 

utility of advanced DWI techniques, including RSI, in prostate cancer detection and 

characterization (23, 32–37). However, many of the other studies conducted analysis at 

the lesion level rather than the voxel level. A voxel-wise classifier permits generation of 

cancer-detecting images, like those shown in Figure 4, and avoids the need to manually 

define lesions. Nevertheless, distinguishing malignant and benign lesions is an important 

clinical problem, as is distinguishing lower and higher-grade lesions. Future work will apply 

the voxel-level classifier output to lesion-level analyses in a larger dataset.

Conventional ADC was calculated in this study using the most widely utilized approach 

consistent with PI-RADS version 2.1 (16), the consensus standard for multi-parametric 

prostate MRI, which recommends that ADC maps be calculated with b-values less than or 

equal to 1000 s/mm2. Prior studies have reported increased conspicuity of prostate cancer 

when using b-values greater than 1000 s/mm2 (38–41), and some centers—including ours—

routinely acquire images with stronger diffusion weighting than that required by PI-RADS. 

However, the objective of the present work was to develop a quantitative, voxel-level 

classifier for prostate cancer. ADC is the clinical standard for quantitative diffusion MRI 

and so was chosen as the comparator to the quantitative model developed in this study. 

The inclusion of b=0 s/mm2 may limit the accuracy of the calculated ADC due to potential 

microperfusion contamination at lower b-values(42). Nonetheless, the diffusion-weighted 

images, themselves, are typically interpreted qualitatively using subjective, patient-specific 

window/level settings. High b-value images do not lend themselves readily to a quantitative, 

voxel-level analysis without a model like the one described in the present work. Indeed, 

secondary analyses of the present dataset confirmed that no b-value yielded adequate voxel­

level classification.

Limitations

We had a small sample size from a single scanner in order to take advantage of a 

specialized acquisition protocol, which may limit generalizability. This analysis does not 

compare the RSI4 model to other advanced DWI methods or investigate the potential 

added value of multiple echo times (22–24, 32); we plan to acquire data adequate for 

these comparisons for future analyses. As mentioned above, there was also heterogeneity 

in pathology type, which precluded voxel-level histopathology correlation but is reflective 

of real-life practice patterns. There was no indication in this dataset that performance was 

worse for TZ cancers than PZ cancers. RSI4-C1 actually trended toward better performance 
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in the TZ, whereas ADC trended toward worse performance in the TZ, but these subset 

analyses for TZ cancers are considered exploratory only, as the relatively small number of 

cases precludes generalization. Relatively few transition zone cancers also precluded subset 

analysis of classifier performance by prostate zone. The overall excellent performance of 

our models may be partially attributed to use of majority PI-RADS category 4–5 cancers, 

which are already conspicuous for experienced radiologists. However, these lesions provided 

high-confidence training data.

Conclusion

Our study demonstrated that RSI4-C1 yields a voxel-level classifier of prostate cancer that 

is superior to conventional ADC. RSI classifier images, with a lower false-positive rate, 

might be used to assist in accurate detection of prostate cancer. A pending clinical trial 

(ClinicalTrials.gov #NCT04349501) will apply this RSI4-C1 classifier to prospective data 

and evaluate this quantitative metric for treatment response assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Box plots depicting distribution of performance metrics for 10,000 patient-level bootstrap 

samples for A) area under the curve (AUC) and B) the false positive rate at 90% sensitivity 

(FPR90) for conventional ADC and RSI4-C1. Whiskers represent values within 1.5 times the 

interquartile range (IQR).
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Figure 2. 
Receiver operating characteristic (ROC) curves for conventional ADC (grey) and RSI4-C1 

(green) with confidence intervals indicated by shaded areas. FPR90 is highlighted by a 

horizonal line at 0.9 sensitivity, with corresponding coordinate along the x-axis indicating 

false positive rate.
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Figure 3. 
Normalized histograms of signal intensity for A) conventional ADC and B) RSI4-C1. Benign 

voxels are shown in blue and cancer voxels are in orange, with the overlapping regions in 

brown. RSI4-C1 has less overlap in the distribution of benign and cancer voxels compared to 

ADC.
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Figure 4. 
Representative axial images of T2-weighted MRI (T2W), conventional ADC, and logistic 

regression of RSI4-C1 (RSI4-C1 classifier) for 3 representative subjects. Subject A had a 

PI-RADS 5 lesion (pink arrow) on MRI, with two subsequent negative biopsies showing 

only acute and chronic inflammation. Subject B had a small PI-RADS 3 lesion (blue arrow) 

in the left peripheral zone; he underwent radical prostatectomy and was found to have 

Gleason 3+4 prostate cancer with focal extraprostatic extension. Subject C had a PI-RADS 3 

lesion (green arrow) in the right transition zone; he underwent prostatectomy and was found 

to have Gleason 4+3+5 prostate cancer. RSI4-C1 classifier maps readily highlight the cancers 

for subjects B and C. The RSI4-C1 classifier map for subject A has no false-positive voxels; 

it is shown on the same color scale as the maps for subjects B and C.
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Figure 5. 
Normalized histograms of signal intensity from subset analyses of peripheral zone (top row) 

and transition zone (bottom row) for conventional ADC (panels A & C) and RSI4-C1 (panels 

B &D). Benign voxels are shown in blue and cancer voxels in orange, with the overlapping 

regions in brown. RSI4-C1 has less overlap in the distribution of benign and cancer voxels 

compared to ADC when using subsets of cancers in the peripheral zone or transition zone.
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