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Abstract

The dynamics of multiregional brain networks in response to temporally varying patterns of 

ongoing direct electrical stimulation can be predicted by modelling, with variabilities in prediction 

accuracy explained by at-rest functional connectivity.

For some patients with Parkinson’s disease, epilepsy and other neurological disorders who 

are not treatable with pharmacologic interventions, direct electrical stimulation (DES) of 

their brain has provided relief from tremors. In DES, electrodes implanted in the brain 

modulate ongoing neural activity by stimulating the surface of the brain or structures 

deep into it. The success of DES for some clinical applications has raised the possibility 

that it may be a powerful tool for modulating neural circuits relevant for higher-order 

cognitive function. For example, recent clinical trials suggest that DES may be effective for 

treating neuropsychiatric disorders such as treatment-resistant depression and chronic pain1. 

However, the effects of DES, including how its amplitude and frequency can modulate 

ongoing activity in large-scale multiregional brain networks, remains poorly understood. 

This has led to conflicting reports of whether DES can be optimized to improve memory and 

other complex thinking2,3.

Ideally, effective therapeutic stimulation would be informed by a detailed understanding 

of the effects of electrical stimulation on ongoing large-scale neuronal activity. However, 

current computational models are limited in their ability to predict the outcome of brain 

stimulation. First, DES of the brain leads to complex responses both in local tissue — 

that is, tissue closest to the electrode — and in distributed large-scale networks farther 

away from the electrode4. Furthermore, biophysical models of the brain have traditionally 

focused on spiking neurons, which requires nonlinear modelling. Therefore, although 

biophysical spiking-neuron models have provided valuable insights into the relationship 

between stimulation and neural response, they often include a large number of parameters 

that must be fit using large datasets captured through experimental protocols. Acquiring 

these data in humans is often difficult, and limits the use of such models to real-time 

closed-loop settings. And more broadly, it is difficult to infer the effects of stimulation 

on large-scale distributed networks with heterogenous neuronal populations. Reporting 

in Nature Biomedical Engineering, Maryam Shanechi and colleagues now show that the 
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responses of large-scale multiregional brain networks to temporally varying stimulation can 

be predicted by a dynamic linear-state space model5.

By using microelectrodes implanted in the brains of two rhesus monkeys, Shanechi and co­

authors analysed recordings of local field potentials (LFPs) while simultaneously applying 

microstimulation. The authors constructed a dynamic input–output model that captures the 

effects of stimulation on ongoing large-scale brain activity by manipulating the amplitude 

and frequency of input stimulation and by analysing the model’s LFP outputs. They 

analysed the output of four frequency bands (1–8 Hz, 8–12 Hz, 12–30 Hz and 30–50 Hz; 

these include the typical rhythms relevant for brain function and dysfunction) in several 

brain regions, and defined each combination of brain region and power-spectrum feature of 

the LFP as a network node, with the objective of the model being to predict the activity 

in the network as a function of the stimulation parameters. In contrast to simple linear 

regression, the model is dynamic — that is, the output of the model is a function of a latent 

(unobserved, yet inferred) state that depends on its own past LFP-power-spectrum features. 

To produce input signals with a white spectrum (that is, a signal that has equal intensity 

at different frequencies and that allows for the identification of the model’s parameters), 

the authors stochastically switched stimulation amplitude and frequency between multiple 

discrete levels (Fig. 1a). They also used an experimental design allowing for the input-driven 

dynamics to be dissociated from the overall ongoing network activity being measured, 

and quantified model performance as the ability of the model to predict the input-driven 

dynamics using only past stimulation inputs (Fig. 1b).

Because, to predict outputs, forward prediction uses only past stimulation inputs rather than 

past network activity, it is a strong test of the performance of input–output models. To assess 

the statistical significance of the predictions of the model, Shanechi and colleagues applied it 

to artificially generated datasets generated by fixing the outputs and randomly generating the 

inputs, or by fixing the inputs and using baseline network activity as the outputs. Features 

with a forward prediction that was statistically significant for both tests were defined as 

predictable power-spectrum features (Fig. 1c). Across both monkeys, over 70% of the brain 

regions contained at least one predictable power-spectrum feature, suggesting a distributed 

network response to electrical stimulation. The forward-prediction accuracy when using 

only one of the two inputs (stimulation amplitude or frequency) was significantly smaller 

than the accuracy when using both inputs, indicating that the dynamics of the network 

depend on both stimulation amplitude and frequency.

Shanechi and co-authors also show that the inclusion of dynamics into the model via latent 

states was necessary to obtain accurate predictions. This is supported by three comparisons. 

First, the authors compared the performance of the model with (static) linear regression, 

and with two constrained dynamical models: a smoothing model characterizing the effect of 

input stimulation at each time point as simply a smoothed average of past inputs with equal 

weights on how they affect the current state, and a non-oscillatory model that explicitly 

constrained the original model so that it cannot include oscillatory dynamics. The full 

dynamical model performed significantly better than each of the three alternative models 

(Fig. 1d). Although prediction accuracies were high on average, there was variability at the 

level of individual network nodes. The authors show that some of this variability can be 
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explained by resting-state functional connectivity to the stimulation site. They quantified 

functional connectivity between nodes using a measure of controllability drawn from control 

theory. Specifically, they calculated controllability by quantifying the energy needed to 

change the neural activity at a network node when stimulating at a particular site. High 

controllability indicated that a stimulation node was effective at driving a particular network 

node, and therefore that it was related to the connectivity between the two sites. By focusing 

on stimulation from the site with the highest overall controllability (the orbitofrontal 

cortex in their case), the authors show that both prediction accuracy and the estimated 

strength of the neural response were significantly correlated with the resting-state functional 

connectivity with the stimulation site. The correlations were significant not only at the level 

of brain regions, but also for individual nodes and thus for the power-spectrum features.

To show that the model could enable closed-loop control of an internal brain state, Shanechi 

and colleagues analysed the performance of the models in a synthetic study of closed-loop 

control of mood. They show that model-based closed-loop control outperformed model­

free closed-loop control with neural feedback. The dynamic input–output model identified 

stimulation parameters for driving the brain out of the simulated depressive state and into a 

clinically reasonable mood state, and could be maintained at this target state.

By establishing that the response of large-scale networks to ongoing stimulation can 

be predicted from a dynamic input–output model, Shanechi and colleagues provide a 

principled approach for designing stimulation protocols. Specific stimulation patterns can 

be constructed in order to most efficiently modulate neural activity toward specified patterns. 

Casting the problem of predicting responses to stimulation as a control-theory problem takes 

advantage of well-established tools developed for control systems engineering while also 

providing intuition for the parameters of the model. The linearity of the model allows for 

these parameters to be learned quickly and robustly. These are critical requirements for 

closed-loop systems that aim to operate in real time.

For clinical applications, stimulation amplitudes and frequencies must be chosen carefully 

to ensure patient safety. Thus, the allowable stimulation parameters are often a subset of 

those that are available through the stimulating device. Shanechi and colleagues’ dynamic 

modelling offers an efficient approach for selecting the optimal stimulation parameters 

from this subset. Similarly, the number of potential stimulation sites may be limited by 

safety and hardware considerations. The strong correlation of both prediction accuracy and 

the estimated strength of the response to resting-state functional connectivity suggests that 

functional-connectivity maps can be used as priors to select stimulation sites that may 

achieve maximal control of the network. This relationship between stimulation responses 

and functional connectivity reflects the constraints that the underlying neural network places 

on the possible patterns of activity. Combining the predictions of dynamic models with what 

is known about synaptic connectivity may therefore open up possibilities for paradigms that 

causally manipulate synaptic connectivity in large-scale cortical networks, for more effective 

neuromodulation treatments.
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Fig. 1 |. Predicting network responses to DES by using a dynamic input–output model.
a, Microstimulation pulse-trains are modulated by independently generated amplitude and 

frequency time series that change stochastically between multiple levels. b, Example of a 

forward-prediction trace from the superior frontal gyrus in response to orbitofrontal cortex 

stimulation (orange). The grey solid line represents the ground-truth single-trial input-driven 

dynamics, and the grey area provides the standard error of the mean (s.e.m.) of the ground 

truth, which was computed from the measured LFP-power-spectrum features across trials. c, 

Prediction accuracies for predictable power-spectrum features for two monkeys. d, Forward­

prediction accuracy of predictable power features for the dynamic model compared to 

non-oscillatory, smoothing and regression models across the two monkeys. In c and d, the 

error bars denote the mean and the s.e.m. The dots are the individual input–output (IO) 

prediction accuracies. Figure adapted with permission from ref.5, Springer Nature Ltd.

Chapeton and Zaghloul Page 5

Nat Biomed Eng. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	References
	Fig. 1 |

