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ABSTRACT

Objective: Rheumatic heart disease (RHD) affects an estimated 39 million people worldwide and is the most

common acquired heart disease in children and young adults. Echocardiograms are the gold standard for

diagnosis of RHD, but there is a shortage of skilled experts to allow widespread screenings for early detection

and prevention of the disease progress. We propose an automated RHD diagnosis system that can help bridge

this gap.

Materials and Methods: Experiments were conducted on a dataset with 11 646 echocardiography videos from

912 exams, obtained during screenings in underdeveloped areas of Brazil and Uganda. We address the

challenges of RHD identification with a 3D convolutional neural network (C3D), comparing its performance with

a 2D convolutional neural network (VGG16) that is commonly used in the echocardiogram literature. We also

propose a supervised aggregation technique to combine video predictions into a single exam diagnosis.

Results: The proposed approach obtained an accuracy of 72.77% for exam diagnosis. The results for the C3D

were significantly better than the ones obtained by the VGG16 network for videos, showing the importance of

considering the temporal information during the diagnostic. The proposed aggregation model showed signifi-

cantly better accuracy than the majority voting strategy and also appears to be capable of capturing underlying

biases in the neural network output distribution, balancing them for a more correct diagnosis.

Conclusion: Automatic diagnosis of echo-detected RHD is feasible and, with further research, has the potential

to reduce the workload of experts, enabling the implementation of more widespread screening programs

worldwide.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of mortality

worldwide, with an estimated number of deaths of 17.8 million indi-

viduals per year and a 21.1% increase over the last 10 years.1 Even

though CVDs are considered an expanding threat to global health,

socioeconomic, racial, and ethnic differences still play a crucial role

in access to cardiovascular care.2,3 Rheumatic heart disease

(RHD)—damaged heart valves due to recurrent acute rheumatic fe-

ver (ARF)—affects an estimated 39 million people worldwide4 and

is the most common acquired heart disease in children and young

adults.5,6 Even though RHD ranks as a leading cause of death and

disability in low-income and middle-income countries, it can be

treated if detected in its early stages.7 Secondary prophylaxis in the

form of regular penicillin injections can be initiated to prevent new

episodes of ARF, avoiding further valve damage and progression of

the disease. In 2013, the Brazilian Public Health System reported

5169 hospitalizations linked to ARF and 8841 linked to chronic

RHD, at a cost of 33 million USD, mostly related to cardiovascular

surgeries.8

Thanks to recent technological advances, echocardiography has

become more cost-effective and widely available.9 Echocardiogra-

phy is crucial for diagnosing a range of heart conditions9 and reduc-

ing CVD-related deaths.9–12 In particular, echocardiograms have

emerged as an effective screening tool for early detection of latent

RHD, identifying 10 times more subclinical disease cases when com-

pared with auscultation.13,14 Following guidelines published by the

World Heart Federation (WHF) in 2012,10 a skilled cardiologist can

leverage findings related to valve regurgitation and stenosis on the

mitral valve (MV) and aortic valve (AV) to issue a diagnosis for

RHD.

Three-quarters of children worldwide live in regions with a high

prevalence of RHD.15 This age group is 1 of the most affected and,

at the same time, the least likely to manifest sufficient echocardio-

graphic features to meet a more certain diagnosis of the disease. Be-

cause of that, the WHF Guidelines—based on the severity and

number of functional and morphological findings—delineate the

Borderline RHD category for subclinical cases, with Definite RHD

being the more severe form. The criteria for subclinical diagnosis

applies only to patients aged � 20 years, considering that this group

benefits the most from early detection and secondary prevention of

the disease. There are, however, individuals in that age range who

suffer from significant progressions of the disease. Figure 1 depicts

the process of diagnosing an 18-year old boy with Definite RHD.

The different views observed are obtained by varying the position of

the transducer in the patient’s chest.

Applications of artificial neural networks to conventional 2-di-

mensional echocardiographic data date back to 1990.16 In recent

years the number of publications in the field has risen considerably

due to the popularity of deep learning (DL).17 Many medical fields,

such as oncology and pneumology, have seen successful applications

of DL methods for disease detection.18–21 Concerning conventional

echocardiograms, the DL literature mainly comprises studies on

echocardiogram viewpoint (view) identification,22–25 heart chamber

segmentation25,26 and classification of heart disease24,25,27,28 and

primarily applied for structural rather than functional abnormali-

ties. None of the disease-related works directly address valve abnor-

malities, let alone RHD, and virtually all of the research works use a

frame by frame (2D) approach to process images, discarding the

temporal relation encoded in video clips. Echocardiography identifi-

cation of RHD, especially the subtle findings of subclinical disease,

is highly dependent on the behavior of cardiac structures across

sequences of frames in a video, and, therefore, it is unlikely that

such an atemporal approach would achieve the best performance.

In this article, we address the challenges of RHD identification

with a 3D convolutional neural network. Our model receives echo-

cardiogram videos as input data and takes into account spatio-

temporal information to improve the accuracy of predictions. In

echocardiogram exams, multiple videos with different viewpoints of

the heart are captured. To take advantage of these multiple videos

for an improved exam classification, we also propose a supervised

aggregation technique built on top of a decision tree-based meta-

classifier. Our aggregation component tries to capture underlying

biases in the neural network output distribution and balance them

for a more correct diagnosis.

Although the proposed methodology may be applied to echocar-

diographic exams obtained by a range of devices with different fea-

tures, resolutions, and file formats, the videos we work with come

from handheld devices, applied in screening programs focused on

the early detection of subclinical disease and prevention of RHD

progression in underdeveloped areas of Brazil and Uganda. While

the functionality of handheld devices is limited by resolution, poorer

signal-to-noise ratio, and absence of spectral Doppler, their afford-

able price, practicality, ease of use, and small file size led to their

common adoption in RHD screening programs.29–31 Moreover, due

to a shortage of experienced echocardiographers, most of the exams

were collected by nonphysicians, and telemedicine was used for re-

mote diagnosis. In this context, the quality of the images and the

fact that they were acquired by a nonexpert make the problem much

more challenging for computational methods.

The experiments show that our video-based RHD classifier is

significantly better than a frame-based one and that the complete

proposed architecture, which includes the meta-classifier, signifi-

cantly increases classification accuracy for exams when compared to

a simple majority voting strategy. This automated diagnosis system

has the potential to address even further the prohibitive financial

and workforce barriers to widespread RHD screening by reducing

the workload dependence on experts. Moreover, if embedded in

screening devices or made available as a cloud-based application, it

could inform prioritization of follow-up in near real time, therefore

increasing the chance of patients seeking specialized care.

MATERIALS AND METHODS

Dataset description
Our dataset is composed of 11 646 echocardiographic videos in

MP4 format (resolution 320�240 pixels), taken with VSCAN devi-

ces (GE Healthcare, Milwaukee, WI, USA) that sum up to 912 com-

plete exams of unique patients. The data were acquired as part of

screening programs in Uganda29,30 (359 exams) and the PROVAR

screening program in Brazil31 (553 exams). The programs were con-

ducted between 2012 and 2016 and screened children attending

public schools. It focused on the early detection and prevention of

disease progression, and screenings were performed mostly by

trained nonexperts (584 exams). Table 1 presents the demographic

profile of our dataset. Note that only a subset of 528 exams, all of

which came from the PROVAR study, have complete demographic

data annotated. The observed discrepancy in the prevalence of rheu-

matic valve disease by gender, with a remarkably higher prevalence

in females, is also noted in other studies.31–33 The studies were ap-

proved by the institutional review boards of both the Children’s Na-
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tional Health System and Universidade Federal de Minas Gerais. In

both studies informed consent was collected during visits to schools.

After the intervention, a letter explaining the study procedures was

sent to families with the consent and assent terms. Patients were

only included after returning the signed consents, and their echocar-

diograms were deidentified.

The estimated RHD prevalence in the examined regions and age

group is � 4.2%.29,31 However, due to the sensibility of the evalu-

ated learning methods to extreme imbalances in the distribution of

labels,34 the dataset comprises 456 (50%) RHD negative and 456

(50%) RHD positive exams, which are composed of Borderline

RHD and Definite RHD diagnosis. Each exam contains, on average,

12.77 (3.59) videos, each possibly representing 1 of 7 different views

of the patient’s heart. The viewpoints include Parasternal long axis,

Parasternal long axis with Doppler on the MV level, Parasternal

long axis with Doppler on the AV level, Apical 4 chambers, Apical 4

chambers with Doppler, Apical 5 chambers, and Apical 5 chambers

with Doppler, as depicted in Figure 2. Apart from the RHD diagno-

sis, 314 videos (2.7%) have viewpoint labels, but no other metadata

have been provided.

For the PROVAR exams, 5 cardiologists with expertise in RHD

examined all morphological and functional changes in MVs and

AVs according to the WHF criteria. All abnormal echocardiograms

were independently reviewed by 2 readers, and discrepancies were

resolved by consensus between 3 readers. The inter-reviewer agree-

ment was 0.89 (95% CI 0.86–0.92), and the between-reviewer

agreement 92%.31 A similar reviewing process was executed for

exams performed in Uganda. The self-agreement ranged between

71.4% and 94.1% (j 0.47–0.84), and the between-reviewer agree-

ment ranged from 66.7% to 82.8% (j 0.34–0.46).29,30

When considering the usefulness of the collected data for

computer-aided diagnosis, however, the measures taken to make

screenings more widespread pose some challenges. As previously

mentioned, handheld devices present a poor signal-to-noise ratio

that scales up, as the environments where screening takes place are

many times improvised and have substandard infrastructure. Pediat-

ric imaging has the potential to aggravate these errors even further,

due to the smaller size of hearts, higher heart rates, and a limited

ability to have the patients voluntarily hold their breath.

Another point that should also be taken into account is that the

average number of videos per exam is well above the count of

unique viewpoint classes, and this happens due to 2 behaviors repro-

duced by the professionals that performed the exams: videos with re-

cording problems (eg, bad positioning of the transducer) were not

deleted and, without any type of tag to differentiate and remove

them afterwards, noisy instances populate our final dataset; also,

some videos did not correspond directly to any of the specified view-

points. This happens when a point of interest that would later help

identify the presence of RHD is perceived, another video, zooming

into the area, is recorded, changing the scale of cardiac structures to

an unknown pattern.

Proposed architecture
This section introduces the 2 main components of our proposed

methodology: i) a deep convolutional neural network (CNN) to

classify the videos as RHD-positive or -negative and ii) an aggrega-

tion method, which accounts for the results of all videos of a single

patient, as shown in Figures 3 and 4, respectively. The methodology

starts by feeding a 3D CNN (C3D)35 with videos from all view-

points of the patient exam. Then the outputs of the networks for all

videos of a single patient are combined using a meta-classifier, as de-

tailed next. It is noteworthy that information regarding the patient

is not provided during the training phase (ie, the CNN does not

know which views correspond to the same exam).

LV

LA

LV Ao

Ao

(a) (b) (c)

Figure 1. Echocardiographic images from an 18-year-old boy with definite RHD. A shows a>2 cm jet of mitral regurgitation in parasternal long axis Doppler

view; B and C show a> 2 cm jet of aortic insufficiency (yellow arrows) in parasternal long axis Doppler and apical 4 chamber Doppler views. Ao, aorta; LA, left

atrium; LV, left ventricle.

Table 1. Demographic data of subjects present in the dataset

Overall Negative Positive Definite

(N¼ 912) (n¼ 456, 50%) (n¼ 349, 38.3%) (n¼ 107, 11.7%)

Patient demographics 528 (100%) 265 (50.2%) 231 (43.8%) 32 (6%)

Age, years (SD) 13.1 (3.1) 12.6 (3.1) 13.6 (3.0) 13.1 (3.4)

Gender, n female (%) 316 (59.9%) 145 (54.7%) 150 (64.9%) 21 (65.6%)
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Convolutional 3D network
We use the C3D as the backbone network of our method, as illus-

trated in Figure 3. The C3D network is a deep CNN that can learn

from the temporal information by applying 3-dimensional convolu-

tion operations. The network receives a tensor of 112�112 pixels

� 3 color channels � 16 frames. The initial 16 frames of each video

are used to train the network. Since some videos contain less than

16 frames, we add padding frames that are a balanced number of

(a) (b) (c) (d) (e) (f) (g)

Figure 2. Examples of echocardiogram viewpoints present in our dataset. Images were sampled from different videos of a single exam. (a) Parasternal Long Axis;

(b) Parasternal Long Axis with Doppler on the Mitral Valve Level; (c) Parasternal Long Axis with Doppler on the Aortic Valve Level; (d) Apical 4 Chambers; (e) Api-

cal 4 Chambers with Doppler; (f) Apical 5 Chambers; (g) Apical 5 Chambers with Doppler.

Figure 3. C3D network architecture for video classification.

Figure 4. Proposed supervised meta-classifier for result aggregation toward exam classification.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 9 1837



duplicates of the first and last frames, until the required length is

achieved. In a transfer learning fashion, we used the model pre-

trained on the Sports1M dataset.36

Initially, visual features are extracted by convolution layers with

small 3�3 � 3 kernels combined with the max pooling operation.

These features are then fed to a fully connected set of layers, with

the last layer composed of only 2 neurons and the softmax function

as activation, outputting the probability of the video belonging to 1

out of 2 classes: RHD Negative or RHD Positive. In order to sim-

plify the problem, the Borderline RHD and Definite RHD diagnosis

were grouped into a single class, named RHD Positive. All other

layers use ReLU as the activation function. To prevent overfitting

and improve generalization, dropout37 with a probability of 0.5 is

implemented within the first 2 dense layers.

The C3D model minimizes the binary cross-entropy loss function

L as follows:

L y; byð Þ ¼ � 1

N

XN
i¼0

ðyi � log byið Þ þ 1� yið Þ � log 1� log byið Þð Þ;

where yi is the label of the i-th sample, byi the predicted probability

of the positive class, and N the number of samples. In summary, the

network minimizes the distance between the confidence in its predic-

tions and the true diagnosis for each echocardiogram.

Aggregation with a supervised meta-classifier
In the first step of our methodology, images from an exam are given

to C3D independently. Next, the output of the CNN can be used in

different ways to provide a diagnosis to a single patient. A standard

approach to aggregate the results of all frames is to use a majority

vote strategy, where each predicted video class counts as a single

vote. However, a binary view of each prediction (positive RHD or

negative RHD) disregards a great deal of information that could be

useful for counterbalancing biases that evolved during the training

of our model and help to improve the accuracy of our prediction.

Thus, we propose a new aggregation strategy that uses a supervised

classifier to predict the diagnosis (see Figure 4). This aggregation

strategy is based on a set of meta-features extracted from the proba-

bility distribution output by CNN over videos per exam, namely,

the mean, standard deviation, skewness, and kurtosis.

Stacked generalization,38 now commonly referred to as stacking,

is 1 of the most used ensemble learning techniques in machine learn-

ing. It consists of combining multiple classification or regression

models via a meta-classifier or a meta-regressor that leverages the

output of the base models to give a final prediction. In the context

of our study, there is only 1 base predictor, but multiple instances

that should be aggregated into a single output. As the number of vid-

eos per exam is not fixed, we use the statistical moments of our clas-

sifier’s confidence distribution as inputs for the meta-model.

The proposed aggregation strategy is agnostic to both the base

classifier and the meta-classifier, as long as the first can output its

prediction as a probability. The meta-classifier of choice for this ar-

ticle was the decision tree-based random forest,39 due to its notori-

ous efficacy when little is known about the domain being

evaluated.40

Baseline, hyperparameters, and implementation
We consider that 1 of the novelties of the methodology proposed

here is the use of a C3D that received videos as inputs instead of a

2D CNN, which works with images. First, in order to verify that the

video-based approach contributes to the success of our methodol-

ogy, we compare it against a frame-based method that uses VGG-16

as the backbone neural network. The VGG-1641 architecture is simi-

lar to the ones used in 2 related works24,25 and it is well-established

in the computer vision community. VGG-16 is a 2D CNN which

receives as input a still frame of 224�224 pixels � 3 color channels.

Following a similar methodology as the one in,25 we have sampled

10 random frames from each video to create instances for the net-

work, and the network predictions are then aggregated using a ma-

jority vote strategy per video and then per exam, giving preference

to the positive class in case of a draw. The model used was pre-

trained on the ImageNet dataset. The loss function used was also the

binary cross-entropy.

In the next step, to measure the contribution of the proposed

meta-classifier, we have also run experiments where the C3D results

were aggregated using a majority voting to give the patient’s final di-

agnosis.

We have trained in our dataset the VGG-16 network (pretrained

in the ImageNet dataset) with the Adam optimizer, a learning rate

of 1e-5, batch size of 32 and 25 epochs, using early stopping with a

patience value of 10. For C3D we used an SGD optimizer, a learning

rate of 1e-3, batch size of 16 and 25 epochs also, but with 5 as the

patience for early stopping. The random forest model was trained

with 200 estimators in the forest and a max depth of 75. Unlisted

hyperparameters for all models were left to their default values. The

set of hyperparameters for each method were chosen through a ran-

dom search setup with 30 iterations for the neural networks and

500 for the random forest.

Our code was written in Python 3.6, and executed in a machine

with Intel Core i7-9700K CPU and an NVIDIA GeForce RTX 2080

Ti GPU. All the neural networks were implemented using Keras

with TensorFlow 1.12 as the back end. The used random forest clas-

sifier is packed within version 0.20 of scikit-learn. The code is freely

available for download (https://github.com/joaofbsm/rhd-classifica-

tion).

Experimental setup
We have performed a binary classification with the Borderline RHD

and Definite RHD diagnosis grouped into a single class, named

RHD Positive. All echocardiograms were deidentified by applying a

mask of black pixels to the area outside of the ultrasound beam dur-

ing preprocessing, therefore omitting the metadata present in the

images. As all echocardiograms in the dataset were collected using

the same equipment and software, the size of this area was fixed.

For the C3D inputs, videos were first rotated 90 degrees and then

resized to 128�171�3 � 16. This was done to obtain a better as-

pect ratio when removing the mean cube of the original training

data, a preprocessing step called whitening.42 A centered cropping

was then applied to generate the final data. As for the VGG-16, vid-

eos were directly resized to the expected input dimensions.

In order to train the model, tune hyperparameters and then diag-

nose new exams, we randomly split the dataset into training, valida-

tion, and test in an approximate 80:10:10 ratio. The splits were

stratified, and videos from the same exam were always in the same

data partition. Each patient has only 1 exam. Hyperparameter tun-

ing for both neural networks and the random forest meta-classifier

used for aggregation was done using only the train and validation

sets to prevent information leakage from the test partitions. To as-

sess accuracy, we have used a 10-fold cross-validation procedure,

making each video go through the validation and test partitions only

once. Folds are the same for all evaluated methods.
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RESULTS

Table 2 reports the mean specificity, sensitivity, precision, and accu-

racy for the test partitions in the 10-fold cross-validation procedure.

We performed a Wilcoxon signed-rank test with 95% of confidence

to compare the results of the 3 different methods, and the best

method for each metric is highlighted in bold in the table. In cases

where there is no evidence of statistical difference, both results are

highlighted. The specificity and sensitivity obtained by the best

model were 70.59 (95% CI, 66.53–74.65) and 74.94 (95% CI,

70.10–79.77), respectively. Its accuracy, averaged over the test par-

titions for each of the 10 folds, was 72.77 (95% CI, 69.28–76.26).

In Table 3 we break the results for the RHD Positive class con-

sidering its original subclasses: Definite RHD and Borderline RHD.

Table 4 presents the average feature importance detected by the

meta-classifier across folds, indicating that the distribution moments

used as features were indeed relevant for a better prediction.

Figure 6 shows examples of 4 frames extracted from 4 videos

where the proposed model classified an exam as RHD positive or

negative with a high confidence (these 4 videos and 57 others that

are part of the exams they belong to are available as Supplementary

Material). They can help understand the model’s decisions.

DISCUSSION

As expected, C3D with the majority vote is significantly better than

VGG-16 for all metrics except specificity and precision (where the

results of both methods present no statistically significant difference)

at the video level, showing the already stated importance of spatio-

temporal information to the task at hand. Considering the exam

level, which provides the final diagnosis, the proposed methodology

significantly outperforms the other 2 methods with regards to accu-

racy, which is our final classification objective. The meta-classifier

significantly outperforms the majority voting in terms of specificity,

but for the other metrics there is no statistically significant differ-

ence. During a screening, it is preferable that a healthy patient is

wrongly referred to a better equipped health facility to perform

follow-up exams than that an unhealthy one receives a normal diag-

nosis and progresses to more severe forms of the disease; hence, bet-

ter sensitivity is desirable.

An analysis to assess if Definite RHD cases are easier to identify

than Borderline cases—which is expected—was also performed, and

the reported sensitivities corroborate the expected results. The sensi-

tivity obtained for the Definite RHD class is comparable to the 83

(95% CI, 76–89) overall sensitivity achieved by nonexpert users in

RHD identification after following a computer-based 3-week train-

ing curriculum, as reported by Beaton et al.43

Regarding the proposed aggregation method, it achieved signifi-

cantly better results than the baselines. We took advantage of the in-

terpretability of the decision tree method it is built upon to explore

even further the functionality of the meta-classifier and also com-

pare its effects against the solo C3D model. An analysis of feature

importance showed all distribution moments were indeed relevant

for a better prediction. For a simple comparison, training the same

model only with the Confidence Mean feature, responsible for most

of the feature importance, the cross-validation accuracy of the C3D

þ Meta-Classifier would be 70.47, which is not statistically better

than the C3D with the majority vote strategy (confidence of 95%).

We assumed that the meta-classifier counterbalances biases ac-

quired during the training of the base model. If this holds true,

results from a majority vote ensembling strategy should be more un-

balanced in nature. Figure 5 shows the confusion matrices obtained

for both aggregation methods along with the C3D network. By com-

paring Figure 5b with Figure 5c, one can observe a loss of sensitivity

around 0.03 with a compensatory increase in specificity of almost

Table 2. Mean specificity, sensitivity, precision, and accuracy (with 95% confidence intervals) for RHD classification on the test set over a

10-fold cross-validation procedure for different levels of result aggregation

Aggregation Metric VGG-16 C3D þMajority Vote C3D þMeta-Classifier

Frame Specificity 54.37 (51.78, 56.97) — —

Sensitivity 56.90 (53.98, 59.82)

Precision 57.65 (56.27, 59.04)

Accuracy 55.70 (54.58, 56.81)

Video Specificity 59.59 (56.29, 62.90) 52.67 (47.00,58.34) —

Sensitivity 55.17 (51.19, 59.15) 67.71 (62.60,72.83)

Precision 59.86 (58.12, 61.61) 60.69 (58.59,62.78)

Accuracy 57.29 (55.83, 58.75) 60.42 (58.76,62.07)

Exam Specificity 67.98 (62.68, 73.28) 57.92 (47.99,67.85) 70.59 (66.53,74.65)

Sensitivity 57.52 (52.40, 62.63) 78.01 (71.53,84.49) 74.94 (70.10,79.77)

Precision 64.65 (61.76, 67.53) 66.10 (61.80,70.39) 71.88 (68.41,75.35)

Accuracy 62.80 (60.69, 64.91) 67.95 (64.92,70.98) 72.77 (69.28,76.26)

Note: Results in bold are the best for that metric according to a 95% confidence Wilcoxon signed-rank test. In cases where there was no evidence of difference,

both results are highlighted.

Table 3. Sensitivity values (with 95% confidence intervals) for clas-

sification of the 2 subclasses aggregated as RHD Positive in our

dataset

Diagnosis Subclass Exam Sensitivity

Borderline RHD 71.90 (66.71, 77.09)

Definite RHD 85.78 (79.37, 92.18)

Table 4. Average meta-feature importance percentage observed

across folds using the C3D network as the base classifier

Meta-feature Importance

Confidence Mean 76.4

Confidence Std 6.3

Confidence Skewness 12.6

Confidence Kurtosis 4.7
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0.13. This same pattern appears in executions with different hyper-

parameters.

This indicates that the proposed aggregation strategy possibly

identifies when there are noisy videos in an exam, through unex-

pected disruptions in the confidence distribution, and filters the

noise out, obtaining more accurate predictions overall.

Analyzing the images classified as RHD-positive or -negative in

Figure 6, we notice that images (a) and (b) have quality problems. In

Figure 6a the blood flow from the abdomen (in blue) was captured

by the Doppler, which probably confused the network due to a pat-

tern similar to a valve regurgitation, and led to the classification of a

negative example as positive. Figure 6b shows a video of low quality

where heart structures are poorly visible—which can be caused, for

instance, by adipose tissue thicker than normal between the trans-

ducer and the patient’s heart. Without any clearly detectable anoma-

lies, the network classified an RHD positive as negative. In

Figures 6c and 6d, the images are clear. Figure 6c shows the absence

of mitral regurgitation during systole to represent the lack of abnor-

malities in the video, which led the model to correctly predict the

exam as RHD negative. In Figure 6d we can observe, also during

systole, the presence of mitral regurgitation as the blue Doppler jet,

which is 1 of the main factors for the detection of RHD, and there-

fore probably led the model to classify the video as RHD-positive.

These examples show that the quality of images directly affects

the performance of the model. However, as the main motivation for

this work is to process the images as they come, a preprocessing step

to remove this type of noise from the dataset can greatly improve

the performance of the model.

CONCLUSION

This article lays the foundations for automatically detecting RHD in

echocardiographic exams through machine learning algorithms. We

have used 2 different deep neural network models and proposed a

supervised meta-classifier for the aggregation of video predictions

into a single patient diagnosis, with the later significantly outper-

forming the baselines with an accuracy of 72.77 over a 10-fold

cross-validation procedure. RHD diagnosis is very difficult due to

different types of data that are mixed together with noise. Moreover,

existing literature is very limited, and no previous related works

used methods suitable for the task approached in this study. None-

theless, automatic diagnosis of echo-detected RHD seems feasible

and, with further research, has the potential to reduce the workload

on cardiologists and experts, enabling the implementation of more

widespread screening programs that can reduce the disease burden

in the underdeveloped world. More than the simple point-of-care di-

agnosis of subclinical RHD, the proposed system, embedded in

screening devices or made available as a cloud-based application,

also has the potential for allowing low-cost identification of patients

at higher risk for other valvulopathies and cardiovascular diseases.

We plan to explore preprocessing methods to identify and re-

move noise instances, which are probably making the training pro-

(a) (b) (c)

Figure 5. Resulting confusion matrices for each method on RHD classification of echocardiographic exams. (a) VGG16 with Majority Vote; (b) C3D with Majority

Vote ;(c) C3D with Meta-Classifier.

(a) (b)

(c) (d)

Figure 6. Examples of frames extracted from 4 videos where the model made

the predictions with high confidence. Videos are from different exams, and

we consider their predictions when in the test set. (a) RHD negative misclassi-

fied as RHD positive; (b) RHD positive misclassified as RHD negative; (c) RHD

negative correctly classified; (d) RHD positive correctly classified.
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cess more difficult and reducing the method’s performance. Also, re-

cent developments in neural networks introduced attention mecha-

nisms, components which can detect tiny variations in the data—

such as the format of a valve in a specific frame—and give more im-

portance to it during classification. This seems to fit very well with

our task, as punctual variations hold great value to diagnose the dis-

ease, given WHF’s criteria. Furthermore, these mechanisms greatly

improve the explainability of a machine learning model, a very rele-

vant characteristic for widespread acceptance of the application by

the physicians and the population.

Additionally, validating the methodology on new data coming

from the same screening program or other similar programs is neces-

sary to assess the robustness and generalization of the methodology.

There are many other interesting directions to follow providing we

obtain more data. One is to address the problem of RHD diagnosis

considering the 3 classes of RHD, namely positive, borderline, and

definite. We currently do not work with all classes due to data scar-

city for the definite class. Another interesting point is to evaluate the

impact of demographic patient data, such as race, producing a

model agnostic to these factors.
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