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Abstract

Oxidative stress (OS) is one of the most significant propagators of systemic damage with 

implications for widespread pathologies such as vascular disease, accelerated aging, degenerative 

disease, inflammation, and traumatic injury. OS can be induced by numerous factors such as 

environmental conditions, lifestyle choices, disease states, and genetic susceptibility. It is tied 

to the accumulation of free radicals, mitochondrial dysfunction, and insufficient antioxidant 

protection, which leads to cell aging and tissue degeneration over time. Unregulated systemic 

increase in reactive species, which contain harmful free radicals, can lead to diverse tissue-specific 

OS responses and disease. Studies of OS in the brain, for example, have demonstrated how 

this state contributes to neurodegeneration and altered neural plasticity. As the worldwide life 

expectancy has increased over the last few decades, so has the prevalence of OS-related diseases 

resulting from age-associated progressive tissue degeneration. Unfortunately, vital translational 

research studies designed to identify and target disease biomarkers in human patients have been 

impeded by many factors (e.g. limited access to human brain tissue for research purposes and poor 

translation of experimental models). In recent years, stem cell-derived three-dimensional tissue 

cultures known as “brain organoids” have taken the spotlight as a novel model for studying central 

nervous system diseases. In this review, we discuss the potential of brain organoids to model the 

responses of human neural cells to OS, noting current and prospective limitations. Overall, brain 

organoids show promise as an innovative translational model to study CNS susceptibility to OS 

and elucidate the pathophysiology of the aging brain.
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Introduction

Oxidative stress and the associated increases in inflammatory markers have long been 

known to play major roles in both the normal aging process as well as in progressive 

degenerative disease states including cerebrovascular disease, Alzheimer’s disease (AD), 

Parkinson’s disease (PD), and neurodevelopmental deficits (Cenini, Lloret, & Cascella, 

2019; De Silva & Miller, 2016; Hensley et al., 1996; Ikonomidou & Kaindl, 2011; 

Metodiewa & Koska, 2000; Sorolla et al., 2008). Indeed, the World Health Organization 

reports that global efforts are underway to treat aging-related diseases (Tan, Norhaizan, 

Liew, & Sulaiman Rahman, 2018). Increases in the average human lifespan, thanks to 

scientific advancements in healthcare, are now at odds with an increased susceptibility 

to neurocognitive disease (A. Reynolds, Laurie, Mosley, & Gendelman, 2007). Recent 

studies suggest that as the natural protective mechanisms of the central nervous system 

(CNS) become less effective with age, oxidative stress and aberrant cell signaling lead to 

tissue damage, cognitive dysfunction, and behavioral changes (J. K. Andersen, 2004; Berr, 

Balansard, Arnaud, Roussel, & Alperovitch, 2000; d’Avila et al., 2018; Droge & Schipper, 

2007; Vollert et al., 2011) (Figure 1). Despite our current understanding of oxidative stress­

induced pathological changes at the tissue level, a lack of knowledge about the etiology of 

cell-specific changes has presented a major challenge (Markesbery, 1997).

Oxidative stress has been linked to neural cell stress responses (e.g. altered cell morphology, 

function, and viability) and progressive endothelial dysfunction (i.e. increasing vascular 

permeability of the blood brain barrier) and is a critical component of the pathophysiology 

of CNS diseases (Chong, Li, & Maiese, 2005; Jenner, 2003; Kunsch & Medford, 1999; 

Taibur Rahman, 2012). Chronically elevated reactive oxygen species (ROS) and cyclical, 

low level (sometimes sub-clinical) inflammatory responses are increasingly recognized as 

hallmarks of neurological disease (Halliwell, 1992; Koelink et al., 2012).

Physiological and Pathological roles of Reactive Oxygen Species

ROS are broadly defined as oxygen-containing chemical species with reactive properties 

(reactive molecules, free radicals, and nonradical species) and include superoxide anion 

(O2−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH•) (Schieber & Chandel, 2014; 

J. Zhang et al., 2016). Under normal physiological conditions, ROS act as cell signaling 

molecules and are critical in maintaining essential cellular and tissue level processes 

(Finkel, 2011; Schieber & Chandel, 2014) in addition to maintaining homeostasis (Schieber 

& Chandel, 2014; J. Zhang et al., 2016). These processes include, but are not limited 

to, differentiation, proliferation, growth, apoptosis, morphological changes, and migration 

(Brieger, Schiavone, Miller, & Krause, 2012). For example, energy production in the 

mitochondria as well as immune defense functions involving peroxisomes and NADPH­

dependent enzymes both result in elevated levels of reactive species (Finkel, 2011; Tarafdar 

& Pula, 2018).
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Increases in ROS concentrations can result from tissue damage, disease, and/or 

dysregulation of normal cellular function (Abdul-Muneer, Chandra, & Haorah, 2015). 

Additionally, ROS production can be elevated by external factors such as drugs, poor 

diet, radiation, air pollutants, and environmental chemicals (Gandhi & Abramov, 2012; 

Joseph, Shukitt-Hale, Casadesus, & Fisher, 2005; Ryter et al., 2007). Given enough time, 

excessive levels of concentrated ROS can become detrimental to tissue (Ahmadinejad, Geir 

Moller, Hashemzadeh-Chaleshtori, Bidkhori, & Jami, 2017; Sies, Berndt, & Jones, 2017). 

To prevent this process of oxidative damage, natural and artificial antioxidants serve as 

reactive species “scavengers” (Pisoschi & Pop, 2015). The imbalance between prooxidant 

reactive species and antioxidant scavengers is the primary component of oxidative stress 

(Dalle-Donne, Rossi, Colombo, Giustarini, & Milzani, 2006; Li, Jia, & Trush, 2016).

During a state of oxidative stress, high ROS levels accelerate cell aging and promote 

damage to nucleic acids, carbohydrates, proteins, and lipid membranes (Berlett & Stadtman, 

1997; Li et al., 2016; Raha & Robinson, 2000; Sohal, 2002). Although cells can protect 

themselves by employing antioxidants to scavenge ROS, dysfunction and insufficient 

activity of these agents can result in a chain reaction of oxidative damage that causes 

DNA strand breaks, increased protein aggregation, and lipid peroxidation (Birben, Sahiner, 

Sackesen, Erzurum, & Kalayci, 2012; Kalyanaraman, 2013). This damage can lead to 

cell cycle arrest, signaling pathway dysregulation, and local upregulation of inflammatory 

factors, consequently causing widespread tissue damage. Accordingly, excessive levels of 

ROS are reported to play an important role in the development of chronic inflammation 

(Biswas, 2016). Early in the inflammatory response, oxidative stress induces cells to release 

proinflammatory cytokines that can contribute to cell activation and tissue remodeling (Zuo 

et al., 2019). Left unchecked, this response can result in extensive tissue damage (including 

long-term functional and morphological changes), further release of inflammatory factors, 

and chronically elevated levels of ROS (D’Ambrosio, Panina-Bordignon, & Sinigaglia, 

2003; Federico, Morgillo, Tuccillo, Ciardiello, & Loguercio, 2007; J. M. Zhang & An, 

2007). Indeed, this cyclical activity can persist as chronic inflammation for years after 

initiation (Dinarello, 2007; Schaue, Kachikwu, & McBride, 2012).

Central Nervous System Susceptibility to Oxidative Stress

Specific Neural Cell responses to oxidative stress—ROS have long been known 

to play an important role in CNS health (Gemma, Vila, Bachstetter, & Bickford, 2007; 

Salim, 2017). At normal physiological concentrations, ROS are essential to neural cell 

function (Angelova & Abramov, 2018; Popa-Wagner, Mitran, Sivanesan, Chang, & Buga, 

2013). Studies demonstrate that they facilitate cell communication within neural tissue, 

maintain populations of progenitor cells, and regulate long-term potentiation between 

neurons (Brieger et al., 2012; Cobley, Fiorello, & Bailey, 2018). However, the brain is 

particularly susceptible to oxidative stress when antioxidant systems are overwhelmed by 

high concentrations of ROS (Birben et al., 2012). This increased risk is associated with the 

abundant polyunsaturated lipids and high metabolic activity of the brain (Hirooka, 2008; 

Melo et al., 2011; Patel, 2016; Uttara, Singh, Zamboni, & Mahajan, 2009). Furthermore, 

relatively low physiological levels of antioxidant enzymes, limited regenerative potential, 

and the presence of neurotransmitters that are easily oxidizable, all contribute to the high 
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sensitivity of the brain to oxidative stress (J. H. Kim, Brown, Jenrow, & Ryu, 2008; Patel, 

2016; Uttara et al., 2009). Studies report that prolonged oxidative stress causes region- and 

cell-specific changes in neural tissue and brain vasculature (Hirooka, 2008; Salim, 2017). 

The following sections highlight the pervasive influence of oxidative stress on neural cells 

and call attention to the cell-specific responses which play a role in CNS disease.

Neurons—Neurons are the characteristic cells of the CNS, and they direct a wide range 

of sensory, motor, and integrative functions for the body. These cells form intricate 

networks, communicating through means such as neuronal processes, soluble molecules 

(i.e., neurotransmitters and cytokines), and synaptic or extracellular vesicles (Fainzilber, 

Budnik, Segal, & Kreutz, 2011; Fruhbeis, Frohlich, Kuo, & Kramer-Albers, 2013). They are 

generally classified by their overall morphology or function and can be further classified by 

gene expression profiles or the complexity of their neuronal processes (axons and dendrites) 

(Chklovskii, 2004; Poulin, Tasic, Hjerling-Leffler, Trimarchi, & Awatramani, 2016; Sharpee, 

2014). Within neurons, ROS serve to regulate necessary functions including inflammation, 

apoptosis, long-term potentiation, and synaptic plasticity (Serrano & Klann, 2004).

Evidence suggests that populations of neurons have selective vulnerability and heightened 

sensitivity to oxidative stress, particularly within specific brain regions such as the 

hippocampus CA1 region and frontal cortex (X. K. Wang & Michaelis, 2010). When 

ROS are unregulated, neurons under oxidative stress conditions can respond by releasing 

additional ROS and other inflammatory factors. The resultant oxidative damage can lead 

to neuronal dysfunction or death, triggering apoptotic and inflammatory response pathways 

in surrounding cells (K. Choi, Kim, Kim, & Choi, 2009; Loh, Huang, De Silva, Tan, & 

Zhu, 2006; Redza-Dutordoir & Averill-Bates, 2016). This cyclical response is the primary 

driver of the chronic tissue degeneration associated with many neurological diseases and 

dysfunctions (Koelink et al., 2012; X. K. Wang & Michaelis, 2010).

Glia (Oligodendrocytes, Astrocytes & Microglia)—Glial cells help to maintain 

healthy neurons, but during persistent oxidative stress they can become dysfunctional 

and contribute to neuronal vulnerability (Dringen, Gutterer, & Hirrlinger, 2000; X. K. 

Wang & Michaelis, 2010). Whereas glial cells are typically more resistant than neurons to 

oxidative damage, the mechanisms of neuron-glia crosstalk, along with neuron-neuron and 

glia-glia crosstalk, are key factors in oxidative stress pathology (Benarroch, 2005; L. Huang, 

Nakamura, Lo, & Hayakawa, 2019; Nutma, van Gent, Amor, & Peferoen, 2020; Peferoen, 

Kipp, van der Valk, van Noort, & Amor, 2014).

Oligodendrocytes—Oligodendrocytes offer structural and functional support in CNS 

tissue by ensheathing axons to increase the conduction speed of electrical impulses (Simons 

& Nave, 2015). These cells help to nourish axons, regulate signal traffic, and maintain the 

balance of oxidative reactions with anti-oxidative defenses (Beckhauser, Francis-Oliveira, 

& De Pasquale, 2016; Griot, Vandevelde, Richard, Peterhans, & Stocker, 1990). However, 

sustained oxidative stress can alter differentiation, compromise production and maintenance 

of axonal sheaths, and induce apoptosis of oligodendrocyte-lineage cells (French, Reid, 

Mamontov, Simmons, & Grinspan, 2009; Giacci & Fitzgerald, 2018; Thorburne & 

Juurlink, 1996). Increased oxidative stress in oligodendrocytes also correlates with increased 
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astrocytic reactivity in vivo (Wellman, Cambi, & Kozai, 2018). Indeed, elevated ROS can 

cause degeneration of oligodendrocytes and trigger a reactive phenotype in astrocytes (J. W. 

Choi et al., 2004; Griot et al., 1990).

Astrocytes—Like oligodendrocytes, astrocytes contribute to the structural and functional 

support of neurons by enveloping synapses, releasing neurotrophic factors, contributing to 

extracellular ion homeostasis, and regulating the blood-brain barrier (Benarroch, 2005). 

“Astrogliosis” describes the activation, proliferation, morphological changes, and additional 

responses of reactive astrocytes associated with pathological conditions in the CNS (Ben 

Haim, Carrillo-de Sauvage, Ceyzeriat, & Escartin, 2015; Hsieh, Lin, Hsiao, & Yang, 2013). 

Reactive astrocytes secrete ROS and inflammatory cytokines in an attempt to maintain CNS 

homeostasis, which can inadvertently promote damage in normal tissues (Ben Haim et 

al., 2015; Sheng, Hu, Feng, & Rock, 2013). Once activated, reactive astrocytes can cause 

long-lasting changes to tissue morphology and influence the activity of surrounding cells—

particularly within the context of the tripartite synapse (Ben Haim et al., 2015; Liddelow et 

al., 2017).

Microglia—Microglia are the resident immune cells of the brain and play a major role 

in maintaining CNS homeostasis (Colonna & Butovsky, 2017; Salter & Stevens, 2017). 

In response to secreted signaling molecules or inflammatory factors, microglia alter their 

phenotype and then migrate towards damaged or infected areas of the brain to release 

additional factors or phagocytose harmful material (Bordt & Polster, 2014; Nakanishi & 

Wu, 2009). Like astrocytes, microglia release inflammatory cytokines and ROS in response 

to tissue damage but to a much greater degree (von Bernhardi, Eugenin-von Bernhardi, & 

Eugenin, 2015). Once these cells arrive at distressed areas, released factors serve as immune 

cell recruitment factors which lead to additional immune cell migration, ROS activity, and 

cytokine secretion (Norden, Muccigrosso, & Godbout, 2015).

Due to this active response to damage, microglia play an intimate role in tissue repair and 

the subsequent changes in tissue morphology. However, as with all cell types involved in 

the oxidative stress response, if left unchecked, microglia can also contribute to the chronic, 

cyclical activation of inflammatory factors (Martindale & Holbrook, 2002; A. Reynolds et 

al., 2007). Indeed, prolonged microglial activation can alter the homeostatic set point and 

cause long-term dysregulation of signaling pathways in both neural and immune cells (Perry 

& Teeling, 2013).

Because of the inflammatory nature of these cells, understanding how they respond to 

oxidative stress is also important for investigating age-related neurodegenerative disease 

(Patel, 2016; von Bernhardi et al., 2015; Wolf, Boddeke, & Kettenmann, 2017). Studies 

of such disorders suggest that activated microglia play both neuroprotective (i.e., clearing 

amyloid plaques) and neurotoxic (i.e., excessive and nonspecific release of inflammatory 

factors) roles (Nakanishi & Wu, 2009; Salter & Stevens, 2017). Microglia are also essential 

for synaptic pruning in CNS development and adult neuroplasticity. However, dysregulation 

of the mechanisms which execute these roles can lead to the aberrant pruning seen in 

neurodevelopmental and neurodegenerative disorders (Guarente & Kenyon, 2000; Salter & 

Stevens, 2017).
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Endothelial Cells & Cerebral Vasculature—Oxidative stress in neural tissue can 

significantly increase pathological risk for cells of the cerebral vasculature. The increased 

migration of activated immune cells through vascular walls, in response to inflammatory 

signals, damages the neurovascular unit, alters gene expression in endothelial cells, and 

disrupts tight junctions in blood-tissue barriers such as the Blood-Brain Barrier (BBB) 

(Carvalho & Moreira, 2018; Faraci, 2005). BBB breakdown is a significant risk factor 

for neuroinflammation and neurodegeneration (Haorah, Knipe, Leibhart, Ghorpade, & 

Persidsky, 2005; Haorah et al., 2007).

Similarly, studies also report risks associated with the cerebral lymphatic system. Though 

research on this subject is limited, lymphatic vessels typically facilitate the “clearing out” 

of toxic metabolites and immune components in neural tissue, but aging-associated increase 

in oxidative stress can reduce the contractility of these vessels (Louveau et al., 2015; Sun 

et al., 2018; Thangaswamy, Bridenbaugh, & Gashev, 2012). Consequently, the meningeal 

lymphatic drainage routes become blocked and amyloid-β begins to accumulate in the 

meninges and brain parenchyma, notably within the hippocampus (Da Mesquita et al., 2018; 

Kruk, Aboul-Enein, Kladna, & Bowser, 2019). Protein aggregates are known risk factors 

repeatedly identified in patients with neurodegenerative diseases, though the mechanisms by 

which they contribute to these diseases are not fully understood (Cioffi, Adam, & Broersen, 

2019; Olivares, Huang, Branden, Greig, & Rogers, 2009).

Neural Progenitor/Stem Cells (NPSCs)—In mammalian brains, neural progenitor 

stem cells (NPSCs) are prominent during development and are retained in the adult brain 

within the dentate gyrus of the hippocampus and subventricular zone of the anterior lateral 

ventricles. NPSCs are vital for neurogenesis and gliogenesis. At physiological levels, several 

studies (Cobley et al., 2018; Perez Estrada, Covacu, Sankavaram, Svensson, & Brundin, 

2014; Srivastava, Tripathi, & Mishra, 2018) suggest that ROS production, even oxidative 

stress, is important for the role of NPSC homeostasis, development, repair, regeneration, 

and neuroplasticity (Chui, Zhang, Dai, & Shi, 2020; T. T. Huang, Zou, & Corniola, 2012; 

Le Belle et al., 2011; Walton et al., 2012; Yokoyama, Kuroiwa, Yano, & Araki, 2008; 

Yuan, Gu, Shan, Machado, & Arias-Carrion, 2016). However, persistent oxidative stress 

induces maladaptive cell responses and disrupts repair mechanisms in these proliferating 

cells, leading to altered gene expression and protein dysfunction (Musgrove et al., 2019; 

Perez Estrada et al., 2014; Texel & Mattson, 2011; Vonk et al., 2020; Walton et al., 2012). 

These pathological conditions can lead to loss of progenitor cells, altered neurogenesis and 

gliogenesis, and significant morphological changes including reduced brain mass (Walton et 

al., 2012).

Oxidative Stress Induced Behavioral and Cognitive Changes—Therapeutic 

strategies aimed at treating neurodegenerative diseases such as Alzheimer’s disease (AD) 

and Parkinson’s disease (PD) have targeted oxidative stress because of its general 

contribution to the induction and progression of brain disease: increased lipid peroxidation 

and decreased polyunsaturated fatty acids, accumulation of redox metals, increased protein 

and DNA oxidation, reduced metabolic activity, decreased cytochrome c oxidase, molecular 

interactions with amyloid beta (Aβ) peptide, and accumulation of senile plaques and 
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neurofibrillary tangles (W. J. Huang, Zhang, & Chen, 2016; Markesbery, 1997; Mattson, 

Duan, Pedersen, & Culmsee, 2001; Nunez-Millacura, Tapia, Munoz, Maccioni, & Nunez, 

2002; Olivares et al., 2009). For example, in PD patients, disease progression is marked by 

a loss of dopaminergic neurons of the substantia nigra (Haining & Achat-Mendes, 2017). 

Dopamine can act as a metal chelator its redox chemistry can promote conditions which 

generate toxic free radicals, leading to neuronal damage (Uttara et al., 2009). Evidence 

suggests that oxidative damage in the CNS in PD and other diseases not only leads 

to localized neuronal degeneration but can also alter emotional well-being and worsen 

neuropsychiatric disorders (Salim, 2017). Because of significant patient-patient variability in 

brain network function, characterizing pathogenetic mechanisms at the level of individual 

neuron and glial cell types provides an incomplete picture of the disease. Accordingly, 

clinicians have emphasized the importance of using patient-specific models of CNS diseases 

to identify universally relevant targets for treating the cognitive and behavioral deficits 

associated with these diseases.

Traditional Oxidative Stress Models of the Human Brain

Our biochemical and physiological knowledge of human neurocognitive disease has 

predominantly come from studies of post-mortem tissues, cultured human and non-human 

cells, and non-human organisms, such as, nematodes, fish, rodents, and non-human primates 

(Lewis, 2002). Despite the clear progress made in the field using traditional techniques, 

these models are subject to limitations that have hindered the development of effective 

therapeutic treatments for CNS diseases (Mimetas; Wolf et al., 2017). These limitations 

include poor sample quality or availability, inconsistent characterization of the disease 

mechanisms, and ineffective translation from models to patients (Table 1).

For example, previous work involving tissues collected post-mortem from patients with 

neurodegenerative diseases has identified signs of oxidative damage including DNA damage 

and atypical concentrations of GABA, glutamate, and serotonin metabolites (Coppede & 

Migliore, 2009; Eckman, Dixit, Nackenoff, Schrag, & Harrison, 2018). However, significant 

biochemical changes can take place during the post-mortem interval before tissue processing 

and lead to skewed results (Hynd, Lewohl, Scott, & Dodd, 2003). Furthermore, once brain 

death occurs, we are unable to collect further data on functional processes essential to 

understanding and targeting cell signaling pathways in humans (Gordon & McKinlay, 2012; 

Starr, Tadi, & Pfleghaar, 2020).

Besides post-mortem tissues, traditional 2-D cell cultures of human neural cells have 

provided us with a greater understanding of near-physiological responses to oxidative stress 

and temporally relevant morphological changes (Walter et al., 2019; Walton et al., 2012). 

Key markers for neurodegeneration indicative of oxidative stress pathophysiology such as 

protein misfolding and aggregation, abnormal neural cell reactivity, and neuronal death have 

all been identified in cell culture models (Wolf et al., 2017; Xu et al., 2002). However, 

even cultures generated through cell reprogramming technology from patients afflicted with 

neurodegenerative diseases do not capture the entirety of the in in vivo pathology (Mitchell, 

Scheibye-Knudsen, Longo, & de Cabo, 2015). Additionally, it can be difficult to maintain 

Oyefeso et al. Page 7

Dev Neurobiol. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these cultures long-term while keeping neural cells in a non-reactive state (Sloan et al., 

2017).

Many researchers still consider rodent and primate models to be best suited for evaluating 

complex associations between environmental factors and biological endpoints, particularly 

for testing antioxidant and countermeasure interventions for oxidative stress (Lees, Walters, 

& Cox, 2016; Melov, 2002). Indeed, animal models provide more information about the 

physiology of integrative systems, age-dependent risks, and the real-time responses of neural 

cells in fully functional and interconnected brain tissue (Kregel & Zhang, 2007; Schiavone, 

Jaquet, Trabace, & Krause, 2013; Wilhelm, Vytasek, Uhlik, & Vajner, 2016). For example, 

the migration of activated microglia through cortical layers in damaged brain regions can be 

tracked in animal models but not cell-based models (Wolf et al., 2017). Thus, animal models 

are widely used to interrogate the acute and chronic actions of reactive species in aging 

and oxidative stress, including genetic and epigenetic modification, regulation of antioxidant 

defenses, and coordinated tissue responses (Balmus, Ciobica, Antioch, Dobrin, & Timofte, 

2016; Lee et al., 2012; Melov, 2002; Pamplona & Costantini, 2011).

Animal studies have also shown how morphological changes in brain tissue are related to 

higher levels of cognitive or behavioral dysfunction (Butterfield, Howard, & LaFontaine, 

2001; Droge & Schipper, 2007; McEwen, 2007; Opii et al., 2008; Picard & McEwen, 

2018; Schiavone et al., 2013). In addition to physiology and morphology, numerous studies 

involving transgenic animals (including some primates) have confirmed the influence of 

genetic background on responses to oxidative stress (Cioffi et al., 2019; Crowe et al., 2016; 

Fraser, Khaitovich, Plotkin, Paabo, & Eisen, 2005; J. M. Kim, Kim, & Son, 2018). Indeed, 

modifications to genetic elements in animal models homologous to human variants have 

frequently been used to identify oxidative stress-induced cognitive and behavioral changes 

(Balmus et al., 2016; Cioffi et al., 2019; Schiavone et al., 2013; Sorce & Krause, 2009).

Although considerable progress has been made using animal models, there are significant 

functional differences between humans and other mammals in such processes as DNA 

repair, immune response, and multi-system organ integration, which have hampered the 

translation of experimental results to therapies for degenerative diseases (Mitchell et al., 

2015). Additionally, the lifespan of some species appears to be unaffected by high levels 

of oxidative stress, even if initiated early in life (Buffenstein, Edrey, Yang, & Mele, 2008). 

There are also significant anatomical differences in brain mass, cellular organization, and 

regionalization between humans and other mammals which is highly relevant because 

human brain regions are disproportionately damaged by oxidative stress, and the properties 

of cerebral vasculature are non-uniform throughout the brain (Coyle & Puttfarcken, 1993; 

Haces, Montiel, & Massieu, 2010; X. Wang et al., 2005).

Given these differences, it is perhaps not surprising that research conducted with common 

animal models has often failed to appropriately translate to humans (Hu, Todhunter, 

LaBarge, & Gartner, 2018; Shi, Buffenstein, Pulliam, & Van Remmen, 2010). Indeed, 

despite high efficacy animal models, therapeutic strategies often fail in human clinical trials 

(Carvalho & Moreira, 2018; Floyd, 1999; Kamat et al., 2008; Neal & Richardson, 2018). 

Extrapolating from these studies has largely failed to slow disease progression in the human 
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CNS (Kamat et al., 2008). Without an understanding of the intricate mechanisms underlying 

neural cell death and dysfunction in neurodegenerative disorders in human neural tissue, it is 

difficult to identify targets for therapeutic intervention (Melo et al., 2011). Though attempts 

at “humanizing” animal models are underway, sophisticated alternative strategies are being 

developed to model human tissue and organ-level responses (J. K. Andersen, 2004; Kamat et 

al., 2008).

Novel Complex Models of Oxidative Stress in Human Brain Tissue using Stem-Cell Derived 
3D Organoids

Developing stem-cell-derived 3D brain tissue models—Due to the ethical and 

practical limitations of interrogating live human brain tissue, a major challenge for studying 

CNS disease progression is the lack of patient tissue samples, particularly for critical 

developmental periods (Eckman et al., 2018; Sloan et al., 2017). To directly study oxidative 

stress and neurodegeneration in functional human brain tissue, researchers have developed 

three dimensional (3-D) human cell cultures derived from induced pluripotent stem cells 

(iPSCs) (Halliwell & Whiteman, 2004). iPSCs can be generated from human fibroblasts 

with the help of a few transcription factors, including Oct3/4,Sox2, Klf4, and c-Myc 

(Takahashi et al., 2007; Yamanaka, 2012). Despite the technical limitations and considerable 

start-up costs of isolating and culturing iPSCs, they have proven to be a useful biological 

model due to their physiological relevance, reproducibility, and ability to model patient- 

and disease-specific mechanisms of interest (Dolmetsch & Geschwind, 2011; Saha & 

Jaenisch, 2009; Yamanaka, 2012). Though the process of generating these cultures from 

reprogrammed patient-derived cells can be labor-intensive, once established, iPSC cultures 

can be used to generate NPSCs. With recent advancements to cell culture methods and 

analytical tools, these cells are now widely used in models of human CNS diseases (Okano 

et al., 2013).

Additional approaches can be used to form 3-D aggregates of NPSCs known as 

“neurospheres” (a.k.a. neural spheroids or neuro-aggregates), free-floating or scaffold-based 

clusters which retain neural precursor cells but also promote the differentiation of mature 

cell phenotypes (Campos, 2004; Denham & Dottori, 2011; Hofrichter et al., 2017; Yagi et 

al., 2012). Neurospheres can generate brain region-specific neurons and astrocytes which 

model the progression of normal development and even various disease states (Begum et al., 

2015; Sloan et al., 2017). For example, they are useful in neurodegenerative disease research 

to model aspects of familial AD mutations such as the accumulation of amyloid-β and 

phosphorylated tau (Jorfi, D’Avanzo, Tanzi, Kim, & Irimia, 2018). As a result, the ability 

of neurospheres to model morphological complexity and multiple levels of pathological 

changes has provided key insights for both protective and degenerative mechanisms of 

neural cell sensitivity to oxidative stress (Carletti, Piemonte, & Rossi, 2011; Chui et al., 

2020; Fike, Rosi, & Limoli, 2009; Madhavan, Ourednik, & Ourednik, 2006; Puschmann et 

al., 2013; Tseng et al., 2014). Collectively these studies show that neurospheres, derived 

from iPSCs, are valuable tools to study CNS development, disease, and tissue repair (Daadi, 

2019; B. A. Reynolds & Rietze, 2005; Ring et al., 2012).
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These cultures resemble in vivo conditions more closely than traditional 2-D cultures, 

thus facilitating the investigation of cell-ECM interactions, cell differentiation, cell­

cell communication, morphological changes, and functional network activity (Centeno, 

Cimarosti, & Bithell, 2018; Hofrichter et al., 2017; Pauly et al., 2018). They can be 

maintained for long periods of time without significant reactive gliosis, allowing researchers 

to more accurately model disease progression within human brain regions, with cultures 

demonstrating disease-specific differences in protein/gene expression, cell function and 

behavior, and coordinated network activity (Matigian et al., 2010; Pasca et al., 2015). 

Recent advancements in cell-type specific mapping/sequencing techniques and experimental 

methods will certainly allow researchers to examine these cultures in greater detail 

throughout the course of development (Giandomenico, Sutcliffe, & Lancaster, 2020; Poli, 

Magliaro, & Ahluwalia, 2019; Trevino et al., 2020). However, while neurospheres are quite 

useful to evaluate changes to neural cell structure and function, these models are still limited 

in their ability to model the complex network activity, spontaneous self-organization, and 

diverse cell subpopulations found in the human brain.

Brain organoids as models for neurological disease and neurodevelopment
—With these concepts in mind, in 2008 the Sasai lab developed a 3-D tissue model of 

the cerebral cortex (a.k.a. cerebral organoids or cerebroids) (Eiraku et al., 2008). Further 

methods to generate the structures widely known as “brain organoids” were defined by the 

work of the Knoblich lab (Lancaster & Knoblich, 2014; Lancaster et al., 2013). Credit is 

also due to the work of other labs for providing the brain organoid models widely used today 

for numerous applications, but we will not cover them here as they have been discussed 

extensively in previous reviews (Poli et al., 2019; Qian, Song, & Ming, 2019; H. Wang, 

2018). Due to the pioneering work of these early studies, novel organoid models now assist 

researchers in recapitulating the complex 3-D organization, spontaneous development of 

brain-like regions, and functional behavior of differentiating neural cells (Cleber A. Trujillo 

et al., 2019).

Organoids are generated from embryonic stem cells (ESCs) or iPSCs, typically embedded 

in Matrigel, and supplemented with factors to promote a certain developmental trajectory or 

pathological state of the human brain (Clevers, 2016). Once they are of sufficient size and 

development, organoids can serve as complex functional surrogates with similar mechanics 

at the molecular, cellular, tissue, and organ level (Budday, Ovaert, Holzapfel, Steinmann, & 

Kuhl, 2019; Goriely et al., 2015; Poldrack & Farah, 2015). Protocols to generate organoid 

models of various tissues are now widely available. These cutting-edge methods include 

guided, unguided, and assembloid strategies to generate brain organoids, which have led 

to organoid-on-a-chip, xenograft, and chimera models described elsewhere (J. Andersen et 

al., 2020; Chen et al., 2019; Tambalo & Lodato, 2020). With continued improvements, 

organoids can be generated in high quantities with little batch-batch variability and thus 

they may soon be established as thoroughly reproducible, scalable, and high-throughput 

translational models (Huch, Knoblich, Lutolf, & Martinez-Arias, 2017; C. A. Trujillo & 

Muotri, 2018; Velasco et al., 2019; Yoon et al., 2019).

Previously, organoids were considered to be best applied as developmental models because 

research efforts failed to robustly produce endophenotypes of neurodegenerative diseases 
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and cell aging that would allow researchers to transition from other stem cell-based 

models (Qian et al., 2019). However, more recent approaches demonstrate the potential 

of iPSC-based 3-D neural cell cultures to model various types of dementia (S. H. Choi 

et al., 2014; Marotta, Kim, & Krainc, 2020; Zhu et al., 2019). Of particular interest is 

the etiology of cytoskeletal remodeling, mitochondrial dysfunction, synaptic alterations, 

protein accumulation, and genetic abnormalities. In light of these approaches, there is an 

opportunity to apply knowledge from other iPSC-based models to generate 3-D organoids 

which may provide novel insights about the role of oxidative stress in CNS disease 

progression.

Brain organoid models of oxidative stress—To date, only a handful of published 

studies have investigated the oxidative-stress-induced responses in brain organoids and how 

associated mechanisms may increase susceptibility to CNS diseases. In one such study, 

researchers generated a multicellular 3-D human neurovascular unit organoid containing 

endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes and neurons to evaluate 

the effects of hypoxia and neuroinflammation on BBB function (Nzou et al., 2020). 

Organoids subjected to hypoxia treatment demonstrated increased BBB permeability, pro­

inflammatory cytokine production, and oxidative stress, assessed by binding of reactive 

oxygen and nitrogen species (RONS)-sensitive dyes and decreased mitochondrial ATP 

production. The study also reported a reduction in ROS and inflammation upon treatment 

with the antioxidant and anti-inflammatory molecule secoisolariciresinol diglucoside (SDG), 

a free radical scavenger, and 2-arachidonoyl glycerol (2-AG), an endocannabinoid.

Additional studies of hypoxia treatment on 3-D cerebral organoids have documented 

protein disruption, altered differentiation, and cell death in intermediate neural progenitors 

(Daviaud, Chevalier, Friedel, & Zou, 2019; Pasca et al., 2019). Another study generated 

human midbrain organoids from iPS cells from patients with LRRK2-associated sporadic 

PD, and reported increased gene expression of thioredoxin-interacting protein (TXNIP), 

which is associated with lysosomal dysfunction and may mediate the PD pathophenotype 

(H. Kim et al., 2019). Together, these studies demonstrate the utility of organoids to evaluate 

the initial effects of oxidative stress on neural cells in a more complete tissue context, and 

the secondary roles of the vascular system and of antioxidant treatment.

Organoids are also useful to understand the importance of oxidative stress in the context 

of radiation medicine and space biology (Schielke, Hartel, Durante, Ritter, & Schroeder, 

2020; Vehlow, Deville, & Cordes, 2020). Exposure to ionizing radiation during patient 

radiotherapy and spaceflight missions is known to alter brain tissue and its vasculature. 

With the increasing access to radiotherapy treatments and human space travel it is 

crucial to understand the mechanisms underlying these changes and to develop suitable 

countermeasures (Xiao W. Mao et al., 2020; Xiao Wen Mao et al., 2016). A consistent 

phenomenon observed following rodent brain exposure to “low-dose” ionizing radiation 

is the persistence of oxidative stress and neuroinflammation followed later by cognitive 

impairment, depending on the type and dose of radiation received (Pariset, Malkani, 

Cekanaviciute, & Costes, 2020; Tseng et al., 2014). Interestingly, it is precisely because of 

this property that we see a potential for using ionizing radiation as a tool to reliably produce 
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oxidative stress in brain organoids, which should overcome the challenge of obtaining 

uniform perfusion when using oxidative stress-inducing agents in cell culture media.

It remains to be investigated how various molecular processes are affected by oxidative 

stress in brain organoid models, including DNA/RNA damage and repair, lipid peroxidation, 

protein oxidation, cytokine release, and ROS/RNS dynamics. There is also a need to 

understand how these effects are regulated by endogenous antioxidants, such as, superoxide 

dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase 

(Cat) (Mariani, Polidori, Cherubini, & Mecocci, 2005). This will provide important baseline 

information for assessing disease mechanisms and the actions of potential therapeutics.

Limitations—As with all models, brain organoids are subject to many limitations. 

The methods used to generate these brain organoids are technically changing and time 

consuming, which creates challenges for batch-to-batch and study-to-study consistency 

(Shou, Liang, Xu, & Li, 2020). As the field is still largely exploratory, it has become 

difficult to define standards for culture methods and to set parameters for different classes 

of organoids. Reports have also demonstrated that organoid culture conditions are inherently 

stressful for cells and can impair the differentiation of cellular subtypes (Bhaduri et al., 

2020). Furthermore, due to the intrinsic complexity of brain tissue, researchers are currently 

forced to select for certain features and discriminate against others; no one model features 

all of the relevant cell types, extracellular matrix components, vasculature, and lymph 

vessels found in the human brain.

Structurally, the size of brain organoids is limited for reasons not well understood and this 

creates a challenge for the health and long-term maintenance of cells within the interior of 

the organoids. This has led to the development of alternative approaches such as air-liquid 

interface organoid slices (Giandomenico et al., 2019). Though the complexity and self­

organization of organoids is of intrinsic interest, it certainly cannot be stated that they fully 

replicate the developmental trajectory, region specific morphology, molecular patterning, or, 

disease phenotypes observed in the human brain. Major technical improvements are still 

required to satisfactorily replicate these characteristics. Fortunately, the pace of research 

efforts is rapidly increasing, promising to steadily advance state-of-the-art technology for 

producing and characterizing brain organoids.

Despite the limitations, a number of distinct advantages demonstrate the potential for 

using brain organoids to model oxidate stress. Pharmacological and genetic tools have 

made it possible to induce oxidative stress in brain organoids in defined ways for the 

study of neurodegeneration and adaptive changes in cell function and behavior (Brawner, 

Xu, Liu, & Jiang, 2017; Faravelli, Costamagna, Tamanini, & Corti, 2020; Hu et al., 

2018; Kagias, Nehammer, & Pocock, 2012; Kamat et al., 2008; Setia & Muotri, 2019). 

The patient-derived iPSCs that can be used to generate organoids have already been 

demonstrated to exhibit disease-specific effects of oxidative stress (Andrade, Nathanson, 

Yeo, Menck, & Muotri, 2012). Indeed, a variety of oxidative stress-relevant CNS disorders 

have already been modeled with brain organoids generated from patient-derived iPSCs 

including schizophrenia, autism spectrum disorders, Rett syndrome, microcephaly, and 

ZIKA virus infection (Kathuria et al., 2020; Koh, Tan, & Ng, 2018; Nassor et al., 2020). 
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Although the culture methods vary and the studies did not specifically set out to measure 

oxidative stress, they capture key functional and anatomical features of development and 

disease progression that are known to be influenced by ROS and inflammation.

Outlook

Clearly, organoid technology has created powerful tools to facilitate the field of regenerative 

medicine and the development of personalized therapeutic interventions for diseases where 

oxidative stress is a major participant. This point is salient as the number of personalized 

medicines has doubled within four years and yet treatments for neurodegenerative diseases 

are still largely ineffective (Jeremias, 2020). As culture methods continue to improve, brain 

organoid models can be expected to provide a fresh perspective on the oxidative theory 

of aging, identify cell-type specific responses to ROS and enable the evaluation of an 

assortment of biomolecules as therapeutic targets.
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Figure 1. 
Oxidative stress (OS) within the Central Nervous System (CNS) can be produced by 

numerous stress factors such as aging, pollution, and exposure to ionizing radiation. 

Cyclic production of OS factors contributes to damage and disease in a cell-, tissue-, 

and organ-specific manner. Although traditional models of OS in the CNS are available, 

three-dimensional cell cultures, notably brain organoids, offer some advantages and novel 

insights for translational studies. Created with BioRender.com
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Table 1.

Comparative analysis of experimental models for pathological oxidative stress in Central Nervous System 

tissues

2D Cultures Animal Models Post-Mortem Human 
Tissue Brain Organoids (3D Culture)

Advantages

Abundant culture methods 
and analytical techniques

Comparable size and 
anatomical structure

Accurate size and 
anatomical structure

Recapitulate 3D structural 
organization and diffusion of 

biological factors

Can be generated from 
human iPSCs and ESCs

Can monitor the behavior 
of specific cortical cell 

types

Specific cortical cell types 
and precise developmental 

cues

Can be generated from human 
iPSCs and ESCs

Widely used to study CNS 
disease progression

Widely available variants to 
study disease progression

Visible tissue degeneration 
in specific brain regions

Increasingly used to model 
human disease progression

Can model 
near-physiological 

morphological changes and 
responses to oxidative 

stress

Can obtain useful measures 
of altered cognitive and 

behavioral states

Can obtain patient-specific 
measures of disease states

Capacity for self-directed 
organization and differentiation

Highly scalable and high­
throughput analysis of cell 

responses to biological 
factors

Can identify acute and 
chronic actions of reactive 

species during disease 
states

Can identify terminal 
pathological features of 

disease states across 
diverse human populations

Highly scalable and high­
throughput analysis of cell 

responses to biological factors

Can obtain functional 
cell- and tissue-specific 

information using 
simplified and low-cost 

methods

Can obtain functional 
whole-body 3D 

information i.e. systemic 
responses

Can identify some 
functional measures with 

a short “post-mortem 
interval”

Can obtain functional organ­
specific 3D information i.e. 

electrophysiological network 
activity patterns

Limitations

Tissue composition and 
cell state change rapidly 
and demonstrate limited 

complexity

Significant metabolic, 
anatomical, and 

physiological differences to 
humans

Rapid biochemical 
changes during processing

Reliance on growth factors and 
differentiation protocols

Poor representation of 
the in vivo physiological 

environment; limited cell­
cell interaction

Lifespan of some species 
unaffected by high levels 

of oxidative stress; 
developmental differences

Loss of data on altered cell 
function and behavior due 

to tissue degeneration

Current limitations on functional 
and developmental neural cell 

maturation

Lack of relevant data on 
cell-ECM or cell-scaffold 

interactions

Notable differences 
in brain mass, 

cellular organization, and 
regionalization

Decreasing donor/sample 
availability

Current methods are 
expensive, time-consuming, and 

characteristically provisional

Automatically defined 
apical-basal polarization of 

cells

Results from these models 
often fail to translate to 

humans due to inter-species 
differences

Artifacts of neuronal death 
are rapidly introduced into 

dissected samples

Studies have reported stressful 
culture conditions and limited 
oxygen and nutrient diffusion

Lack of 3D information; 
morphological constraints 

of 2D geometry

Greater neuronal density; 
lesser dendritic branching 

vs humans

Ethical and practical 
limitations of interrogating 

live/dead human brain 
tissue

Batch-batch or organoid­
organoid variability in 

organization and “discrete” brain 
regions

Risk of teratoma formation 
in stem-cell based therapy; 

limited differentiation 
capacity

Different patterns of age­
related gene expression 

alterations

Poor study control to 
determine if observations/
results are due to disease 
or caused by other agents

Lack of consensus for optimal 
culture conditions and methods 

to generate brain organoids
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