Skip to main content
. 2021 Aug 14;9(1):34. doi: 10.1007/s13755-021-00164-6

Table 6.

Parameter grid and intervals used in Bayesian Optimisation procedure

Interval Description
Eta [0.01, 1] Learning rate (shrinkage applied in weights calculation)
Gamma [0, 100] Minimum loss reduction to split a node in tree
Max_depth [1, 9] Maximum depth of each tree in training process
Subsample [0.5, 1] Number of features used to train a tree
Lambda [1, 100] L2 regularization term using in training
Alpha [0, 100] L1 regularization term using in training
n_Estimators [10, 200] Total number of trees