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Facile access to C-glycosyl amino acids and
peptides via Ni-catalyzed reductive
hydroglycosylation of alkynes

Yan-Hua Liu® ', Yu-Nong Xia® !, Tayyab Gulzar!, Bingcheng Wei', Haotian Li', Dapeng Zhu', Zhifei HU,
Peng Xu'™ & Biao Yu® 12>

C-Glycosyl peptides/proteins are metabolically stable mimics of the native glycopeptides/
proteins bearing O/N-glycosidic linkages, and are thus of great therapeutical potential.
Herein, we disclose a protocol for the syntheses of vinyl C-glycosyl amino acids and peptides,
employing a nickel-catalyzed reductive hydroglycosylation reaction of alkyne derivatives of
amino acids and peptides with common glycosyl bromides. It accommodates a wide scope of
the coupling partners, including complex oligosaccharide and peptide substrates. The
resultant vinyl C-glycosyl amino acids and peptides, which bear common O/N-protecting
groups, are amenable to further transformations, including elongation of the peptide and
saccharide chains.
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ARTICLE

lycosylation of proteins, involving conjugation of sac-

charides onto the amino acid residues of proteins,

represents a ubiquitous type of posttranslational mod-
ification. The added saccharides can then modulate the properties
and functions of the proteins in various biological processes, such
as in cell adhesion, signal transduction, and immune response! .
In nature, more than 13 monosaccharides can join with eight
amino acid residues to provide at least 41 distinct types of gly-
cosidic linkages connecting the saccharides with the proteins®.
These linkages are mostly O/N-glycosidic bonds with the
hydroxyl and amido groups pending on serine, threonine, or
asparagine residues’~%, with Man-Trp being the only C-glycosidic
motif known to date!® 11 (Fig. 1a). The naturally occurring O/N-
glycosidic linkages are metabolically vulnerable thus potentially
hamper the therapeutical use of glycopeptide/proteins. Thus, the
pursuit of hydrolytically stable linkages (e.g., C- or S-glycosidic
bonds) in replace of the O/N glycosidic linkages has elicited
great interest in the development of glycopeptide/protein
drugs!2-1>,
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In comparison to the preparation of the native O/N- or arti-
ficial S/Se-glycosyl peptides'®-2l, the construction of C-glycosyl
peptides is much more difficult and has lagged far behind?2-2>.
Given the markedly lower nucleophilicity and higher pK, of C—H
compared to the X—H (X =0, N, S) counterparts, the conven-
tional glycosylation involving nucleophilic addition onto sugar
oxocarbenium intermediates become frequently futile for C-gly-
cosylation. Besides, the complex functionality of peptides are
poorly tolerated with the glycosylation conditions. In recent years,
transition metal-catalyzed C-glycosylation has gained great
attention?®-43 and a large variety of C-glycoside natural
products as well as drug candidates have been successfully
synthesized*4-4°. However, synthesis of complex C-glycosyl
peptides, especially a convergent synthesis using oligosaccharides
as donors still poses a formidable challenge, due to the following
methodological limits: (i) scarcity of methods for construction of
alkyl/alkenyl C-glycosidic bonds, in contrast to the well-studied
aryl C-glycosylation; (ii) harsh reaction conditions, including high
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Fig. 1 Ni-catalyzed syntheses of vinyl C-glycosyl amino acids and peptides. a The N-linked core Man3GIcNAc,p1-Asn motif in glycoproteins, the O-linked
tumor-associated carbohydrate antigen Sialyl Lewis* in glycolipids, and the native N/O/C-glycosidic linkages in glycoproteins. b Nickel-catalyzed reductive
hydroglycosylation for access to vinyl C-glycopeptides and a plausible mechanism. ¢ Structure of the glycosyl donors 1 and potential by-products 4 and 5.

The glycosidic bonds are highlighted in red.
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organometallic reagents, or metal additives that are poorly
compatible with peptide substrates; (iii) use of large excess of
sugar donors and/or insufficient anomeric selectivity, impeding
convergent synthesis with expensive oligosaccharide donors; (iv)
use of highly functionalized sugar donors, necessitating multistep
transformations to procure the final glycopeptides. Recently,
Chen®?, Niu®!, Ackermann®% 23, Liu®4, Wang®?, and co-workers
have disclosed a series of methods for the synthesis of C-glycosyl
amino acids via either C-H activation or radical addition stra-
tegies. Very recently, Wang et al. reported a stereodivergent
synthesis of C-glycosamino acids using glycal donors via Pd/Cu
dual catalysis®®. Notwithstanding, straightforward and practical
C-glycosylation methods are still in high demand to conquer the
aforementioned limits.

Inspired by the recent breakthrough in the NiH-catalyzed
hydrocarbonation of unsaturated bonds®’-6!, we envisioned the
construction of vinyl C-glycosyl amino acids and peptides via a
plausible reaction mechanism as depicted in Fig. 1b. Thus, the
catalytic cycle started with a branch-selective insertion of NiH (B)
to terminal alkyne 2 to form vinyl nickel species C, which was
then oxidized by glycosyl bromide 1 via a bromine atom
abstraction followed by anomeric radical trapping to form high-
valent Nilll complex E. Subsequent reductive elimination deliv-
ered the desired C-glycoside 3 and catalyst A. The active NiH
species B was regenerated by hydride transfer from the hydro-
silane. It was expected that judicious choice of coupling partners
and reaction conditions was required, in order to avoid the B-H/
O/N elimination and anomeric reduction that would result in
glycal 4 and tetrahydropyran 5 (Fig. 1c), to achieve useful
anomeric a/p selectivity, and to secure wide compatibility of the
functional groups and protecting groups on the saccharide and
peptide substrates.

Here, we show that a wide variety of the easily accessible
acetylenic amino acids/peptides and glycosyl bromides can be
coupled regio- and stereoselectively under the catalysis of Ni to

Conditions |

NiCl,(DME) (10 mol%)
dtbbpy (12 mol%), PPh; (20 mol%

provide the metabolically stable vinyl C-glycosyl amino acids and
peptides.

Results

Reaction design and optimization. To implement the hypoth-
esis, a-mannosyl bromides were initially selected as glycosyl
donors and n-hexyne as a model alkyne acceptor. Conditions
optimization was proven tedious, and competing by-products
from B-H/O elimination (i.e., 4) or anomeric reduction (i.e., 5)
were obtained concomitantly in many of the cases (see Supple-
mentary Figs. 26-35). Fortunately, extensive surveys of various
parameters, including the protecting groups on the sugar bro-
mides, Ni catalyst, bipyridine ligand, phosphine additive, base,
silane, reaction atmosphere, and solvent, led to optimal Condi-
tions I and Conditions II for the conjugation of mannose and
glucosamine type saccharides (la and 1b) with N-Boc-L-Pra-
OMe (2a) (Pra = propargylglycine), yielding vinyl glycosyl amino
acids 3aa and 3ba in 77 and 85% yield, respectively (Fig. 2). The
1,1-disubstituted alkene moiety in the product is well diagnostic
in the 'H NMR spectra by two singlet signals at high field (e.g.,
5.74 and 5.51 ppm for 3aa; 5.10 and 4.94 ppm for 3ba)>’. Besides,
the anomeric H of a-glycoside 3aa presents as a singlet at 4.75
ppm, while the anomeric H of p-glycoside 3ba is a doublet at 5.06
ppm (d, J=10.6 Hz). Some key findings with GlcNPhth bromide
1b as the donor are listed in Fig. 2. Thus, an inert atmosphere was
essential for the successful transformation (entries 2 and 3). The
absence of dtbbpy ligand completely shut down the reaction
(entry 5). Ni(0) could also be used as a catalyst albeit leading to
lower yields (entries 6 and 7). The phosphine additive (R)-Tol-
BINAP or Ph;P was found to be fully oxidized into Tol-BINAP
(0), or Ph3P(O) after the reaction, and its absence only slightly
diminished the coupling yield (entry 4). Besides, the chirality of
Tol-BINAP did not affect the P-selectivity of the glycosylation
(see Supplementary Figs. 30, 31, and 35). Therefore, the
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5 w/o dtbbpy trace 20 66
6 Ni(COD),, w/o (R)-Tol-BINAP, 16 h 60 5 12 19
7 Ni(COD),, w/o (R)-Tol-BINAP, 24 h 73 5 18 trace

Fig. 2 Optimized reaction conditions | and Il and the control experiments for Conditions Il. a Reaction conditions: 1b (0.1 mmol), 2a (2.0 equiv.),
NiCl,(DME) (10 mol%), dtbbpy (12 mol%), (R)-Tol-BINAP (10 mol%), PMHS (2.5 equiv.), Na,COs (2.5 equiv.), THF (1mL), 30 °C, Ar, 36 h. The yields
were determined by TH NMR using CH,Br, as an internal standard. b Isolated yield. DME dimethoxyethane, DEMS diethoxymethylsilane, DMAc N,N-
dimethylacetamide, dtbbpy 4,4’-di-tert-butyl-2,2’-bipyridine, PMHS poly(methylhydrosiloxane), Tol-BINAP 2,2’-bis(di-p-tolylphosphino)-1,1"-binaphthyl,

w/0 without. In red are the formed C-glycosidic bonds.
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Fig. 3 C-Mannosylation of alkyne derivatives of amino acids and peptides. 1a (0.1 mmol), 2 (2.0 equiv.), NiCl,(DME) (10 mol%), dtbbpy (12 mol%), PPh;
(20 mol%), DEMS (2.5 equiv.), Na,CO5 (2.5 equiv.), DME/DMAc (10/1, v/v, TmL), 25-35°C, Ar, 36 h. Isolated yields are reported. In red are the formed

C-glycosidic bonds.

phosphine additive was not involved in the catalytic cycle,
whereas it might facilitate the dissolution of NiCl,(DME) and
formation of NiCl,(dtbbpy) as the actual catalyst, in addition, a
role as a residue O, scavenger was also possible®2 63,

It is worth noting that no epimerization of the amino acids was
observed in the reaction, as determined by careful HPLC analysis
(see Supplementary Figs. 40 and 41), testifying the mild reaction
conditions using weak bases (Na,CO3;) and mild temperature
(<35°C) for the present C-glycosylation.

Substrate scope. With the optimal conditions in hand, we
explored the scope of the present method. Firstly, a variety of
acetylenic amino acid derivatives, which were easily prepared (see
Supplementary Figs. 13-25), were examined to couple with
mannosyl bromide 1a (Fig. 3). Gratifyingly, the frequently used
amino protecting groups for peptide synthesis, such as Boc (3aa),
Cbz (3ab), Fmoc (3ac) were well tolerated, and so did the

carboxylic acid protecting groups, such as Bn (3ad) and ‘Bu (3ae).
Expectedly, N-

Phth-L-Pra-OMe reacted smoothly to afford 3af in 73% yield;
alkynes easily derived from natural amino acids via ether or amide
linkages, such as propargyl Ser and Tyr ethers (3ag and 3ah), hept-6-
ynoyl Lys amide (3ai), and propargylamino Asn (3aj) were also
shown to be suitable substrates. Significantly, the current nickel-
catalyzed coupling reaction was highly compatible with the peptide
bonds, and thus could be readily applied to the C-glycosylation of
dipeptides and tripeptides. Indeed, a panel of the vinyl C-glycosyl
dipeptides, including N-Boc-(Man-vinyl)-Ala-Phe-OMe  (3ak),
N-Boc-(Man-vinyl)-Ala-Leu-OMe  (3al), N-Boc-(Man-vinyl)-Ala-
Ile-OMe (3am), N-Boc-(Man-vinyl)-Ala-Pro-OMe (3an), N-Boc-
Trp-(Man-vinyl)-Ala-OMe (3a0), O-Bn-N-Boc-Thr-(Man-vinyl)-
Ala-OMe (3ap), N-Boc-Phe-(Man-vinyl)-Ala-OMe (3aq), and
tripeptides, including N-Boc-(Man-vinyl)-Ala-Ala-Val-OMe (3ar),
N-Boc-(Man-vinyl)-Ala-Tle-Ala-OMe  (3as), and N-Boc-(Man-
vinyl)-Ala-Ala-O-Bu-Thr-OMe (3at) were successfully prepared in
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52-80% yields. It was noted that no epimerization of the amino acid
residues was observed.

GIcNAcP-Asn represents the most common glycosyl amino
acid motif on nuclear and cytoplasmic glycoproteins®, bringing the
synthesis of the glucosamine-based C-glycopeptides an important
subject. As shown in Fig. 4, the optimal GlcNPhth bromide donor
1b could be installed not only to amino acid (3ba), but also to
dipeptides and tripeptides derivatives with the Pra moiety located
either at the terminal (3bl, 3bt, and 3bp) or at an interior position
(3bu) in satisfactory yields and exclusive B-selectivity. Notably, the
peptide sequence of 3bt simulates the consensus sequence of Asn-
X-Thr/Ser (X can be any amino acid except Pro) in the native N-
glycan where GIcNAc can be attached.

Next, we turned to test with other types of pyranosides (Fig. 5).
N-Phth-galactosamine bromide was smoothly coupled with Pra
2a, delivering 3ca with complete B-selectivity in 79% yield. For
xylose, 4-(trifluoromethyl)benzoyl group was used as protecting
groups to facilitate separation of the coupling products via silica-
gel chromatography, thus (Xyl-vinyl)-

Ala (3da) was obtained as /o anomers with a ratio of 3:1 in
65% yield, in that the p anomer adopted “C; conformation (J; , =
9.7 Hz) and the a anomer adopted !C, conformation (H1 showed
a singlet signal). Mannosamine and rhamnose bromides also
reacted smoothly with 2a, providing 3ea and 3fa in 72 and 93%
yield, respectively. In addition, the orthogonally protected C-GIcN
amino acids 3ga and 3ha were obtained in 72 and 58% yield from
the corresponding glucosamine donors bearing 6-O-TBDPS and
4-O-Bn groups, respectively. Glucosyl bromide was also tested,
and the desired (Glc-vinyl)-Ala (3ia) was obtained in 52% yield,
albeit without B/a selectivity (B/a = 1:1). Moreover, the scope
could be expanded to disaccharide bromide donors, with the fully
protected N-Boc-(Galp(1,3)GlcNp-vinyl)-Ala-OMe (3ja),

N-Boc-(GIcNp(1,4)GIcNp-vinyl)-Ala-OMe  (3ka),  N-Boc-
(Rhaa(1,2)Rhaa-vinyl)-Ala-OMe (3la), and N-Boc-(Fuca(1,3)
GIcNB-vinyl)-Ala-OMe (3ma) being prepared in synthetically
useful yields (54-68%).

Intriguingly, this method could also be extended to internal

unsymmetrically substituted alkyne 2v was used as the coupling
partner, cis-hydroglycosylation with Man bromide la and GIcN
bromide 1b occurred smoothly, leading to the corresponding regio-
isomeric C-glycosides (Man 3avl and 3av2 and GIcN 3bvl and
3bv2, respectively) in moderate yields (52 and 47%) and varied
regioselectivity (r.r.=3:1 and 8:1).

The attained stereoselectivity of the C-glycosylation could be
attributed to the predominant conformation of the glycosyl
radical intermediate, which is stabilized by the interaction of
SOMO of the anomeric unpaired electron with lone pair of the
ring oxygen and the ¢* of the adjacent C2-O/C2-N bond®4-¢7.
Thus, a mannose-derived radical adopts preferentially a 4C,
conformation, leading to the 1,2-trans (a-selectivity) product in
the C-glycosylation. A glucose-derived radical adopts a flexible
B, s conformation, thus the stereoselectivity of C-glycosylation
can be shifted from 1,2-cis (a-selectivity) to 1,2-trans (p-
selectivity) by using a bulkier protecting group on C2-OH; and
for a glucosamine-derived radical bearing the bulky NPhth group
at C2, exclusive 1,2-trans (B-selectivity) product can be attained.
Due to the lack of C5 substituent, a xylose-derived radical can
adopt both the B,s conformation and !C, conformation, thus
resulting in a 1,2-trans (B-selectivity) dominated C-glycosylation.

To probe the occurrence of the glycosyl radical (species D in
Fig. 1b), we conducted a radical clock experiment (Fig. 7)31:3°,
Thus, §-olefinic 1-bromo glucoside 6 and alkyne 2a were
subjected to the standard Conditions II; the desired ring-closure
product 7 was isolated in 33% yield with mild diastereoselectivity
(d.r.=3:2). Though not conclusive, this result supports the
intermediacy of an anomeric radical species.

Synthetic utilities. To demonstrate the potential utilities of the
current method, we also examined a scale-up reaction and further
transformations of the resulting vinyl C-glycosyl amino acid. Thus,
compound 3ba (1.96 g) was obtained in a 65% yield at a 3.6 mmol
scale reaction (Fig. 8a, A; see Supplementary Fig. 37). The transfor-
mation of the N-Phth to the native NHAc residue is critical for the
synthesis of GIcNAcB-Asn mimics, fortunately, this was realized

acetylenic amino acids. As exemplified in Fig. 6, when selectively via sequential treatment with 80% N,H,H,0, HOAc, and
o8 NiCl,(DME) (10 mol%)
OZ HN/h“g dtbbpy (12 mol%), (R)-Tol-BINAP (10 mol%) OBz HN/%‘%
BzO H . . =
520 B, M“\; PMHS (2.5 equiv), Na,COj (2.5 equiv.) 207 ) : H\;
- Z!
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o) o

1b (Blo. = 5:1) 2 3

o8z NHBoc Ozz ’%‘HBOCH NHBoc O Bu

BzO Q T BzO 5 N COzMe BzO
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NPhth NPhth 5 5 NPhth g
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B2O RN
o z H
BzO :
TBzO VCOZMe B20
NPhth 5 E BzO CO,Me
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3bu, 78% 3bp, 63%

Fig. 4 Scope of C-glycosylation with glucosamine donor 1b. 1b (0.1 mmol), 2 (2.0 equiv.), NiCl,(DME) (10 mol%), dtbbpy (12 mol%), (R)-Tol-BINAP
(10 mol%), PMHS (2.5 equiv.), Na,CO3 (2.5 equiv.), THF (1mL), 30 °C or as noted, Ar, 36 h. Isolated yields are reported. In red are the formed

C-glycosidic bonds.
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Fig. 5 C-Glycosylation with various mono- and disaccharide bromides. See S| for detailed conditions, which might vary slightly from Conditions | and II,

and isolated yields are reported. In red are the formed C-glycosidic bonds.
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Fig. 6 C-Glycosylation with an internal acetylenic amino acid. In red are
the formed C-glycosidic bonds.

Ac,0, leading to the desired C-GIcNAc amino acid 8 in 60% yield
and >99% de value (see Supplementary Figs. 42 and 43). The
orthogonally protected 3ba and 3ga allow subsequent elongation of
the peptide and saccharide chains. Indeed, the subjection of 3ga to
desilylation followed by fucosylation under the mild Au(I)-catalyzed
glycosylation conditions®® afforded disaccharide 9 in 68% yield (see

Supplementary Fig. 44). Alternatively, the subjection of 3ba to the
cleavage of the N-Boc group followed by peptide synthesis led to
C-glycosyl dipeptide 10 in 93% yield (see Supplementary Fig. 45).
These transformations showcased the potential of the current pro-
tocol for the synthesis of complex and biologically relevant glyco-
peptides. In addition, three examples of deprotection under strong
basic conditions (with LiOH) were conducted, leading to glycosyl
amino acids and peptides 11-13 in excellent yields (Fig. 8b).

Finally, we further assessed the feasibility of convergent
assembly of C-glycosyl peptides using biologically intriguing
oligosaccharides (Fig. 8c). Using a branched pentasaccharide
bromide as a donor and Boc-L.-Pra-OMe 2a as acceptor, the
desired C-glycosyl amino acid 14 was successfully obtained in
~39% yield (see Supplementary Fig. 36), with the saccharide being
relevant to the O-antigen of the lipopolysaccharides of Pseudo-
monas syringae®®. Using a trisaccharide bromide as a donor, the
coupled 15 was obtained in a satisfactory 58% yield, which bears
the tumor-associated Lewis® antigen”?.

Discussion

We have developed a nickel-catalyzed hydroglycosylation reac-
tion for the straightforward synthesis of vinyl C-glycosyl amino
acids and peptides. A variety of glycosyl bromides can be used as
limiting reagents, and excellent 1,2-trans diastereoselectivity is
attained for C2-axially substituted pyranosides (e.g., Man, ManN,
and Rha) or C2-equatorially substituted 2-aminopyranosides
(e.g., GlcN and GalN). A wide substrate scope has been proven
and also a gram-scale reaction has been demonstrated. The
resultant C-glycosyl amino acids and peptides, which bear com-
mon N- and O-protecting groups, could be readily transformed
into various mimics of the native O/N-glycosyl peptides. The late-
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stage C-glycosylation with complex oligosaccharide bromides has
also been successful. Additionally, the nascent vinyl group in the

method for the preparation of C-glycosyl peptides of biological
and therapeutical significance.

products would provide a special handle for further derivatiza-
tion. All these features render the present protocol a promising
Methods
General procedure A (Conditions I) for the NiH-catalyzed reductive hydro-
glycosylation of acetylenic amino acid and peptides. To an oven-dried 10 mL
OBz Schlenk tube (Titan, TF891910) containing a Teflon coated magnetic stirring bar
were added glycosyl bromide 1 (0.1 mmol), NiCl,(DME) (2.2 mg, 10 mol%),

B 2 6 dtbbpy (3.2 mg, 12 mol%), PPh; (5.2 mg, 20 mol%), and Na,CO; (25 mg, 2.5
o equiv.). The tube was sealed with a rubber cap and parafilm, and evacuated then
<_Br Conditions 1l refilled with Ar for at least five cycles. The acetylenic amino acid or peptide
_— —_— NHBoc derivative 2 was dissolved in solvent (DME/DMAc = 1:1, 1.0 mL) and the solution
+ : was injected into the reaction tube (this substrate could be added directly with
CO,Me glycosyl bromide if it was solid). When stirring, (EtO),MeSiH (40 uL, 2.5 equiv.)
NHBoc oo 7 33% dr. = 3:2 was injected via a microliter syringe. Otherwise noted, the tube was moved to an oil
% A ’ o, A.F. = 3 bath preheated to 33-35°C and kept stirring for 36 h. The reaction mixture was
CO,Me diluted with CH,Cl, (20 mL) and filtered. After concentration, the residue was

purified by column chromatography on silica gel or preparative TLC to afford the

Fig. 7 A radical clock experiment. In red are the formed bonds. desired product 3.

a. A gram-scale synthesis & subsequent transformations

1b (3.6 mmol) + 2a

A ¢ R = Bz, 65% (1.96 g)

OAc
OAc
oA Saccharide OR NHBoc Peptide PO wNHCbz
o elongation Bzow/:\ elongation
——— BzO CO,Me —————) o)
© NHBoc o] NPhth D o8z i
BzO Q : B20 0 :
BzO COMe 3ba, R = Bz; 3ga, R = TBDPS BzO co,Me
NPhth NPhth
B
9, 68% 10, 93%
OBz
° NHBoc
BzO :
BzO CO,Me
NHAc
8, 60%, B only & >99% dr
b. Deprotection of acyl groups under basic conditions o
o OH HO_O N CO,H
HO COH o NHBoc N ~ 02
HO : H :
HO NHBoc HO COH HO NHBoc ° Aosu
OH NHAc HO
HO HO

11, quant. from 3aa 12, quant. from 8 13, 96% from 3at

c. Convergent C-glycosylation of complex saccharides with amino acid

CO,Me
HBoc OAc OAc OBz
o NHBoc
o] =z
AcO. (0] X
o) CO,Me
Ohc NPhth ?
O onc
OAc
OAc

B0 § AcQ 14, 39% for the C-glycosylation 15, 58% for the C-glycosylation
o Oac (relevant to the O-repeats of the (relevant to the Lewis* antigen)
Bz0 OAc lipopolysaccharides of P. syringae)
BzO OBz

Fig. 8 Scale-up reaction, subsequent transformation, and C-glycosylation with complex saccharides. a A gram-scale synthesis of C-glycosyl amino acid
and subsequent transformations. Conditions and reagents: A. NiCl,(DME) (10 mol%), dtbbpy (15 mol%), (R)-Tol-BINAP (6.0 mol%), PMHS (2.5 equiv.),
Na,COs (2.5 equiv.), THF (0.1 M), 25-28 °C, Ar, 48 h, 65%. B. i) 80% N,H4-H,0, MeOH, 0°C, 9 h; ii) HOAc/MeOH (1/4, v/v), 70 °C, 1.5 h; iii) Ac,0,
EtsN, CH,Cly, 6 h, 60% over three steps. C. i) HF-pyridine, pyridine, O °C—rt, 2 h, 85%; ii) Au(PPh3)NTf, (10 mol%), 4 A MS, CH,Cl,, 0 °C—rt, 0.5 h, 81%.
D. i) CH,Cl,/TFA (2/1, v/v), 0 °C—rt, 1.5 h; i) N-Cbz-O-tBu-L-serine (1.5 equiv.), HOBt (1.5 equiv.), DIPEA (4.0 equiv.), EDCI (1.5 equiv.), DMF, -10 °C—rt,
6 h, 93% over two steps. b Deprotection of acyl groups. Conditions: LiOH (7.5 equiv), MeOH/H,0 (4/1, v/v, 0.01 M), rt, 10 h. ¢ Convergent C-
glycosylation of complex oligosaccharides with amino acid, see Sl for details. In red are the formed C-glycosidic bonds.
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General procedure B (Conditions II) for the NiH-catalyzed reductive hydro-
glycosylation of acetylenic amino acid and peptides. To an oven-dried 10 mL
Schlenk tube (Titan, TF891910) containing a Teflon coated magnetic stirring bar
were added glycosyl bromide 1 (0.1 mmol), NiCl,(DME) (2.2 mg, 10 mol%),
dtbbpy (3.2 mg, 12 mol%), (R)-Tol-BINAP (6.7 mg, 10 mol%), and Na,CO; (25
mg, 2.5 equiv.). The tube was sealed with a rubber cap and parafilm, and evacuated
then refilled with Ar for at least five cycles. The acetylenic amino acid or peptide
derivative 2 was dissolved in THF (1.0 mL), and the solution was injected into the
reaction tube (this substrate could be added directly with glycosyl bromide if it was
solid). When stirring, PMHS (32 uL, 2.5 equiv.) was injected via a microliter syr-
inge. Otherwise noted, the tube was kept stirring under an indicated temperature of
30 °C for 36 h. The reaction mixture was diluted with CH,Cl, (20 mL) and filtered.
After concentration, the residue was purified by flash column chromatography on
silica gel or preparative TLC to afford the desired product 3.

Data availability

The authors declare that all data supporting the findings of this study are available within
the paper and its supplementary information file, including experimental details,
characterization data, and 'H and 13C NMR spectra of new compounds. All data are
available from the corresponding authors upon reasonable request.
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