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Abstract
Recognition of microbe-associated molecular patterns (MAMPs) by cell-surface receptors is pivotal in host-microbe interactions.
Both pathogens and symbionts establish plant-microbe interactions using fascinating intricate extracellular strategies to avoid
recognition. Here we distinguish nine different extracellular strategies to avoid recognition by the host, acting at three different
levels. To avoid the accumulation of MAMP precursors (Level 1), microbes take advantage of polymorphisms in both MAMP
proteins and glycans, or downregulate MAMP production. To reduce hydrolytic MAMP release (Level 2), microbes shield
MAMP precursors with proteins or glycans and inhibit or degrade host-derived hydrolases. And to prevent MAMP perception
directly (Level 3), microbes degrade or sequester MAMPs before they are perceived. We discuss examples of these nine strate-
gies and envisage three additional extracellular strategies to avoid MAMP perception in plants.

Introduction

Plants are a rich source of nutrients for many organisms
(Cardinale et al., 2011). Their root and aerial systems are ex-
posed to a wide range of microbes including bacteria, fungi,
and oomycetes. Some of these microbes are plant pathogens
that cause detrimental effects on plant fitness (Dangl and
Jones, 2001; Dodds and Rathjen, 2010), while symbiotic
microbes can promote plant growth, such as rhizobacteria
and arbuscular mycorrhizal fungi (Pérez-de-Luque et al.,
2017).

When microbes enter the extracellular space within plant
tissues (the apoplast), they interact with host cells that carry
surface receptors that recognize conserved molecules, con-
ventionally called microbe-associated molecular patterns
(MAMPs, Jones and Dangl, 2006). MAMPs are fragments of

proteins or glycans that are essential for the biology of
microbes and are absent in the host plant. Examples are
fragments of flagellin and peptidoglycans (PGN) from bacte-
ria and fragments of chitin and b-glucans from fungi and
oomycetes. These MAMPs are recognized on the host cell
surface by pattern recognition receptors (PRRs). PRRs are
transmembrane receptor-like kinases (RLKs) or receptor-like
proteins (RLPs) that often carry extracellular leucine-rich re-
peat (LRR) or lysine motif (LysM) domains to confer MAMP
recognition (Couto and Zipfel 2016; Tang et al., 2017;
Boutrot and Zipfel, 2017; Schellenberger et al., 2019). PRR ac-
tivation triggers a series of immune responses (Bigeard et al.,
2015), resulting in pattern-triggered immunity (PTI) and pre-
venting colonization by nonadapted microbes (Bigeard et al.,
2015; Andersen et al., 2018). Importantly, many MAMPs re-
quire hydrolytic release from their precursors before they
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can be perceived by PRRs. For instance, hydrolytic release
from precursors is required for the recognition of flagellin
and elongation factor Tu (EF-Tu), and for the recognition of
chitin and b-glucan.

To colonize plants, adapted pathogens and symbionts
have adopted strategies to avoid recognition by the immune
system. Many effector proteins that act inside the host cell
interfere in signaling downstream of PRRs (Toru~no et al.,
2016). In this review, however, we describe nine extracellular
strategies that plant pathogens and symbionts use to avoid
recognition by PRRs (Table 1). These strategies occur at
three levels: MAMP production (Figure 1A), MAMP release
(Figure 1B), and MAMP perception (Figure 1C).

Level 1: Three strategies Preventing
MAMP production
We distinguish three different strategies that microbes use
to prevent the accumulation of MAMP precursors (Level 1,
Figure 1A). The first strategy is to accumulate mutations in
protein-based MAMPs to avoid recognition of the MAMP
fragment. The second strategy is a similar genetic adaptation
to alter glycan-based MAMPs beyond recognition. The third
strategy is to downregulate the accumulation of MAMP pre-
cursors upon infection. The latter can involve transcription
factors, epigenetic regulation, and posttranscriptional con-
trol. Specific examples of the three strategies are illustrated
in Figure 2.

Strategy 1: Polymorphisms in protein MAMPs
Polymorphisms in MAMP protein sequences are a fre-
quently used strategy to avoid detection. Sequence polymor-
phisms have been described for MAMPs from bacterial
flagellin, EF-Tu, and RaxX.

In most angiosperms, recognition of bacterial flagellin is
mediated by Flagellin Sensing 2 (FLS2), a PRR with extracellu-
lar LRRs (Gómez-Gómez and Boller, 2000). FLS2 recognizes
peptides from a highly conserved 22-amino acids region in
the N-terminal domain of flagellin, called flg22 (Felix et al.,
1999; Zipfel et al., 2004). However, some flagellated bacteria
carry flg22 sequences that are not recognized by FLS2. flg22
peptides from most e-, d-, and a-proteobacteria induce mod-
erate, weak, or no response, respectively, in contrast to flg22
peptides from the majority of c- and b-proteobacteria, which
trigger strong responses (Cheng et al., 2020). For instance, fla-
gellin of the crown gall disease pathogen Agrobacterium
(Agrobacterium tumefaciens, an a-proteobacterium) possesses
a different flg22 sequence that does not trigger FLS2-medi-
ated immune responses in most plant species including
Arabidopsis (Arabidopsis thaliana; Felix et al., 1999). However,
some c- and b-proteobacteria also evade FLS2 recognition
with sequence polymorphism. For example, the bacterial wilt
pathogen Ralstonia solanacearum (a b-proteobacterium) and
some strains of Xanthomonas campestris pathovar (pv.) cam-
pestris (Xcc; a c-proteobacterium) have nonrecognizable ver-
sions of the flg22 sequence that evade FLS2-mediated
defenses in their respective hosts (Pfund et al., 2004; Sun

et al., 2006; Wei et al., 2018). Specifically, an aspartate (D) to
valine (V) substitution at amino acid position 14 within the
flg22 sequence of flagellin from Xcc results in reduced im-
mune responses associated with increased virulence of Xcc
on Arabidopsis (Figure 2A; Sun et al., 2006). Similarly, X. ory-
zae pv. oryzae (Xoo) and pv. oryzicola (Xoc) evade rice (Oryza
sativa) FLS2-mediated recognition with substitutions in the
flg22 sequence (Wang et al., 2015). Consistent with selection
for immune evasion, nonpathogenic strains of X. arboricola
pv. juglandis carry the conserved flg22 sequence whereas
pathogenic strains carry polymorphisms within the flg22 se-
quence that evades recognition by FLS2 (Cesbron et al.,
2015). Evasion of flagellin recognition by flg22 polymorphisms
is also observed with symbiotic bacteria. For instance, the
plant beneficial endophytic bacterium Burkholderia phytofir-
mans (a b-proteobacterium) and the plant beneficial bacte-
rium Sinorhizobium meliloti (an a-proteobacterium) carry
flg22 sequences with weak elicitor activity in grapevine (Vitis
vinifera) and with no elicitor activity, respectively (Felix et al.,
1999; Trdá et al., 2014).

Flagellin is also recognized by FLAGELLIN-SENSING 3
(FLS3), which is present only in some solanaceous plant spe-
cies including some cultivars of tomato (Solanum lycopersi-
cum), potato (S. tuberosum), and pepper (Capsicum
annuum; Hind et al., 2016). FLS3 recognizes flgII-28, a 28-
amino acid peptide from the central region of the flagellin
protein. Interestingly, polymorphisms within flgII-28 sequen-
ces are observed between strains of Pseudomonas syringae
pv. tomato (Pto; a c-proteobacterium). Flagellin of the
Col338 strain of Pto contains a valine (V) residue at position
13 in the flgII-28 sequence, and this peptide triggers a
weaker immune response in tomato than the flgII-28 pep-
tide from the PtoT1 strain, which carries an alanine (A) resi-
due at this position (Cai et al., 2011).

Evasion of recognition caused by flagellin polymorphisms
has also been described for animal pathogens. For instance,
the human pathogenic bacteria Campylobacter jejuni,
Helicobacter pylori, and Bartonella bacilliformis evade flagellin
recognition by Toll-Like Receptor 5 (TLR5) with mutations
within the key recognition sites of the flagellin N-terminal
D1 domain (Andersen-Nissen et al., 2005).

Besides flagellin, evasion with protein polymorphism has
also been reported for peptides containing the first 18 amino
acids of bacterial Elongation Factor Thermal unstable (EF-
Tu), called elf18, which is recognized in Arabidopsis by the
EF-Tu Receptor (EFR; Kunze et al., 2004; Zipfel et al., 2006).
Polymorphism within the elf18 sequence correlates with dif-
ferent elicitation activity. For instance, elf18 peptides from
Xcc and PtoDC3000 trigger only 0.8%–3.2% of the immune
activity as compared to peptides from Agrobacterium,
Ralstonia, and other Xanthomonas and Pseudomonas strains
(Lacombe et al., 2010).

Another bacterial MAMP with protein polymorphism is
the tyrosine-sulfated peptide RaxX, which is perceived by
the rice immune receptor XA21 (Pruitt et al., 2015; Luu
et al., 2019). XA21 confers resistance to most strains of X.
oryzae pv. oryzae (Xoo; Wang et al., 1996). However, Xoo
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isolates carrying nonsynonymous substitutions of tyrosine
residue Y41 in RaxX evade XA21-mediated immunity (Pruitt
et al., 2015).

In conclusion, protein MAMP polymorphism is an efficient
and frequently used strategy to evade host immunity,
employed by both pathogenic and symbiotic bacteria. The
polymorphisms in MAMPs highlight the exceptional genetic
plasticity associated with host adaptation of bacteria.

However, amino acid sequence polymorphism is of course
restricted by protein function. Flagellin, for instance, cannot
accept many substitutions in the flg22 sequence without af-
fecting flagellin function because this region acts as a hinge
that facilitates important conformational changes in the fla-
gellin structure when reversing the spin of flagellar rotation
(Fliegmann and Felix, 2016; Wang et al., 2017). And obvi-
ously, while evasion of immunity by MAMP polymorphism

Figure 1 Nine known and three possible strategies to evade extracellular recognition in plants. Illustration of microbial strategies that evade extra-
cellular recognition (A) by preventing the accumulation of MAMP precursors (Level 1, Strategies 1–3); (B) by preventing the hydrolysis of MAMP
precursors (Level 2, Strategies 4–7); and (C) by preventing MAMP perception (Level 3, Strategies 8 and 9). (D) Other possible but as yet unre-
ported strategies. MAMP precursors, MAMPs, and other microbial molecules are colored in purple, and host hydrolases and receptors in green.
Secretion by microbe and plant are represented by arrows in purple and green, respectively.

Figure 2 Three mechanisms to avoid MAMP accumulation (Level 1). A, Example of Strategy 1: The bacterial rice pathogen X. campestris pv. cam-
pestris B186 avoids the recognition of its flagellin through an amino acid substitution in the flg22 sequence. B, Example of Strategy 2: the fungal
cotton pathogen V. dahliae avoids recognition of chitin with secreted polysaccharide deacetylase-1 (PDA1), which converts chitin into chitosan. C,
Example of Strategy 3: The fungal maize pathogen C. graminicola downregulates the expression of KRE5 and KRE6, which encodes two biosynthesis
enzymes required for b-glucan biosynthesis.
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is relevant for protein-based MAMPs, different strategies are
needed for nonproteinaceous MAMPs.

Strategy 2: Polymorphisms in glycan MAMPs
Glycan polymorphism is the second strategy used by micro-
organisms to evade host immunity. This strategy is illus-
trated here by the deacetylation of chitin by fungi.

Many fungi evade host immunity by deacetylating chitin
into chitosan. Chitin is a structural element of fungal cell
walls and chitin fragments are conserved MAMPs that are
almost universally recognized in the plant kingdom by
Chitin Elicitor Receptor Kinase 1 (CERK1) as a signature of
fungal invasion (Pusztahelyi, 2018). Chitosan, however, indu-
ces a weaker immune response than chitin, so the deacetyla-
tion of chitin is frequently used by plant-associated fungi to
avoid recognition (Vander et al., 1998). The soil-borne path-
ogenic fungus Verticillium dahliae, for example, secretes
Polysaccharide Deacetylase 1 (VdPDA1) to deacetylate chitin
oligomers and prevent chitin-triggered immunity in cotton
(Gossypium hirsutum) plants (Figure 2B; Gao et al., 2019).
Fusarium oxysporum f. sp. vasinfectum PDA1 is also required
for virulence during wilt disease in cotton (Gao et al., 2019).
Similarly, the wheat stripe rust fungus Puccinia striiformis f.
sp. tritici suppresses chitin-induced plant defense by secret-
ing the Polysaccharide Deacetylase Pst13661 (Xu et al.,
2020). The wheat (Triticum aestivum) stem rust fungus P.
graminis f. sp. tritici, the broad bean (Vicia faba) rust fungus
Uromyces fabae, and the maize (Zea mays) anthracnose fun-
gus Colletotrichum graminicola also use chitosan instead of
chitin in their hyphae (El Gueddari et al., 2002). Likewise, the
endophytic fungus Pestalotiopsis sp. avoids recognition by
secreting chitin deacetylases (PesCDA; Cord-Landwehr et al.,
2016). Chitosan is also produced by human pathogens to
evade immunity. The human fungal pathogen Cryptococcus
neoformans, for instance, secretes chitin deacetylase CnCda4
to further deacetylate chitosans that are already partially
deacetylated by other chitin deacetylases to evade host im-
munity (Hembach et al., 2020).

In conclusion, the evolution of glycoforms on the exposed
portion of microbes is an efficient strategy to dampen the
host immune response. More examples of microbial glycan
polymorphisms that evade immunity remain to be discov-
ered. For instance, bacterial pathogens of animals modify
the structure of their peptidoglycans (PGNs) through deace-
tylation and thus evade the antibacterial activity of lysozyme
and delay pro-inflammatory immune responses (Boneca
et al., 2007; Shimada et al., 2010; Wolf et al., 2011; Grifoll-
Romero et al., 2019). However, PGN modification remains to
be described for plant pathogens.

Strategy 3: Downregulating MAMP production
Another microbial strategy to evade host detection is to re-
duce the amount of MAMPs by downregulating their bio-
synthesis during infection. This strategy has been described
for both bacteria and fungi.

Pathogenic, opportunistic, and commensal bacteria down-
regulate flagellin biosynthesis during infection. Biosynthesis

of flagella in Pseudomonas is downregulated by the second
messenger cyclic-di-GMP (cdG; Hickman and Harwood,
2008). Elevated cdG levels in the plant pathogen P. syringae,
the plant opportunist P. aeruginosa and the plant commen-
sal P. fluorescens reduce flagellin levels, and thus contribute
to the evasion of FLS2-mediated immune response in
Nicotiana benthamiana and Arabidopsis (Pfeilmeier et al.,
2016). Flagellin protein levels are also downregulated in
PtoDC3000 via reduction in flagellin expression by the gene
expression regulator AlgU to avoid host immune responses
(Bao et al., 2020).

Downregulation of flagellin genes is also observed upon en-
try of P. syringae pv. syringae B728a (PsyB728a) into the leaf
of bean (Phaseolus vulgaris) plants (Yu et al., 2013).
Comparison of the global transcriptome profiling of PsyB728a
in epiphytic and apoplastic sites reveals that the mean induc-
tion level of genes related to flagellar biosynthesis and motility
was >4.5-fold greater on leaf surface than in planta (Yu et al.,
2013). Regarding the underlying sensory mechanism to down-
regulate flagellin expression, Escherichia coli downregulates fla-
gellar genes in response to immobilization with anti-flagellar
antibodies (Cullender et al., 2013), indicating that flagellin
downregulation occurs when bacteria are immobilized.

In fungal pathogens, downregulation of b-glucan biosyn-
thesis reduces exposure to glycan MAMPs. For instance, dur-
ing the biotrophic phase of infection, the fungal maize
pathogen C. graminicola downregulates the expression of
genes encoding Killer toxin resistant 5 (KRE5) and KRE6,
which are key enzymes for the biosynthesis of b-glucan
(Figure 2C; Oliveira-Garcia and Deising, 2016). However,
KRE5 and KRE6 expressions are indispensable for the forma-
tion of appressoria and necrotrophic hyphae. Consistent
with a need for b-glucan, KRE genes are also required for
full virulence of fungal human pathogens C. neoformans and
Candida albicans (Herrero et al., 2004; Gilbert et al., 2010).

In conclusion, downregulating MAMP precursor levels is a
common strategy used by both fungi and bacteria to avoid
host detection. Obviously, this strategy is only beneficial for
the microbe when production of the MAMP precursor is
not required for full virulence. For instance, bacterial prolifer-
ation and spread do not rely on flagellin after host entry
and the altered fungal cell wall composition may no longer
need b-glucans upon host entry.

Level 2: Preventing MAMP release
MAMPs discussed in this section are released from microbes
by host-secreted hydrolases, such as chitinases and proteases.
We distinguish four strategies to block MAMP release from
microbes (Figure 1B). MAMP precursors are protected against
host hydrolases by microbial proteins and glycans, and host
hydrolases are also inhibited and disintegrated. Specific exam-
ples of the four strategies are illustrated in Figure 3.

Strategy 4: Hiding MAMP precursors with proteins
Microbial organisms can evade host recognition by secreting
proteins that cover MAMP precursors to prevent hydrolytic
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release of MAMPs. There are seven examples of this strategy,
involving structurally unrelated secreted proteins used by
both pathogenic and symbiotic fungi.

The tomato leaf mold fungus (Cladosporium fulvum syn.
Passalora fulva) produces Avr4, a member of Carbohydrate-
binding module family 14 (CBM14). Avr4 specifically binds
to chitin in the fungal cell wall to protect it against plant
chitinases, which release chitin elicitors (Van den Burg et al.,
2006; Figure 3A). Homologs of Avr4 are present in other
pathogenic fungi, indicating a similar protection of chitin
cell walls by other fungi (Stergiopoulos et al., 2010).

Likewise, the hemibiotrophic xylem-invading fungus V. nonal-
falfae prevents chitin hydrolysis by secreting VnaChtBP, a
CBM18 protein that binds chitin and suppresses chitin-trig-
gered host immunity (Volk et al., 2019). VnaChtBP is present
in 28 V. nonalfalfae isolates, suggesting a high evolutionary sta-
bility and testifying its importance for the fungal lifestyle.

Similarly, the fungal vascular wilt pathogen V. dahliae
strain VdLs17 secretes the lineage-specific LysM effector
Vd2LysM, a CBM50 protein (Akcapinar et al., 2015), which
binds chitin, suppresses chitin-induced immune responses,
and protects fungal hyphae against hydrolysis by plant hy-
drolytic enzymes (Kombrink et al., 2017). Likewise, the caus-
ative fungus of anthracnose diseases, C. higginsianum,
produces the extracellular LysM proteins 1 and 2 (ChELP1
and ChELP2), which bind chitin and prevent chitin-triggered
immunity (Takahara et al., 2016).

The wheat Septoria nodorum blotch (SNB) pathogen
Parastagonospora nodorum secretes SnTox1, a protein that
also binds chitin and protects the pathogen from wheat chi-
tinases (Liu et al., 2016). Interestingly, SnTox1 also induces

host cell death, supporting the necrotrophic lifestyle of this
pathogen (Liu et al., 2012).

Plant beneficial fungi that are parasites of pathogenic fungi
also avoid plant immune response by covering MAMPs with
proteins. For example, the mycoparasite Clonostachys rosea
(sin. Gliocladium roseum) produces CBM50 members LysM1
and LysM2 to protect hyphae against chitinases to prevent
MAMP-induced defenses during wheat root colonization by
its host F. graminearum (Dubey et al., 2020).

Fungi also prevent MAMP release by hiding b-glucans
with proteins. The root endophyte Serendipita indica (Si,
syn. Piriformospora indica), avoids recognition of its b-glucan
by secreting a fungal-specific b-glucan-binding lectin, Fungal
Glucan-Binding 1 (FGB1). SiFGB1 binds b-glucan to reduce
b-glucan-triggered immunity in several host plants, including
Arabidopsis, barley (Hordeum vulgare), and N. benthamiana
(Wawra et al., 2016).

In conclusion, covering MAMP precursors with proteins
to prevent their hydrolysis is a mechanism used by many
fungal pathogens and symbionts. Remarkably, several struc-
turally unrelated carbohydrate-binding proteins (Avr4,
ChtBP, Vd2LysM, ChELP1 and ChELP2, SnTox1, LysM2, and
FGB1) have convergently evolved to protect fungal hyphae
from hydrolysis by plant chitinases and glucanases, which
would otherwise release MAMP from their precursors. In ad-
dition to preventing MAMP release, these proteins can also
promote virulence by strengthening the cell wall.

Strategy 5: Shielding MAMP precursors with glycans
Glycosylation of MAMP precursors to shield them from hy-
drolytic release of MAMPs is the fifth strategy to evade host

Figure 3 Four mechanisms to avoid hydrolytic MAMP release (Level 2). A, Example of Strategy 4: the fungal tomato pathogen C. fulvum prevents
the release of chitin fragments by secreting Avirulence protein-4 (Avr4) to hide chitin in the cell wall from hydrolysis by plant-secreted chitinases.
B, Example of Strategy 5: the bacterial tobacco (N. tabacum) pathogen Pseudomonas syringae pv. tabaci 6605 prevents the proteolytic release of
the flagellin elicitor flg22 by carrying a glycan covering the flagellin polymer. C, Example of Strategy 6: The oomycete soybean pathogen
Phytophthora sojae prevents the release of b-glucan-based elicitors by secreting glucanase inhibiting protein-1 (GIP1), which inhibits the plant-se-
creted endoglucanase EGaseA. D, Example of Strategy 7: the fungal cotton pathogen V. dahlia prevents the release of immunogenic chitin frag-
ments by Secreting Serine Protease (SSEP1), which inactivates host-secreted chitinase Chi28.
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recognition. For instance, glycosylation of bacterial flagellin
and fungal chitin suppress MAMP release.

O-glycosylation of flagellin is very common in bacteria, in-
cluding important plant pathogens from the genera
Xanthomonas, Pseudomonas, Burkholderia, Dickeya, Erwinia,
Pantoea, and Pectobacterium (Taguchi et al., 2010; Ichinose
et al., 2013; De Maayer and Cowan, 2016). This flagellin gly-
cosylation is currently thought to prevent the hydrolytic re-
lease of the flagellin MAMP (Figure 3B). For instance,
glycosylation mutants of P. syringae pv. tabaci 6605, P. syrin-
gae pv. glycinea race 4 and X. campestris pv. campestris XcA
lacking the flagellin glycosyltransferase (FGT1) are less viru-
lent on tobacco, soybean (Glycine max), and cabbage
(Brassica oleracea), respectively (Takeuchi et al., 2003;
Taguchi et al., 2006; Ichinose et al., 2013). Flagellin glycosyla-
tion is also important for Acidovorax avenae, a Gram-nega-
tive bacterial pathogen causing leaf blight in rice. Flagellin
isolated from the avirulent N1141 strain induces immune
responses, whereas flagellin from the virulent K1 strain does
not. These flagellin protein sequences are identical but their
glycosylation pattern is different: strain K1 carries a 2,150-Da
O-glucan while strain N1141 harbors a 1,600-Da O-glycan
(Hirai et al., 2011). Thus, glycosylation avoids flagellin recog-
nition, presumably by preventing the hydrolytic release of
immunogenic flagellin fragments.

Consistent with shielding glycans, plant-secreted b-galac-
tosidase 1 (BGAL1) acts in immunity by promoting the re-
lease of immunogenic peptides from glycosylated flagellin of
PtoDC3000 and P. syringae pv. tabaci 6605 (Pta6605), which
both carry a terminal-modified viosamine (mVio) sugar on
flagellin O-glycans (Buscaill et al., 2019). BGAL1 is not re-
quired to release the flagellin MAMP from the Dfgt1 mutant
of Pta6605, which produces nonglycosylated flagellin.
Interestingly, pv. syringae B728a (PsyB728a) evades host im-
munity by having O-glycans on flagellin that are resistant to
hydrolysis by BGAL1 (Buscaill et al., 2019), even though
PsyB728a has an flg22 sequence recognized by FLS2
(Segonzac et al., 2011). Importantly, mVio biosynthesis genes
are absent from PsyB728a, which instead carries a putative
(1,2)-linked terminal GlcNac (N-acetylglucosamine) on its O-
glycan (Yamamoto et al., 2011; Chiku et al., 2013). This sug-
gests that different glycoforms on flagellin are required for
the colonization of different hosts and that hosts may use
different glycosidases to release flagellin MAMPs.

Bacteria also use polymorphic lipopolysaccharides (LPSs)
to evade immunity. LPSs are the major component of the
outer membrane of Gram-negative bacteria and consist of
lipid A, a di-glucosamine carrying four to seven fatty acids,
and an oligosaccharide core region that carries an O-polysac-
charide (OPS) comprising a variable number of oligosaccha-
ride repeats. OPS composition is highly diverse among
bacterial species and strains. Glycans covering bacterial LPS
may alter host responses. For instance, the plant pathogenic
bacterium Xylella fastidiosa possesses a long chain O-antigen
that delays recognition by the host plant (Rapicavoli et al.,
2018). Mutant X. fastidiosa lacking these O-antigens induces
faster immune responses (Rapicavoli et al., 2018). In

addition, genes that encode glycosyltransferase domains and
cause strong virulence phenotypes when disrupted in
PsyB728a are suspected to be involved in the biosynthesis of
O-antigens that decorates LPS (Helmann et al., 2019).

Glycosylation of fungal cell walls is also used to prevent
MAMP release. For instance, the rice blast fungus
Magnaporthe oryzae, the rice brown spot fungus
Cochlioborus miyabeanus, and the rice sheath blight fungus
Rhizoctonia solani accumulate a-1,3-glucan on the surface of
infectious hyphae (Fujikawa et al., 2009, 2012). Fungal
mutants with reduced a-1,3-glucan levels have reduced viru-
lence, indicating that a-1,3-glucan may mask chitin and b-
glucans in the fungal cell wall to shield it against hydrolytic
MAMP release (Fujikawa et al., 2012). The large phylogenetic
distance between these ascomycete and basidiomycete rice
pathogens indicates that this strategy is a widespread mech-
anism that may be used by fungal pathogens to evade host
innate immunity.

Glycan shielding of MAMP precursors has also been de-
scribed for human pathogens, including viruses, fungi, and
bacteria, as a strategy to evade recognition by the host im-
mune system (Walls et al., 2016; Hernández-Chávez et al.,
2017; Poole et al., 2018; PradHan et al., 2019). For instance,
flagellin glycosylation reduces recognition of human bacterial
pathogens, providing an evasive strategy for P. aeruginosa
(Arora et al., 2005) and B. cenocepacia (Hanuszkiewicz et al.,
2014). In conclusion, glycan shielding of MAMP precursors is
a common strategy used by many pathogens to enhance in-
fection. These findings predict that many more examples of
glycan shielding will be discovered for plant pathogens and
symbionts.

Strategy 6: Blocking MAMP release by inhibiting the
activity of host hydrolases
The inhibition of MAMP-releasing hydrolases is another
strategy used by plant pathogens. Examples of this strategy
have been identified in oomycetes and bacterial pathogens.

Phytophthora species secrete glucanase inhibitor proteins
(GIPs) during invasion of their hosts, which themselves in-
hibit MAMP release through extracellular Endo-b-1,3-
Glucanases (EGases). For example, P. sojae secretes GIP1 to
inhibit soybean EGaseA, thereby preventing EGaseA-medi-
ated release of elicitor-active glucan oligosaccharides
(Figure 3C; Rose et al., 2002). Analysis of tomato leaves inoc-
ulated with P. infestans showed that P. infestans GIPs and to-
mato EGases form stable complexes in the apoplast
(Damasceno et al., 2008), indicating that GIPs-mediated inhi-
bition of EGases to prevent MAMP release is a common
strategy used by Phytophthora in different hosts.

Phytophthora species also produce Kazal-like Extracellular
Protease Inhibitors (EPIs) during infection. P. infestans EPI1
and EPI10 inhibit the secreted subtilisin-like protease P69B
of tomato (Tian et al., 2004; Tian et al., 2005). P69B releases
a fragment from the apoplastic effector PC2 of P. infestans
that then triggers immune responses and a hypersensitive
response (HR) in solanaceous plants (Wang et al., 2021).
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Thus, EPI1 might suppress PC2-elicited host immunity by
inhibiting the protease that releases the elicitor.

Bacterial pathogens also produce hydrolase inhibitors to
prevent MAMP release. For instance, PtoDC3000 produces
the small molecule BGAL1 inhibitor galactosyrin (Buscaill
et al., 2019). BGAL1 promotes the release of MAMPs from
glycosylated flagellin carrying mVio on their O-glycan (see
Strategy 5). BGAL1 is suppressed by galactosyrin during in-
fection to prevent the release of immunogenic peptide from
flagellin (Buscaill et al., 2019).

GIP1, EPI1, and galactosyrin are just the first examples of
pathogen-derived inhibitors targeting MAMP-releasing host
hydrolases. Further studies on widespread pathogen-derived
inhibitors will probably uncover many more examples.
However, in addition to preventing MAMP release, these
inhibitors also protect the physical integrity of flagellin and
the microbial cell wall by preventing their degradation.

Strategy 7: Disintegrating host-derived hydrolases
Destruction of MAMP-releasing host hydrolases is the sev-
enth strategy used by invading microorganisms to evade im-
munity. We currently know three unrelated classes of
proteases from fungal pathogens that disintegrate host chiti-
nases to prevent MAMP release.

The root-infecting fungal pathogen V. dahlia produces
Secreted Serine Protease 1 (SSEP1, family S8) during the in-
vasion of cotton root cells to hydrolyze cotton Chitinase 28
(Chi28; Figure 3D; Han et al., 2019). Likewise, the vascular
wilt pathogen of tomato, F. oxysporum f. sp. lycopersici,
secretes family-M36 metalloprotease fungalysin FoMep1 and
family-S8 subtilisin-like protease FoSep1 to remove the extra-
cellular chitin-binding domain (CBD) from tomato chitinases
SlChi1 and SlChi13 (Jashni et al., 2015). Removal of the CBD
significantly reduces chitinase and antifungal activity, thereby
playing a pivotal role in virulence of F. oxysporum. Similarly,
the fungal pathogens F. verticillioides, C. graminicola,
Coprinopsis cinerea, and Ustilago maydis also secrete family-
M36 metalloprotease fungalysins to cleave plant chitinases
(Lilly et al., 2008; Naumann et al., 2011; Sanz-Martı́n et al.,
2016; Ökmen et al., 2018). Interestingly, animal fungal patho-
gens also produce fungalysin during infection, presumably
with the same objective (Li and Zhang, 2014).

In conclusion, SSEP1, FoSep1, FoMep1, and other fungaly-
sins represent different protease families that cleave plant
chitinases to prevent MAMP release. The phylogenetic dis-
tance between these fungi and proteases indicates that the
inactivation of chitinases evolved convergently. Besides pre-
venting MAMP release, these proteases also protect the
physical integrity of the cell wall by preserving chitin.

Level 3: Preventing MAMP perception
Once MAMPs are released, we know two effective strategies
that prevent the perception of MAMPs by PRRs (Figure 1C).
One strategy degrades MAMPs before they reach their
receptors, the other strategy sequesters MAMPs before they

are perceived. Specific examples of the two strategies are il-
lustrated in Figure 4.

Strategy 8: Degrading MAMPs
The eighth strategy used by pathogens is based on the tar-
geted degradation of released MAMPs by pathogen-derived
proteases. Examples are the bacterial effectors AprA and
LasB and fungal effectors with chitinase activity (EWCAs),
explained below.

Pseudomonas species secrete alkaline protease ArpA, a 50-
kD zinc metalloprotease (MEROPS family M10 of clan MA),
which prevents flagellin-triggered immune responses by
degrading flagellin monomers and flg22 (Figure 4A; Bardoel
et al., 2011). Flagellin polymers resist degradation by AprA
and this preserves the integrity of the flagellum (Bardoel
et al., 2011). In Arabidopsis, AprA prevents flg22- and flagel-
lin-induced immune responses and delays stomatal closure.
AprA of PtoDC3000 is required for its full virulence on both
Arabidopsis and tomato. Interestingly, AprA is widespread
among human- and plant-pathogenic bacteria, including the
bacterial plant pathogen P. syringae and human pathogen P.
aeruginosa, suggesting a conserved infection mechanism
among bacteria.

In addition to AprA, P. aeruginosa secretes a second zinc
metalloprotease, the 33-kD pseudolysin LasB (MEROPS fam-
ily M4 of clan MA), which also degrades flagellin and acts in
concert with AprA to prevent flagellin-mediated immune
recognition (Casilag et al., 2016). The production of two dif-
ferent proteases targeting flagellin monomers likely provides
P. aeruginosa with robust immune suppression mechanisms.

Fungal pathogens also degrade MAMPs during infection.
The cucurbit powdery mildew fungus Podosphaera xanthii

Figure 4 Two mechanisms to prevent MAMP perception (Level 3). A,
Example of Strategy 8: the bacterial plant pathogen Pseudomonas
syringae prevents the accumulation of immunogenic flagellin frag-
ments by secreting the metalloprotease AprA, which can cleave both
the flagellin monomer and the flg22 elicitor peptide. B, Example of
Strategy 9: The fungal tomato pathogen C. fulvum prevents the accu-
mulation of immunogenic chitin fragments by secreting Extracellular
cysteine-rich protein-6 (Ecp6), which sequesters chitin fragments.
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releases effectors with chitinase activity (EWCAs) when pen-
etrating melon (Cucumis melo) plant cells to degrade immu-
nogenic chitin oligomers and thereby prevents the
activation of chitin-triggered immunity (Martı́nez-Cruz et al.,
2021). Remarkably, EWCA homologs are also widely distrib-
uted in plant fungal pathogens but also in fungi that are
pathogens of insects, nematodes, and animals, suggesting a
conserved infection mechanism among fungi (Martı́nez-Cruz
et al., 2021).

In conclusion, the degradation of MAMPs is an efficient
mechanism to avoid recognition but only a few of these
proteases have been identified. Additional pathogen-pro-
duced proteases that promote virulence (Chandrasekaran
et al., 2016; Figaj et al., 2019) may also act by degrading
MAMPs. Likewise, pathogen-secreted glycosidases may de-
grade glycan-based MAMPs. For instance, the human patho-
gen Histoplasma capsulatum secretes endo-b-1,3-glucanase
Eng1 to evade host detection (Garfoot et al., 2016) and
many plant pathogens having glycan-based MAMPs secrete
glycosidases (Ospina-Giraldo et al., 2010; Murphy et al., 2011;
Vermassen et al., 2019; McGowan et al., 2020). Notably,
MAMP degradation must require fine regulation of these
hydrolases to avoid unspecific or premature degradation of
MAMP precursors or inadvertent MAMP release.

Strategy 9: Sequestering released MAMPs
Elicitor sequestration is the ninth strategy used by plant
pathogens to evade recognition. In this strategy, pathogen-
secreted proteins bind released elicitors to prevent them
from binding host receptors. Many fungi secrete proteins to
sequester chitin elicitors.

During infection, C. fulvum secretes Extracellular protein 6
(Ecp6), a LysM-containing protein of the CBM50 family that
binds chitin fragments. Ecp6 binds these elicitors with
greater affinity than the chitin receptor, so C. fulvum evades
chitin recognition by using Ecp6 to sequester chitin frag-
ments, (Figure 4B; De Jonge et al., 2010). The widespread
presence of Ecp6 orthologs suggests that this is a common
strategy of many pathogenic fungi to avoid host recognition
(De Jonge and Thomma, 2009). Indeed, the fungal wheat
pathogen Mycosphaerella graminicola produces Mg3LysM,
an Ecp6 homolog, that plays a major role in pathogen viru-
lence on wheat plants by preventing the elicitation of chi-
tin-induced immunity (Marshall et al., 2011). Similarly, the
rice blast fungus M. oryzae produces Secreted LysM protein-
1 (Slp1), which binds chitin fragments and prevents chitin-
triggered immunity (Mentlak et al., 2012). Interestingly,
Vd2LysM from V. dahlia and ChELP1 and ChELP2 from C.
higginsianum, also sequester chitin oligomers and addition-
ally protect chitin polymers against chitinases (Strategy 4;
Takahara et al., 2016; Kombrink et al., 2017).

Symbiotic fungi also use LysM proteins to establish com-
patible interactions. The endophytic fungus Trichoderma
atroviride and the arbuscular mycorrhiza fungus Rhizophagus
irregularis, for instance, produce the LysM proteins Tal6 and
RiSLM, respectively, to evade extracellular recognition
(Romero-Contreras et al., 2019; Zeng et al., 2020).

Surprisingly, even necrotrophic fungi use LysM proteins to
evade immunity. For instance, the necrotrophic fungus R.
solani, which kills seedlings and causes root rot in a broad
range of plant species, secretes RsLysM, which associates
with chitin oligomers to prevent early chitin perception dur-
ing sugar beet (Beta vulgaris) colonization (Dölfors et al.,
2019).

LysM proteins are also used by animal fungal pathogens
and contribute to fungal virulence during host invasion. The
insecticidal fungus Beauveria bassiana secretes the two LysM
effectors Blys2 and Blys5 that bind chitin and prevent the
activation of immunity in insects (Cen et al., 2017).

Sequestration of chitin fragments is also achieved
through different evolutionary paths. The cacao
(Theobroma cacao) witches broom disease Moniliophthora
perniciosa produces an enzymatically inactive chitinase
(MpChi) that prevents chitin-triggered immunity by seques-
tering chitin fragments (Fiorin et al., 2018). Remarkably, its
sister species M. roreri encodes a second, nonorthologous
catalytically inactive chitinase (MrChi). MpChi and MrChi
are both highly expressed during the biotrophic phase of
infection. Despite lacking chitinolytic activity, both proteins
sequester immunogenic chitin fragments. Similarly, the fun-
gal rice pathogen M. oryzae secretes Chitinase 1 (MoChia1)
that binds chitin and can prevent immune responses (Yang
et al., 2019).

Bacteria also use the sequestration strategy by targeting
MAMP precursors. For instance, the endophyte bacterium
Bacillus subtilis BSn5 enhances its colonization of
Arabidopsis and voodoo lily (Amorphophallus konjac)
through minimizing the stimulation of flg22-induced defense
by producing the antimicrobial peptide (lantibiotic) subtilo-
mycin, which binds to its own flagellin (Deng et al., 2019).
The presence of subtilomycin biosynthesis genes in genomes
of other bacteria suggests that flagellin sequestration is a
common strategy of endophytic bacteria to adapt to endo-
sphere niches (Deng et al., 2019).

MAMP sequestration is common to fungal and bacterial
microbes, but more details remain to be discovered in other
invading microorganisms. The success of this strategy
depends on the competition between the microbial-derived
sequestering protein and the host PRR.

Concluding remarks and perspectives
Successful plant-associated microbes evade extracellular de-
tection by the host immune system. While certain immune
evasion mechanisms are used by microbes from diverse
kingdoms, other mechanisms have so far only been de-
scribed for certain microbes. However, it seems unlikely that
these strategies are pathogen-specific, prompting us to ex-
pect that this is likely to change with further development
of the field.

For most of the nine strategies described above, suppres-
sion MAMP perception also results in increased stability of
the MAMP precursor. It has therefore not always been ro-
bustly demonstrated that the observed enhanced virulence
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associated with the strategy is caused by evading MAMP
recognition or by increased stability of the MAMP precursor.
A good way to investigate this experimentally would be to
test for enhanced virulence in the absence of the PRR, as
this would indicate an important role in the stabilization of
the MAMP precursor.

We can think of at least three additional extracellular
strategies that would prevent MAMP recognition
(Figure 1D). First, MAMP recognition can be blocked by re-
ceptor shedding. This has been described for animal patho-
gens, but not for plant pathogens. For example, the fungal
respiratory pathogen Coccidioides posadasii secretes the
Metalloproteinase Mep1 during endospore differentiation.
Mep1 digests the Spherule Outer Wall glycoprotein
(SOWgp), resulting in the prevention of host recognition
mediated by this receptor (Hung et al., 2005). Similarly, the
opportunistic pathogen of human lungs P. aeruginosa
secretes the metalloproteinase LasB, which cleaves the hu-
man urokinase-type Plasminogen Activator Receptor (uPAR)
through domain-specific endoproteolysis (Leduc et al., 2007).
There have been no reports of PRR inactivation by shedding
in plant-microbe interactions yet. By contrast, ectodomain
shedding of the legume Symbiosis Receptor Kinase (SYMRK)
causes the formation of a signaling complex with Nod
Factor Receptor 5 (NFR5, Antolı́n-Llovera et al., 2014).

A second possible strategy is the use of antagonists.
MAMP antagonists would bind PRRs and prevent the bind-
ing of MAMPs to their respective receptors and therefore in-
hibit PRR function. For instance, C-terminal truncations of
the flagellin flg22 elicitor can block flg22 perception by FLS2
in tomato (Meindl et al., 2000), but the existence and use of
MAMP antagonists during infection remains to be reported.

A third possible strategy is to alter the apoplastic condi-
tions such that MAMP release and/or perception is inhib-
ited. Although this mechanism has not yet been
demonstrated, the regulation of hydrolases by pH and redox
status would offer opportunities for pathogens to interfere
in MAMP release. Interestingly, several plant pathogens se-
crete homologs of plant regulatory peptides to suppress
host immunity. For instance, the fungal wilt pathogen F. oxy-
sporum secretes a functional homolog of rapid alkalinization
factors (RALFs), peptide hormones that trigger an increase
of apoplastic pH and enhances fungal colonization
(Masachis et al., 2016; Thynne et al., 2017).

In conclusion, the extracellular detection of MAMPs by
plants is an active and exciting research field. The presence
of many MAMPs, hydrolytic enzymes, and hydrolase inhibi-
tors implicate a large and mostly unexplored area of re-
search, still holding most of its secrets. Increased
understanding of this extracellular battlefield of both animal
and plant pathogens will ultimately translate into new strat-
egies for the prevention of infectious diseases.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Data Set S1. Overview of strategies
employed by microbes to evade MAMP recognition in
plants.
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Fiorin GL, Sanchéz-Vallet A, Thomazella DPT, do Prado PFV, do
Nascimento LC, Figueira AVO, Thomma BPHJ, Pereira GAG,
Teixeira PJPL (2018) Suppression of plant immunity by fungal chi-
tinase-like effectors. Curr Biol 28: 3023–3030

Fliegmann J, Felix G (2016) Immunity: flagellin seen from all sides.
Nat Plants 2: 16136

Fujikawa T, Kuga, Y, Yano S, Yoshimi A, Tachiki T, Abe K,
Nishimura M (2009) Dynamics of cell wall components of
Magnaporthe grisea during infectious structure development. Mol.
Microbiol 73: 553–570

Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E, Yano
S, Koga H, Meshi T, Nishimura M (2012) Surface a-1,3-glucan
facilitates fungal stealth infection by interfering with innate immu-
nity in plants. PLoS Pathog 8: e1002882

Gao F, Zhang BS, Zhao JH, Huang JF, Jia PS, Wang S, Zhang J,
Zhou JM, Guo HS (2019) Deacetylation of chitin oligomers
increases virulence in soil-borne fungal pathogens. Nat Plants 5:
1167–1176
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Macı́as-Segoviano JI, Villagómez-Castro JC, Olmedo-Monfil V
(2019) Tal6 from Trichoderma atroviride is a LysM effector
involved in mycoparasitism and plant association. Front Microbiol
10: 2231

Rose JK, Ham KS, Darvill AG, Albersheim P (2002) Molecular clon-
ing and characterization of glucanase inhibitor proteins: coevolu-
tion of a counterdefense mechanism by plant pathogens. Plant
Cell 14: 1329–1345

Sanz-Martı́n JM, Pacheco-Arjona JR, Bello-Rico V, Vargas WA,
Monod M, Dı́az-Mı́nguez JM, Thon MR, Sukno SA (2016) A
highly conserved metalloprotease effector enhances virulence in
the maize anthracnose fungus Colletotrichum graminicola. Mol
Plant Pathol 17: 1048–1062

Schellenberger R, Touchard M, Clément C, Baillieul F, Cordelier
S, Crouzet J, Dorey S (2019) Apoplastic invasion patterns trigger-
ing plant immunity: plasma membrane sensing at the frontline.
Mol Plant Pathol 20: 1602–1616

Segonzac C, Feike D, Gimenez-Ibanez S, Hann DR, Zipfel C,
Rathjen JP (2011) Hierarchy and roles of pathogen-associated mo-
lecular pattern-induced responses in Nicotiana benthamiana. Plant
Physiol 156: 687–699

Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker
CA, Reyes CN, Miao EA, Aderem A, Götz F, et al. (2010)
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