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Abstract
Introduction  Intravenous lipid emulsions (ILE) have been credited for successful resuscitation in drug intoxication cases 
where other cardiac life-support methods have failed. However, inter-individual variability can function as a confounder 
that challenges our ability to define the scope of efficacy for lipid interventions, particularly as relevant data are scarce. To 
address this challenge, we developed a quantitative systems pharmacology model to predict outcome variability and shed 
light on causal mechanisms in a virtual population of rats subjected to bupivacaine toxicity and ILE intervention.
Materials and Methods  We combined a physiologically based pharmacokinetic–pharmacodynamic model with data from 
a small study in Sprague-Dawley rats to characterize individual-specific cardiac responses to lipid infusion. We used the 
resulting individual parameter estimates to posit a population distribution of responses to lipid infusion. On that basis, we 
constructed a large virtual population of rats (N = 10,000) undergoing lipid therapy following bupivacaine cardiotoxicity.
Results  Using unsupervised clustering to assign resuscitation endpoints, our simulations predicted that treatment with a 
30% lipid emulsion increases bupivacaine median lethal dose (LD50) by 46% when compared with a simulated control fluid. 
Prior experimental findings indicated an LD50 increase of 48%. Causal analysis of the population data suggested that muscle 
accumulation rather than liver accumulation of bupivacaine drives survival outcomes.
Conclusion  Our results represent a successful prediction of complex, dynamic physiological outcomes over a virtual popula-
tion. Despite being informed by very limited data, our mechanistic model predicted a plausible range of treatment outcomes 
that accurately predicts changes in LD50 when extrapolated to putatively toxic doses of bupivacaine. Furthermore, causal 
analysis of the predicted survival outcomes indicated a critical synergy between scavenging and direct cardiotonic mecha-
nisms of ILE action.
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1  Introduction

Over the 2 decades since lipid resuscitation was first pro-
posed [2], researchers have used in vitro [3–5] and in vivo 
[2, 4, 6–16] experiments, clinical case reports [17, 18], and 

systematic reviews [19–24] to explore the value of intrave-
nous lipid emulsions (ILE) as an antidote for drug toxicity. 
For the case of local anesthetic toxicity, committees devel-
oped guidelines and recommendations based largely on ani-
mal models and without formalized clinical trials [25–27]. 
In silico methods have emerged as an additional approach 
to examine the therapeutic implications of the hypothesized 
pharmacokinetic (PK) and cardioactive functions of intrave-
nous (IV) emulsions [6–8, 28]. Independent computational 
and integrative computational/experimental studies have 
revealed the limitations of the proposed ‘lipid sink’ mecha-
nism of toxin sequestration as a sole driver of toxicity rever-
sal. Instead, the field has recast the lipid sink (or scavenging) 
as just one part of a more complex, multifunctional picture 
of lipid resuscitation [7, 8, 25]. Resuscitation is now thought 
to depend heavily on a direct stimulation of cardiac contrac-
tility via at least two routes: the Frank-Starling mechanism 
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Key Points 

We quantified variability of cardiac responses to lipid 
emulsion infusions by estimating individualized param-
eters for a pharmacokinetic–pharmacodynamic model 
applied to rats.

We used the variability observed across a small popula-
tion to simulate a large virtual population experiencing 
bupivacaine systemic toxicity followed by an intravenous 
lipid intervention.

We thereby demonstrated that a predictive virtual 
population model for lipid emulsion therapy can be 
developed by integrating very limited physiological data 
with mechanistic physiologically based pharmacokinetic 
modeling. Median lethal dose predictions for treated ver-
sus untreated bupivacaine toxicity agreed well with prior 
experimental observations, and causal analysis supported 
a key role being played by accumulation of bupivacaine 
in muscle tissue rather than the liver.

of action. This effort serves as a proof-of-concept that virtual 
population PBPK models informed by small experimental 
studies can support quantitative assessments of the potential 
of lipid therapy.

2 � Methods

2.1 � Model Description

2.1.1 � Pharmacokinetic–Pharmacodynamic Model

We have built upon a PBPK model of bupivacaine disposi-
tion in humans [28] and a PBPK-PD model describing its 
cardiotoxic effect in rats [7]. These models account for the 
distribution, metabolism, and elimination properties of bupi-
vacaine and a lipid emulsion, as well as interactions between 
the anesthetic and emulsion. We modeled the pharmacody-
namic (PD) effects of bupivacaine and ILE on cardiac function 
using maximal effect functions of the Hill form (Eqs. 1a, 1b, 
respectively). A linear function represents the positive ino-
tropic effect of excess fluid volume, Evol, as proportional to the 
fractional increase in venous return (Eq. 1c).

Note that the depressive effect of bupivacaine, Ebup, 
depends on the concentration of the anesthetic in the car-
diac tissue (Cbup,tis), while the cardiotonic effect of lipid, 
Elip, depends on the triglyceride concentration in the blood 
plasma (Clip,plasma), with β and n functioning as Hill con-
stants. Cu,bup is the unbound concentration of bupivacaine 
in plasma within the heart, which acts as a non-competitive 
inhibitor of the lipid cardiotonic effect [8, 29]. KI is the 
inhibition constant, which is equal to the ion-channel dis-
sociation constant of bupivacaine (KI = 0.9 μM). Kvolume is 
a proportionality constant, while the ratio of Qv to Qb is that 
of the return venous blood flow rate to the baseline flow rate. 
We described cardiovascular response to these three factors 
using the differential algebraic system in Eqs. (2a, 2b).
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common to all fluid resuscitation and an as yet unclear direct 
cardiotonic impact of IV fats on the heart. Similar math-
ematical models could serve to enrich empirical studies 
by generating mechanistic predictions about non-heuristic 
physiological outcomes when key toxicity and treatment 
variables are perturbed. Furthermore, by incorporating sta-
tistical variability into a deterministic mechanistic model, a 
validated mathematical model can be extended to account 
for inter-individual variability across populations.

The aim of this study was to determine whether the scarce 
in vivo data typical of lipid resuscitation studies is sufficient to 
inform a predictive virtual population model of ILE-mediated 
toxicity reversal. The modeling framework is a physiologically 
based pharmacokinetic–pharmacodynamic model (PBPK-PD). 
Beginning with data from a prior small study in rats [1], we 
used PBPK-PD modeling to construct a large (N = 10,000) vir-
tual population undergoing ILE therapy after simulated bupi-
vacaine administration. Based on this virtual population, we 
simulated a plausible range of treatment outcomes that accu-
rately predicted changes in median lethal dose (LD50) when 
extrapolated to putatively toxic doses of bupivacaine. Using 
causal analysis, we have also demonstrated that the PBPK-
PD predictions are consistent with muscle accumulation of 
bupivacaine acting as a driver of survival outcomes and liver 
accumulation being a consequence—rather than a cause—of 
survival. Furthermore, our virtual population data indicates 
that the efficacy of lipid therapy depends on a critical syn-
ergy between scavenging and direct cardiotonic mechanisms 
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U in Eq. (2a) represents the proportional feedback con-
trol signal for homeostasis. QCO and Qb represent the time-
dependent cardiac output and the baseline cardiac output, 
respectively. As the blood flow rates that drive drug and 
lipid distribution in the PBPK model scale with cardiac out-
put—and drug and lipid distribution, in turn, alter cardiac 
output—we must solve the PK and PD equations as a single, 
fully coupled, system of equations.

2.1.2 � System‑Specific Pharmacokinetic Parameters

We developed the original PBPK model for humans [28] 
and subsequently adapted the model to rats [7, 8]. For this 
study, we assigned system-specific physiological parameters 
to be characteristic of a male Sprague-Dawley rat [30]. For 
our virtual population, we then scaled organ volumes and 
baseline blood-flow rates according to body weight, which 
we represented as log-normally distributed with mean of 
350 g and standard deviation of 35 g (median 350 g, 95% 
confidence interval [CI] 290–420).

2.1.3 � Plasma‑Tissue Partitioning and Plasma Protein 
Binding

We estimated plasma-tissue and plasma-red blood cell parti-
tion coefficients for bupivacaine using the mechanistic model 
of Rodgers et al. [31]. Our PBPK model represents plasma 
protein binding as a concentration-dependent phenomenon 
by adopting the two-component binding capacity and affinity 
parameters reported by Coyle et al. for bupivacaine bind-
ing in rat plasma [32]. Compared with the human model 
[28], we determined the fraction of bupivacaine bound to rat 
plasma proteins to be less concentration sensitive—varying 
from 94 to 97% for plasma concentrations up to 2 mM.

2.1.4 � Hepatic Metabolism

We adopted a well-stirred model for bupivacaine hepatic 
elimination and estimated an intrinsic unbound clear-
ance (Clu,int) of 3.9 mL/s from the liver blood flowrate and 
the hepatic extraction ratio of 0.2 reported by Dennhardt 
et al. [33]). As with all other organs in the model, we have 
assumed the uptake of bupivacaine within the liver to be per-
fusion-limited, and we have treated the unbound concentra-
tion in plasma as indicative of the unbound concentration in 
extracellular water. Taking Clu,int to be representative of met-
abolic enzyme kinetics in the limit of low drug concentration 
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(i.e., Clu,int = Vm/Km), we estimated a maximum metabolic 
rate of 0.0737 μmol/s based on the saturation constant of Km 
= 25.4 μM observed for rat liver hepatocytes in vitro [34]. 
We then captured hepatic metabolism of bupivacaine in our 
model using a saturable Michaelis–Menten formulation.

2.1.5 � Lipid Pharmacokinetics

We treated plasma triglyceride volume (Vlip,plasma), as an 
explicit state variable in the model. Likewise, the triglyc-
eride content of the administered intravenous fluid was an 
explicit parameter. Thus, we modeled the specific ILE for-
mulation (concentration) of interest by setting the correct 
volume fraction for triglycerides in the administered fluid. 
The PBPK model then tracked total fluid volume and triglyc-
eride volume using individual material balance equations.

2.2 � Experimental Data

The data we used for this analysis originated in a study 
performed by Fettiplace et al. [1] investigating the effect 
of lipid infusion on cardiac function in healthy rats. The 
authors continuously monitored cardiac output while each 
animal received an intravenous dose of a 20% lipid emul-
sion at a rate of 9 mL/kg/min for 1 min. Their data spans 
a period of 9 min following the initiation of ILE infu-
sion (Fig. 1A). Since only lipid was administered, the PD 
parameters that we can potentially estimate from these 
datasets are those in Eqs. (1b) and (1c), as summarized 
in Table 1.

2.3 � Statistical Approach: Parameter Estimation 
and Model Selection

We used an ordinary least squares approach for param-
eter estimation [35–38]. Our goal was to estimate the 
parameter set (�) that minimizes the ordinary least squares 
(OLS) objective describing the difference between model-
predicted cardiac output ( f

(
ti, �

)
 ) and the observed cardiac 

output (yi) at each timepoint (ti) (Eq. 3).

We used ode15s in MATLAB to numerically integrate 
the differential equations in our model and used lsqnonlin 

(3)OLS(y, �) =

N∑

i=0

[
yi − f

(
ti, �

)]2
.
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in MATLAB to find parameter values that minimized the 
OLS objective. We calculated an initial estimate for the 
optimal parameter values by using the direct search global 
optimization algorithm [39], which avoids the likelihood 
of becoming trapped in a local minimum surrounding 
these initial estimates.

2.3.1 � Uncertainty Quantification and Subset Selection: 
Which Model Parameters Can Be Estimated For Each 
Individual Dataset?

We limited our individual-specific parameter estimation to 
those parameters from Table 1 that could be reliably esti-
mated from the available experimental data. Reliability, 
in this context, requires that the normalized standard error 
(NSE) associated with each parameter estimate be less than 
an appropriately defined threshold. To determine the NSEs, 
we estimated all six candidate parameters for each ILE 
response dataset. We then used the complex step method 
[40] to estimate model sensitivity for each parameter. From 
the sensitivities, we approximated parameter covariances 
and standard errors [41–43].

To avoid the pitfall of overfitting due to having too many 
parameters in the model, we selected a subset of candidate 
parameters and estimated the standard errors for estimates of 
each—assuming that parameters beyond the subset are held 

constant. NSEs were normalized by dividing by the respec-
tive parameter estimates. We then discriminated between 
high-confidence and low-confidence estimates by compar-
ing NSE to the value 1/1.96, a limit that ensures that the 
lower bound of a 95% confidence interval for the associated 
parameter will be positive. In our model, negative param-
eter values would not be physiologically sound. We repeated 
this process for every possible parameter subset (63 total) 
and selected the subset that yielded the greatest number 
of parameters with normalized standard errors below the 
acceptance threshold.

2.3.2 � Allowing Selected Parameters to Vary With Time

We approximated potential temporal variation in the selected 
parameters by treating them as piecewise, continuous func-
tions of time (i.e., linear splines) [44]. Each parameter was 
then no longer represented by a single value, but rather by 
m + 1 variables, each describing the value of the param-
eter at a particular transition point in time. The result was 
a time-dependent representation of the parameter value by 
m piecewise linear functions. We incorporated spline func-
tions of this type into our model for each parameter that 
was found to have high confidence by subset selection (see 
Sect. 2.3.1). Thus, we increased our total number of model 
parameters by pm (where p is the number of parameters in 

Fig. 1   A Aortic flow rate (nor-
malized relative to baseline) fol-
lowing a lipid infusion of 20% 
lipid emulsion at 9 mL/kg/min 
for 1 min. Data from Fettiplace 
et al. [1], representing seven 
different observations from 
N = 6 Sprague Dawley rats. B 
Normalized standard error asso-
ciated with estimating subsets 
of the model parameters. See 
Table 1 for list of parameters

Table 1   Candidate parameters 
for estimation in rat model of 
responses to lipid infusion

Parameter Description

Emax Maximum effect of lipid on cardiac function
EC50,lip Lipid concentration in plasma at which half of maximum effect is achieved
n Fitting parameter for Hill function describing lipid effect on cardiac function
Kvolume Coefficient for flow promoting effect of increased volume in bloodstream
α Tuning parameter for cardiac sensitivity to homeostasis control signal
kp Proportional control constant for homeostasis control signal
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the selected subset). To characterize the trade-off between 
model performance and model complexity, we investigated 
spline approximations with m = 1, m = 4, and m = 8 (i.e., 2, 
5, or 9 nodes). We selected these values so that the splines 
could be progressively nested each time m was increased, 
allowing us to perform the model comparison tests described 
in the following section.

2.3.3 � Selecting the Most Appropriate Model

Model selection aims to identify, from a pool of candidates, 
the model variant that provides the best fit to data while 
avoiding unnecessary complexity and overfitting. We used 
comparison tests to quantitatively assess whether increasing 
the number of model parameters by introducing additional 
spline nodes improved the model quality. One statistical 
metric for quantitatively comparing models is the Akaike 
Information Criterion (AIC) [35]. Models with lower AIC 
scores are considered more appropriate to describe the data 
in question. A drawback of relying solely upon AIC is that 
the difference between two scores does not directly trans-
late to a statement of statistical significance. We therefore 
supplemented our model selection procedure with model 
comparison nested restraint tests [45, 46]. This approach 
assumes that a model with fewer parameters can be recov-
ered from a model with more parameters simply by holding 
some of the parameters in the latter constant (i.e., the models 
are effectively ’nested’ within each other). With this fram-
ing, we can generate a test statistic to determine whether 
the model is significantly improved by estimating the nested 
parameters. We used these tests in conjunction with AIC 
scores to (1) determine which of the parameters identified 
by subset selection should be treated as time varying and (2) 
establish the number of splines sufficient to represent them.

2.4 � Simulating Large Virtual Populations

Having estimated parameter values for each individual data-
set, we defined population distributions of the associated 
PD characteristics and parameterized these according to 
our in vivo sample of N = 7. We then constructed a virtual 
population of rats (N = 10,000), each of whose physiologi-
cal characteristics were determined by random sampling 
from the parameter population distributions. Based on an 
observed skew in the distribution of our estimated param-
eter values, we elected to treat our PD response parameters 
as log-normally distributed across the subject population.

We employed this virtual population to assess outcomes 
during simulated ILE therapy following local anesthetic 
systemic toxicity. We modeled bupivacaine overdose as a 
10 mg/kg infusion administered at a constant rate for 20 
s. This is in keeping with the work of Fettiplace et al. [7, 
8], in which this dose allowed for cardiac depression with 

intervention-free spontaneous recovery. We then simulated 
treatment with an ILE infusion beginning 30 s after comple-
tion of the bupivacaine dose. To reflect lipid dosing that is 
known to successfully drive rapid reversal of toxicity [7], 
we simulated a treatment regimen consisting of 4 mL/kg of 
a 30% ILE formulation administered over 60 s. Our simula-
tions predicted the time-dependent cardiac output for each 
of the virtual rats. We then used these 10,000 realizations to 
assess the predicted therapeutic impact of ILE interventions 
across a broad population.

2.4.1 � Accounting for Variations in Sensitivity 
to Bupivacaine

Ideally, we would have also simulated a population distribu-
tion for the model parameters describing bupivacaine toxic-
ity (i.e., those in Eq. 1a). This was not possible with avail-
able experimental datasets, but prior work has demonstrated 
considerable inter-individual variability in bupivacaine sen-
sitivity. For example, Mauch et al. noted a 50% depression 
of mean arterial pressure requiring between 5 and 20 mg/kg 
doses in piglets [47]. To probe the potential implications of 
differences in bupivacaine sensitivity, we created an addi-
tional dimension of variability for our virtual population by 
introducing random variation in parameters EC50,bup and 
β. We sampled each parameter from a normal distribution 
with a mean equal to its respective population estimate and 
standard deviation equal to 10% of the mean. These distribu-
tion parameters yielded a virtual population in which 90% 
of individuals spontaneously recovered ≥ 30% of baseline 
cardiac output by t = 7 min—mimicking the experimental 
observation that a 10-mg/kg bolus of bupivacaine delivered 
to Sprague Dawley rats over 20 s causes cardiovascular tox-
icity that resolves spontaneously [7, 8].

2.4.2 � Determining Survival Outcomes for Elevated Doses 
of Bupivacaine

Next, we extrapolated the model to the setting of elevated 
toxicity by simulating bupivacaine doses of 15, 20, 25, and 
30 mg/kg. These are doses that are known to yield cardiac 
arrest that requires resuscitation (fluid intervention with or 
without CPR). Along with the 10 mg/kg virtual population, 
considering outcomes in the absence of a fluid intervention 
or with treatments of saline, 10% ILE, 20% ILE, and 30% 
ILE, this amounts to 250,000 virtual rats.

To determine a mortality fraction corresponding to 
each bupivacaine dose, we assigned the predicted PBPK-
PD dynamics to death or survival endpoints by perform-
ing unsupervised clustering of the simulated data using a 
Gaussian mixture model [48, 49]. We used the following 
17 features for classification: area under the curve and area 



310	 M. McDaniel et al.

under the first moment of the curve for cardiac output; area 
under the curve and area under the first moment of the curve 
for bupivacaine concentration in heart, brain, liver, adipose, 
and muscle tissues; dynamic time warping distance between 
curves for cardiac output in each individual and curves rep-
resenting the 2.5% and 97.5% quantiles of cardiac output in 
the 10-mg/kg dataset; plasma bupivacaine distribution half-
life; area under the curve and area under the first moment of 
the curve for the lipid concentration in arterial plasma. Prior 
to fitting the mixture model, we transformed these features 
by min–max scaling and principal component analysis. We 
identified the cluster corresponding to fatal overdose as the 
one whose population increased monotonically with increas-
ing bupivacaine dosage and decreased monotonically with 
fluid interventions of increasing lipid concentration.

2.4.3 � Causal Analysis of PK Outcomes

To clarify the possible causal relationship between bupiv-
acaine PK, plasma lipid PK, and survival, we examined our 
data through the lens of candidate structural causal models 
[50, 51]. To discriminate between plausible and implausible 
causal models, we first generated network graphs to visual-
ize the feature correlations present in our data when con-
trolling for treatment (Tx) and dose. We then assessed the 
changes that occurred when we controlled for survival (the 
outcome of interest) in data already stratified by bupivacaine 
dose and treatment (exposures of interest). By examining the 
conditional independencies suggested by candidate struc-
tural causal models (using DAGitty [52]), we determined 
which PK phenomena appear to drive survival outcomes. We 
also determined the average causal effect (ACE; Eq. 4) of the 
emulsion’s scavenging and direct cardiotonic mechanisms 
on probability of survival. For that purpose, we considered 
15 populations of virtual rats, with 10,000 members each, 
receiving bupivacaine doses of 10, 15, 20, 25, or 30 mg/kg, 
followed by a fluid infusion acting by a volume effect alone 
or one that acts by volume coupled with scavenging or direct 
cardiotonic mechanisms. The lipid concentration assigned 
to the latter two cases was 30%.

3 � Results

3.1 � Determining Which Model Parameters 
to Estimate at the Individual Level

In Fig. 1B, we present the results of parameter subset selec-
tion for one ILE response dataset. Here, and for all seven 
datasets, the consistent consensus was that two model 

(4)ACE =
∑

doses

P(survival|do(Tx), bupivacaine dose) − P
(
survival|do

(
Txref

)
, bupivacaine dose

)
.

parameters may be estimated at the individual level: Emax 
and one of the control parameters (either α or kp). Since 
analysis of the off-diagonal entries of the covariance matri-
ces demonstrated α and kp to be perfectly correlated, the 
choice between the two was inconsequential, and we arbi-
trarily selected kp. This result is unsurprising, as although kp 
and α have distinct physiological interpretations (governing 
the accumulation of a control signal vs sensitivity of car-
diac output to that signal), mathematically, they appear as 
an unidentifiable product. We incorporated spline represen-
tations of Emax and kp into the PKPD model for estimation 
as temporally varying parameters, and we set the remaining 
parameters in Table 1 to their mean population estimates 
and held them fixed. Hereafter, we refer to our candidate 
models as Constant, mEmax, mkp, and mEmax/kp, where m rep-
resents the number of splines used to describe time-varying 
parameters (either 1, 4, or 8) and Emax, kp, and Emax/kp denote 
which parameters we selected for time variance (as opposed 
to treating them as constants).

3.2 � Selecting Time‑Varying Parameters and Most 
Appropriate Model

Representing selected parameters as time-varying 
improved the ability of the model to capture the multi-
ple maxima observed in the experimental data. We also 
observed improved tracking of the initial peak in cardiac 
output (Fig. 2A), with the greatest improvement in fit 
to the data observed when we increased the number of 
splines from m = 4 to m = 8. AIC scores likewise indi-
cated an improvement in model quality when the model 
used eight splines (Fig. 2B), and we observed the lowest 
AIC score for the model in which Emax was represented as 
time-varying, while kp was held constant. This held true 
for all seven datasets and across all nested model com-
parisons (Fig. 2D). Thus, we selected the PD model with 
Emax represented as time-varying via eight splines. While 
we considered models with more than eight splines, there 
was no additional benefit from adding more nodes, as 

indicated by increased AIC scores and p values > 0.05 in 
model comparison tests.

The time-dependent value of Emax exhibits a con-
sistent trend across all seven datasets, declining over 
time (Fig. 2C). In all cases but one, Emax takes its peak 
value within the first 5 min after lipid administration. 
We observed the greatest variability across the group at 
early times (t = 0 min: μ = 9.4, σ = 9.0, γ = 1.6), with the 
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this virtual population, we then simulated bupivacaine 
systemic toxicity and recovery with or without fluid inter-
vention. We validated the bupivacaine PBPK model by 
comparing simulation outcomes to the experimental con-
centration-time data reported by Dennhardt et al. [33] and 
Fettiplace et al. [8], who report whole blood and cardiac 
tissue bupivacaine concentrations, respectively (Fig. S1).

3.3.1 � For a Low Dose of Bupivacaine, Lipid Bolus Reduces 
Recovery Time, But Does Little to Change Variability 
Across the Population

In the absence of a simulated fluid intervention, rats exhib-
iting rapid recovery returned to ≥ 30% of baseline cardiac 
output by ~ 3 min, while those that recovered more slowly 
required ~ 7 min to do so (Fig. 3A). A 30% lipid intervention 

Fig. 2   Model selection. A Sample fits for the constant value and 
time-dependent parameter (m  =  8 splines) models. B AIC scores 
assessing relative model quality as a function of the number of nodes 
used for spline representation of time-dependent parameters. Figure 
legend indicates which parameters are time dependent in the evalu-
ated model. C Distribution of time-dependent Emax values for the 
N = 7 datasets at each of the estimated nodes. D Test statistic for the 
hypothesis that the reference model indicated in the table is supe-
rior to the nested model used for comparison testing. Bars indicate 
the number of individual datasets for which the reference model is 

an improvement over the nested model. Markers show the mean p 
value for the model comparison tests across all seven datasets. Where 
p  >  0.05, the more complex reference model is not taken to be an 
improvement over the simpler, nested model, despite a reduced cost 
function. In the model labels, constant implies no temporal varia-
tion, m represents the number of splines used to describe time-var-
ying parameters, and Emax, kp, and Emax/kp denote which parameters 
are time-varying. AIC Akaike information criterion, Emax maximum 
effect of lipid on cardiac function, kp proportional control constant for 
homeostasis, OLS ordinary least squares cost

distribution of values becoming symmetric and narrower 
with time (at t = 8 min: μ = 1.5, σ = 1.1, γ = −0.035). 
For time-independent parameter kp, the population dis-
tribution exhibited positive skew, with μ = 1.1, σ = 1.9, 
γ = 1.3.

3.3 � Predictions for Virtual Populations

We generated physiological phenotypes for a virtual pop-
ulation of 10,000 rats by randomly sampling parameter 
values from lognormal functions fitted to the distributions 
indicated by the seven individualized models (i.e., one log-
normal distribution for each of the nine nodes of Emax and 
one distribution for the time-invariant parameter kp). We 
sampled bupivacaine sensitivity parameters from a normal 
distribution, as described in the Methods section. Using 
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drove nearly the whole population to recover in < 4 min 
(Fig. 3D). As expected, these improved outcomes were asso-
ciated with a reduction in bupivacaine content of cardiac tis-
sue (Fig. 3B, E). We found the half-life describing washout 
of bupivacaine from cardiac tissue exhibited a lower median 
value, but similar range of variability, following lipid inter-
vention (untreated half-life of 0.86 min, 95% CI 0.75–1.0; 
lipid treated half-life of 0.55 min, 95% CI 0.36–0.67). This 
phenomenon was also evident in the case of brain tissue 
(Fig. 3C, F), where a prolonged retention of anesthetic was 
curtailed by lipid. Unlike other rapidly perfused organs, the 
liver exhibits an increase in bupivacaine following lipid infu-
sion (Fig. S3A & D, see electronic supplementary material 
[ESM]). This is because the bulk of the liver’s blood input 
is outflow from other rapidly perfused organs. When lipid 
uptake of bupivacaine augments removal of the anesthetic 
from the spleen, gut, and pancreas, the liver experiences an 
increased bupivacaine inflow. Lipid-carried bupivacaine also 
increases outflow of bupivacaine from the liver. However, 
the net effect is such that the bupivacaine concentration in 
the liver initially increases. In agreement with prior work 
[8], ILE initially induces an increase in muscle bupivacaine 
as well (Fig. S3C & F, see ESM). This effect was transient, 
and the PBPK model predicts accelerated redistribution ~ 1 
min after lipid administration.

3.3.2 � Based on Plasma PK, Drug Scavenging 
and Cardiotonic Mechanisms Play Partially 
Redundant Roles in Hastening Bupivacaine 
Redistribution

The plasma distribution half-life characterizes the initial 
rapid fall-off of bupivacaine in the blood plasma as the drug 
is delivered from the site of administration to the organs of 
the body. For total bupivacaine in arterial plasma (bound 
to blood proteins, associated with lipid, and unbound) and 
bupivacaine in its unbound state, we quantified distribution 
half-lives (τ½,D) as a function of posited mechanisms of ILE 
therapeutic action (Fig. 3G; Table S3, see ESM). We consid-
ered (1) the null case of no lipid intervention, (2) treatment 
with 30% ILE, (3) a hypothetical lipid-like infusion with 
no capability for bupivacaine sequestration (no scavenging), 
and (4) another hypothetical infusion with only a sequestra-
tion capability (i.e., no direct inotropic or metabolic effect). 
As the shape of the concentration–time curves varied from 
apparent two-component to three-component decays, or 
even exhibited ‘bumps’ that deviated from a smooth, con-
vex behavior (Fig. S2), we chose to quantify half-lives by 
performing linear regressions on ln(C) versus t for a moving 
window of 10 s. We identified the smallest time constant 

(most rapid decay constant) as the distribution half-life for 
each virtual rat.

Simulated lipid therapy reduced the magnitude and 
range of τ½,D for total plasma bupivacaine by 36% and 82%, 
respectively. Scavenging or cardiotonic effects alone reduced 
τ½,D by 9% and 27%, respectively. The variation across the 
population was reduced by 53% and 60%, respectively. The 
impact on unbound bupivacaine was similar or greater, with 
median τ½,D reduced by 50%, 40%, and 50%, respectively 
(range reduced by 81%, 66%, and 77%, respectively). As 
the unbound concentration is the one most relevant to tis-
sue exposure, these results suggest a partial redundancy of 
the scavenging and cardiotonic mechanisms as promoters of 
bupivacaine redistribution. As the pharmacodynamic spline 
parameters in our model do not describe responses beyond a 
9-min window, we could not assess the potential impact of 
fluid interventions on systemic clearance.

3.3.3 � Out‑of‑Sample Prediction of Mortality Fractions

In agreement with experimental observations, our simu-
lations predicted that almost all virtual rats (98%) would 
survive the lowest anesthetic dose—with or without inter-
vention (Fig. 3H). All rats were predicted to succumb to the 
30-mg/kg dose, unless a fluid intervention was simulated. 
Predicted median lethal doses (LD50) were (median [95% 
CI]) 15.5 [15.3–15.8], 17.7 [17.2–18.1], 20.2 [20.0–20.4], 
22.9 [22.5–23.4], and 25.7 [25.5–26.0] mg/kg, respectively, 
for the case of no fluid intervention (null), and equal-volume 
infusions of a control fluid infusion without lipid content, 
10% ILE, 20% ILE, and 30% ILE. By inspecting feature 
distributions for the low-dose case of 10 mg/kg, we observed 
similar findings to those reported by Fettiplace et al. [8], viz 
ILE appearing to promote bupivacaine accumulation in liver 
while reducing cardiac bupivacaine exposure (Fig. S4A). 
Unlike in the prior study, our virtual population predicted a 
small reduction in muscle bupivacaine. Having distinguished 
between survivors and non-survivors in the high-dose vir-
tual populations, we were able to assess whether these PK 
phenomena are associated with improved survival outcomes. 
Segregating our data by bupivacaine dose, we observed a 
pronounced association of survival with increased liver 
exposure to bupivacaine, with survivors exhibiting liver area 
under the concentration curve (AUC) ~ 70% greater than 
non-survivors (Fig. 4). In contrast, cardiac AUC was ~ 70% 
smaller for survivors than for non-survivors. Muscle AUC 
in survivors was ~ 10% greater. These findings were very 
similar for rats who were not subject to ILE intervention 
(Tx = null, saline; Fig. S4B), suggesting that these patterns 
are not unique to lipid intervention.
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Fig. 3   A–F Predicted time courses for cardiac output and bupivacaine 
content of vital organs. Each plot represents outcomes for a virtual 
population of 10,000 rats. Top row: spontaneous recovery (no fluid 
intervention). Bottom row: recovery following treatment with a 60 s 
bolus of 30% ILE at 4 mL/kg. A, D Recovery of cardiac output. B, 
E Bupivacaine in the heart. C, F Bupivacaine in the brain. Dark 
regions: 95% intervals. Light regions: 50% intervals. Solid black line: 
median. Vertical dashed lines indicate beginning and end of lipid 
administration. G Distribution half-lives quantified across the virtual 

population. Figure displays population distributions pairwise for total 
plasma (left-hand, darker violin plot) and unbound bupivacaine in 
plasma (right-hand, lighter violin plot). H Mortality curves for simu-
lated resuscitation scenarios following bupivacaine bolus doses of 10, 
15, 20 and 25 mg/kg. Each marker summarizes the predicted mortal-
ity outcomes for a virtual population of 10,000 rats. Lines indicate 
the sigmoid dose–response curves used to estimate the median lethal 
dose. ILE intravenous lipid emulsion
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3.3.4 � Causal Effect Analysis Clarifies Complex Dependence 
of Survival on Bupivacaine and Lipid PK

Given the partial mechanism redundancy suggested by the 
plasma bupivacaine PK analysis, we asked whether scaveng-
ing of the anesthetic is a significant contributor to survival. 
In Table S4, we report survival outcomes for simulated fluid 
infusions of varying lipid concentrations and mechanisms of 
action (see ESM). Treating the choice of therapeutic mecha-
nism as an intervention [51], we determined the ACE of 

introducing a scavenging mechanism to be 16% and that of 
introducing a direct cardiotonic mechanism to be negligi-
ble. When combined, however, the two mechanisms confer 
a synergistic advantage, such that the 30% ILE increases 
the number of surviving rats by 39% when compared with 
an untreated bupivacaine overdose. In Table 2, we present 
further analysis of resuscitation outcomes as a function of 
emulsion concentration.

The ACE analysis reinforces that lipid treatment has a 
positive effect on resuscitation outcomes through multiple 

Fig. 4   AUC histograms comparing survivors and non-survivors of 
bupivacaine overdose. Distributions represent data aggregated over 
10% ILE, 20% ILE, and 30% ILE treatments. Survivors exhibit lower 
bupivacaine exposure in cardiac tissue and higher exposure in liver 

and muscle tissues. Kolmogorov-Smirnov tests suggest that all pairs 
of histograms exhibit statistically significant differences (p < 0.001). 
Orange: survivors, blue: non-survivors. AUC​ area under the concen-
tration curve, ILE intravenous lipid emulsion

Table 2   Average causal effect 
of fluid intervention based on 
survival outcomes

ACE average causal effect, ILE intravenous lipid emulsion, Tx treatment, w/o without

Reference Tx Alternative Tx ACE (%)

Null Saline (volume effect) 8
Saline 30% ILE w/o cardiotonic effect (volume + scavenging effects) 16
Saline 30% ILE w/o scavenging (volume + cardiotonic effects) 1
Saline 30% ILE (volume + cardiotonic + scavenging) 31
Null 10% ILE 19
10% ILE 20% ILE 11
20% ILE 30% ILE 10
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synergistic mechanisms. Further, increasing the lipid con-
centration increases that effect. However, when we inspected 
the relationship between survival probability (posterior 
probability of the virtual rat belonging to the survival clus-
ter) and arterial lipid AUC, we observed a strong negative 
association (ρ = − 0.76; p < 0.001). This was true for all 
groups when stratified by bupivacaine dose and choice of 
treatment, so it is not a consequence of dose or treatment 
acting as confounders. Whereas no correlation appeared 
between heart and muscle bupivacaine AUC when survi-
vors and non-survivors were aggregated (Fig. 5A), control-
ling for survival produced a moderate correlation between 
these PK features (ρ = 0.45; Fig. 5B). In contrast, control-
ling for survival substantially diminished the association that 
had existed between cardiac and liver AUC (reduced from 
ρ = − 0.54 to ρ = − 0.13). On this basis, we assigned heart 
and muscle AUC to be ancestors of survival that intersect via 
a collider. Conversely, we posited that liver and heart AUC 
likely interact with survival through a chain or fork path. 
Given the other associations evident in the network graphs, 
we proposed the structural causal model in Fig. 5C. By 
examining the testable implications (conditional independ-
encies) suggested by analysis of this model using DAGitty 
[52] (Table S5, see ESM), we were able to confirm that the 
model is consistent with our virtual population data.

4 � Discussion

4.1 � Quality of Mortality Predictions

Using the exemplar of bupivacaine systemic toxicity and a 
PBPK-PD model in rats, we have demonstrated how limited 
physiological data can inform a model that predicts popula-
tion outcomes of lipid therapy. The mortality fractions we 
have reported herein are computational predictions, and 
these have not been directly validated by experiment. How-
ever, they agree well with the findings of Weinberg et al. [2]. 
In their 1998 publication, they reported mortality data for 
N = 6 rats dosed with bupivacaine at 10–22.5 mg/kg over 
10 s, prior to attempted resuscitation with 30% Intralipid™. 
They observed 0% mortality at  a dose of 15 mg/kg when 
treated with Intralipid™ as a 30-s, 7.5-mL/kg bolus followed 
by an infusion of 3 mL/kg/min. Despite lipid intervention, 
100% mortality was observed for the maximum dose of 
bupivacaine 22.5 mg/kg. Their small sample yielded an 
estimated LD50 of 18.5 mg/kg for resuscitation with 30% 
intralipid. Our simulations address a longer duration for 
bupivacaine administration (20 s). Thus, our estimated LD50 
of 25.7 mg/kg is credible. Moreover, our simulations predict 
that treatment with 30% ILE increases bupivacaine LD50 
by 46% when compared with a simulated control fluid. The 
corresponding increase reported by Weinberg et al. was 48%. 
It is important to note that no data from the prior study was 

Fig. 5   Feature correlations and proposed structural causal model for 
lipid resuscitation in virtual rats. Analysis includes bupivacaine doses 
of 15–30 mg/kg and all ILE treatment groups (10%, 20%, and 30%). 
A Graph depicting strength and direction of correlation between 
selected PK features. Nodes are the AUC features of interest and 
the probability of survival (i.e., likelihood of a rat being assigned to 
the survival cluster). Edges represent the existence of a correlation 
with p  <  0.001 and ρ  >  0.15. Line thickness indicates the strength 
of the correlation, and the line color indicates whether the correla-
tion is positive (blue) or negative (purple). B The correlation graph 

that results from controlling for survival. C A plausible structural 
model indicating relationships between dose and treatment expo-
sures, PK features, and population survival outcomes. Green arrows 
indicate causal paths. Blue nodes indicate ancestors of the outcome, 
and gray nodes are other variables that are not ancestors of the out-
come. Diagram was produced and analyzed using DAGitty [52]. AUC​ 
area under the concentration curve, ILE intravenous lipid emulsion, 
PBPK-PD model physiologically based pharmacokinetic–pharmaco-
dynamic model, PK pharmacokinetic
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used to inform our virtual population model. Our results 
represent a successful out-of-sample prediction of complex, 
dynamic physiological outcomes.

4.2 � Causal Contributions of Pharmacokinetic 
and Pharmacodynamic Effects to Survival

Our prior work to uncover the mechanisms of lipid resuscita-
tion considered bupivacaine doses low enough to produce 
transient cardiotoxicity from which rats could recover with-
out intervention [7, 8]. Herein, we have taken that rat PBPK-
PD model and extended it to the more pertinent scenario of 
potentially fatal bupivacaine overdose. We found that the 
prior findings held true in the distinct PK features identi-
fied for survival and fatal endpoints—namely, that survival 
after a bupivacaine overdose is associated with bupivacaine 
shifting away from the heart and into liver and muscle tis-
sues. However, we observed this shift in all dose-treatment 
groups. It was not unique to ILE therapy and thus not tied 
specifically to a scavenging or cardiotonic mechanism of 
action. In fact, although the chance of survival was causally 
improved by selecting a lipid intervention of higher concen-
tration, within a particular dose/Tx group, survival prob-
ability exhibited a negative correlation with plasma lipid 
AUC. However, the scavenging mechanism, which is driven 
by lipid droplets, was causally associated with improved 
survival outcomes. Plasma PK indicated some redun-
dancy between scavenging and cardiotonic mechanisms, 
but a causal effect analysis comparing different therapeutic 
mechanisms confirmed that these effects are truly synergis-
tic. Indeed, the therapeutic value of the cardiotonic effect 
was rendered negligible in the absence of scavenging. The 
inotropic impact of a fluid volume alone did promote bupi-
vacaine washout from cardiac tissue, but—in the absence 
of scavenging—the impact appeared insufficient to relieve 
bupivacaine inhibition of the lipid cardiotonic effect.

By analyzing the PBPK-PD population data through 
the lens of a structural causal model, we clarified the rel-
evance of bupivacaine and lipid PK in determining survival 
outcomes. Despite the modest shift in muscle AUC that 
appeared to distinguish survival and fatal endpoints fol-
lowing bupivacaine overdose, the causal model suggested 
that muscle accumulation of bupivacaine directly controls 
survival outcomes. Unsurprisingly, the same was true for 
cardiac accumulation of bupivacaine. The causal model 
highlighted cardiac output as a confounder of the interplay 
between survival and lipid accumulation in arterial plasma, 
with recovery of blood flow promoting survival but reduc-
ing arterial plasma lipid—presumably by driving its distri-
bution throughout the vasculature and thereby increasing 
opportunities for lipase-mediated clearance. The model 
further indicated that, while liver AUC is a feature that 
correlates strongly with survival (ρ = 0.7; p < 0.001), it is 

a consequence rather than a direct effector of survival out-
comes. This would seem to agree with prior experimental 
observations that augmented hepatic clearance of bupiv-
acaine via the liver appears not to be required for hastened 
recovery [8].

4.3 � Extension of This Modeling Framework to Other 
Cardiotoxins

Extension of this modeling approach to explore lipid ther-
apy for other cardiotoxins, such as those associated with or 
implicated in enteral overdoses, should not require extensive 
experimental data. Our model is entirely mechanistic, with 
only a subset of the PD parameters needing to be obtained 
by fitting to in vivo data. We previously determined PD 
parameters for bupivacaine using data from an isolated heart 
study [53]. Others have quantified concentration-dependent 
lipid and protein binding of bupivacaine in vitro [3, 32], 
and we predicted plasma-tissue partitioning as a function 
of tissue composition and drug physicochemical properties 
using the mechanistic model of Rodgers et al. [31]. We then 
integrated the resulting mathematical relationships into a 
whole-body PBPK model, along with the in vivo data for 
lipid PD, to make population predictions about the impact 
of ILE therapy. Herein, bupivacaine functions as a canonical 
cardiotoxin for which prior data exist to inform this proof-of-
concept modeling effort. If analogous in vitro, ex vivo, and 
limited PD data were available for other drugs of interest, 
one could extrapolate the modeling framework beyond the 
case of bupivacaine toxicity.

Given that key PD parameters will not be available for 
humans, we must always exercise care in extrapolating 
human dosage schedules from non-human models. How-
ever, incorporation of parameters reflecting species differ-
ences might allow investigators to explore how particular 
physiological phenomena could contribute to species dif-
ferences in therapeutic effect. For example, incorporating 
human plasma protein binding parameters within our vir-
tual rat model led to poor survival outcomes, even at low 
bupivacaine dose. The low capacity, high affinity binding 
protein in rat serum (α-1-acid glycoprotein) exhibits bupi-
vacaine binding capacity 75% lower than that of human 
serum. The high capacity, low affinity binding protein in 
rat serum (serum albumin) exhibits binding capacity 79% 
greater than that of human serum [54]. Although binding 
affinities are similar between the two species, these differ-
ences in binding capacity cause human plasma to exhibit 
strongly concentration-dependent binding [28, 55]. The 
consequence is a fraction unbound in plasma that drops 
considerably with increased bupivacaine concentration, 
causing increased cardiac exposure to bupivacaine. While 
lipid still confers substantial benefit in virtual rats with 
human-like plasma (ACE = 40%), the window of efficacy 
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narrows, with < 50% of the virtual population surviv-
ing a bupivacaine dose of > 15 mg/kg despite 30% ILE 
intervention.

4.4 � Limitations

Our study has certain clear limitations, a key one being 
the fact that we have estimated parameter distributions 
from a sample of N = 7. We have also assumed that the 
range of PD responses observed in this sample can be 
extrapolated to rats with a broader range of body weights. 
For these reasons, the estimated parameter distributions 
may not be representative. Furthermore, our parameter 
subset selection procedure indicated that the experimental 
datasets did not offer sufficient information to estimate 
all six PD parameters with reasonable confidence. Of the 
three parameters we did not estimate (excluding α, which 
is perfectly correlated with kp), two contribute to the Hill 
equation for lipid-enhanced inotropy (EC50,lip and n), and 
the third describes the flow-promoting effect of increas-
ing the fluid volume in the bloodstream (Kvolume). In ret-
rospect, it is not surprising that we could not estimate 
Kvolume. Without data corresponding to a control infusion, 
we could not isolate the volume effect from the additional 
positive inotropic effect of the ILE. Indeed, the time-
dependent behavior attributed to Emax may, in fact, be 
more properly associated with the volume effect. Alterna-
tively, the time dependence of Emax may reflect a reverse 
use-dependence phenomenon, whereby the heart is more 
responsive to lipid when cardiac function is most compro-
mised. Teasing apart the two inotropic mechanisms would 
require physiological data for a control fluid. Although 
we did not have access to the relevant data, the study 
performed by Fettiplace et al. [1] did report the outcomes 
of a control saline infusion. Including these data would 
likely permit estimation of Kvolume and its population dis-
tribution. Likewise, estimation of n and EC50 would be 
feasible if our dataset included multiple trials of the fluid 
infusion, with varied concentrations of lipid. We could 
then refine the model by revisiting the parameter estima-
tion and accompanying statistical tests with the inclusion 
of the new data.

Fortunately, these limitations did not prevent us from 
achieving good fits via estimation of kp and Emax. The flex-
ibility conferred by using time-varying parameters is appar-
ent, as constant parameter values allowed the model to fit 
relatively smooth responses with a single peak, but irregular 
dynamics could not be captured. With the inclusion of eight 
splines for Emax, the model captured general trends without 
overfitting the noisy fluctuations present in the data. As kp is 
already involved in a time-varying equation, it is reasonable 

that little appears to be gained by describing its value as 
anything other than time-independent.

5 � Conclusion

Using a PBPK model, we have characterized variable car-
diac responses to lipid infusions in rats and used that infor-
mation to develop a virtual population model of lipid resus-
citation. Despite being informed by a very limited data set, 
this mechanistic model with relatively few tuning parameters 
plausibly predicted mortality outcomes across a range of 
bupivacaine doses. By acquiring similar data for other drugs 
of interest, this modeling approach could support explora-
tion of lipid interventions without the need to involve large 
numbers of animals. Once validated, a virtual population 
model could be used to test alternative therapeutic regimens 
and develop approaches that achieve positive outcomes over 
a broad fraction of the population. This would be particu-
larly helpful in determining how ILE administration might 
be altered to address oral overdoses, as heuristic extension of 
the guidelines for IV overdose has the potential to do harm 
rather than good [56]. The ability to build virtual popula-
tions from limited in vivo datasets would also make it more 
feasible to explore lipid interventions in more costly large 
animal models, where heart function more closely approxi-
mates human physiology.
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