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Abstract

Microbes inhabit different anatomical sites of the human body including oral cavity, gut, 

and skin. A growing literature highlights how microbiome variation is associated with human 

health and disease. There is strong evidence of bidirectional communication between gut and 

brain mediated by neurotransmitters and microbial metabolites. Here, we review the potential 

involvement of microbes residing in the gut and in other body sites in the pathogenesis of 

eight neuropsychiatric disorders, discussing findings from animal and human studies. The data 

reported provide a comprehensive overview of the current state of the microbiome research in 

neuropsychiatry, including hypotheses about the mechanisms underlying the associations reported 

and the translational potential of probiotics and prebiotics.
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1. Introduction

Microbes reside in the human body and not all of them are necessarily harmful. Their 

presence/absence and balance/imbalance are associated with health and disease. Recent 

estimates revealed that the number of microbial to human cells show a 1:1 proportion. Some 

microbes are beneficial and their diversity across human body sites contributes to the overall 

health status of an individual [1; 2]. Fluctuations in the relative diversity and composition 

of the microbiome across the human body are hypothesized to affect the risk of several 

diseases, including inflammatory bowel disease (IBD) [3], cancer [4], and immunological 

disorders [5].
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There is considerable literature supporting the association between human microbiome 

variation and mental health, also including several review articles focused on specific 

disorders or specific mental health domains, such as depression [6; 7; 8], mood disorders 

[9; 10], neurodegenerative disorders [11], and neurodevelopment [12]. However, to our 

knowledge, a review presenting the current state of microbiome research across multiple 

neuropsychiatric disorders and different body sites is missing. The current article aims 

to provide a compendium of the current state of human microbiome research across the 

neuropsychiatric spectrum to help investigators with different expertise to understand the 

evidence available to date. We include an initial overview of three microbiome domains 

(gut, mouth, and skin; Figure 1) and then review findings specifically related to eight 

neuropsychiatric disorders (Alzheimer’s disease, attention deficit hyperactivity disorder, 

anorexia nervosa, autism spectrum disorder, bipolar disorder, major depressive disorder, 

schizophrenia, and substance use disorders; Table 1). Due to size constraints, we decided to 

focus on those psychiatric disorders that were investigated by numerous studies or that were 

not reviewed previously.

The studies reviewed were conducted using a wide range of different methods and 

designs. For example, diversity metrics include several measures of alpha diversity (e.g., 

the Shannon index assumes the observed abundances reflect random sampling of the 

microbiome and thus is maximized when abundances increase evenly across all taxonomic 

units; the Simpson index gives more weight to highly abundant taxanomic groups and 

is less influenced by very low abundance organisms; the Chao1 index uses a Poisson 

distribution to estimates the number of taxa in a sample by extrapolating the number of 

rare organisms that may have been missed due to under-sampling; rarefaction assesses 

species richness through construction of rarefaction curves). Beta diversity reflects a 

comparison of abundances between two microbiome samples (e.g., Jaccard distance is 

measures similarity in the presence or absence of taxonomic groups without regard to 

abundance; Bray–Curtis dissimilarity measures the differences in abundances of each 

taxonomic units; Unweighted UniFrac is the distance between two samples by calculating 

the fraction of the branch length in a phylogenetic tree that leads to descendants) [13]. 

Because analytic variability undermines comparison between studies and contributes to the 

lack of reproducibility among microbiome studies, investigators have highlighted the need 

for establishing standards for microbiome analysis and interpretation [14; 15]. Due to the 

difficulty of comparing results that used different statistics, we decide to compare the finding 

of the studies reviewed relying on the interpretation made by the authors.

2. Gut-Brain Axis

The gut microbiome is a reservoir of many microorganisms such as Firmicutes, Bacteroides, 
Preveotella, and Bifidobacterium associated with the healthy physical and mental state of 

an individual. [16]. Gut dysbiosis (i.e., altered abundances of gut microbial communities) 

has been hypothesized to be involved in gastrointestinal disease [16; 17], cardiovascular 

illnesses [18], metabolic disorders [19]and autoimmune diseases [19; 20]. With respect 

to neuropsychiatric disorders, the gut-brain axis (GBA) represents the link between 

the central and the enteric nervous system, linking emotional and cognitive centers of 

the brain with peripheral intestinal functions. The association between microbiota and 
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GBA appears to be bidirectional with signaling from gut-microbiota to brain and from 

brain to gut-microbiota mediated neural, endocrine, immune, and humoral mechanisms 

[21]. The impact of gut microbes on human health also includes potential associations 

with increased vulnerability to psychiatric disorders. A well-known study on using a 

germ-free mouse model emphasized an altered hormonal response to stress, suggesting 

that microbiota influences the neuroendocrine hypothalamic–pituitary–adrenal (HPA) axis 

[22]. In additional mouse experiments, the lack of normal gut microbiota influences 

behaviors (e.g., motor activity) and brain transcriptomic profile involved in motor control 

and behavioral regulations [23]. Another study testing the administration of a mixture 

of nonabsorbable antimicrobials for 7 days to pathogen-free mice transiently altered 

the gut microbial composition and was associated with heightened exploratory behavior 

and hippocampal Brain-Derived Neurotrophic Factor (BDNF) expression [24; 25]. These 

changes were independent of other inflammatory activities and alterations at the level of 

gastrointestinal neurotransmitters. Accordingly, the intestinal microbiota was hypothesized 

to influence brain chemistry and behaviors independently of the autonomic nervous system 

and gut inflammation [25].

The gut epithelium plays a key role in the GBA regulation because it is the primary target 

for changes induced by dietary, microbial, and inflammatory components. Enterochromaffin 

(EC) cells function as chemo- and mechanosensory neuroendocrine cells that release 

serotonin in order to modulate other gastrointestinal neurons, in order to effect peristalsis 

and mucus secretion. Serotonin released from EC cells in the mouse colon has been 

attributed to neuroinflammation [26; 27]. There is evidence of sex-differences in this 

hormonal response to microbiome perturbations. Female germ-free mice showed greater 

serotonin concentrations and elevated plasma levels of tryptophan (i.e., the serotonin 

precursor) than conventionally colonized control animals [28]. In mouse models of 

stroke and multiple sclerosis, the perturbation of gut microbiota appears to interfere with 

communicative and sensorimotor behaviors via immunomodulation [29].

The gut consists of a high concentration of immune cells, providing an additional 

layer of defense from pathogens. Production of pro- and anti-inflammatory cytokines 

is influenced by gut microbiota which can lead to brain dysfunction through the 

circulatory system [30]. Inflammation caused by cytokines can result in the release of 

corticosteroids accelerating stress-induced anxiety and depression [31]. Gut microbiota 

regulates metabolism of neuroactive compounds (e.g., short-chain fatty acids, indoles, bile 

acids, choline metabolites, lactate) and their release of these neuroactive compounds can 

promote additional neuroinflammation [32; 33].

Microbes residing in the gut often metabolize tryptophan, the serotonin precursor, along 

with a host of other neurotransmitters and neuromodulators [34]. These compounds 

permeate the gut wall that is innervated by the enteric nervous system (ENS) [35; 36]. 

This interaction can trigger bidirectional gut-brain communication resulting in inflammation 

of the gut and brain epithelia and production of stress peptides resulting in anxiety-driven 

behaviors [21]. Gut-brain module analysis based on human fecal metagenomes identified 

microbial production of 3,4-dihydroxyphenylacetic acid (a dopamine metabolite), which 

correlated positively with self-reported quality of life; this study also indicated the role 
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of microbial γ-aminobutyric acid production in psychopathology [33; 37]. Among the 

pathogenic processes involved in the disruption of gut-brain axis equilibrium, inflammation 

plays a key role in altering the microbiome homeostasis in response to specific pathogens 

[38], immune activation [39], and antibiotic supplementation [40]. This altered microbial 

environment due to gut infection can be restored via beneficial microbes called probiotics 

[41]. Although this field is still in infancy, it has great potential for the development of future 

therapeutic applications [42; 43; 44].

3. Oral Microbiome

The human oral cavity is a complex environment presenting a variety of habitats hosting 

different kinds of microorganisms [45]. Highly prevalent microorganisms in the oral cavity 

include Staphylococcus [46; 47] and Streptococcus [48]. Data regarding different oral 

microbiome species are available from the Human Oral Microbiome Database (HOMD) 

[49]. Compared with the gut microbiome, few studies examined the oral microbiome in 

the context of neuropsychiatric disorders [50]. The microbiome in the oral cavity has been 

associated with systemic inflammation linked to altered cognitive functioning [51]. This 

may be due to indirect factors such as diet, lifestyle, and oral hygiene, but the fact that the 

association was related to a specific species (i.e., Neisseria subflava) suggests the possibility 

of a direct link. Unfortunately, to date the underlying mechanisms are still unclear. Due to 

many confounders that can affect the human variation of oral microbiome composition, most 

of the current studies should be considered as preliminary evidence that needs confirmation 

in a larger and more carefully characterized samples [52].

4. Skin Microbiome

Skin serves as a barrier preventing the invasion of external pathogens and also acts as the 

primary habitat for the commensal microbiota [53]. Sebaceous sites in the skin are reservoirs 

of specific bacteria like lipophilic Propionibacterium, Staphylococcus, and Corynebacterium 
species [54]. Skin microbiome diversity is generally conserved at the community level and 

despite external perturbations like diet, antimicrobial therapy, and long-term environmental 

interactions, it is considered stable over time in healthy individuals [55]. Alteration of 

skin microbiota is observed when individuals are affected by wounds, lesions, and/or 

dermatological disorders. Very few studies investigated the impact of skin microbiome 

dysbiosis with respect to psychiatric disorders. However, some of them hypothesized the 

presence of a gut-brain-skin axis related to immune response and inflammatory processes 

linking these organs [56; 57; 58]. Bidirectional communication between skin and gut 

microbiota has been reported in the context of immune-related disorders [1; 59; 60]. 

For example, variation in gut microbiome in patients with skin lacerations has been 

reported to alter the skin microbiota [57; 61; 62]. Persistent changes in both gut and 

skin microbiome can lead to neuro-modulatory effects associated with decreased cognitive 

function via inflammatory cytokines (i.e., TNF-α, IL-1β, IL-6, IFN-α) [56]. These factors 

have been associated with gut inflammation, increasing the permeation of the gut-brain 

barrier resulting in the release of neurotransmitters [63; 64; 65]. In patients with psoriasis, 

alterations in the skin and intestinal microbiome play a role in the pathogenesis of psoriasis, 
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where inflammatory and immune mechanisms are associated with the dysregulation of the 

hypothalamic-pituitary-adrenal axis [66; 67].

5. Alzheimer’s disease

Alzheimer’s disease (AD) is a leading cause of death worldwide, with an estimated 

incidence of 1–3% and a prevalence of 10–30% of the population > 65 years of age in 

the United States [68; 69]. The role of altered gut microbiota and its subsequent impact 

on the HPA axis has been studied in the context of AD pathophysiology [70]. The 

leading hypothesis is that the composition of the intestinal microbiome plays a role in 

the neuroinflammation of the amyloid plaques deposition [71]. Indeed, microbiota-mediated 

inflammation associated with AD appears to act at the level of the blood-brain barrier 

(BBB) [72]. Some bacteria are capable of directly crossing the BBB, giving rise to 

infections of the central nervous systems (CNS) [73]. Certain molecules generated by 

bacteria (e.g., lipopolysaccharide, LPS) potentially stimulate BBB disruption in patients 

affected by neurodegenerative disorders. [74]. Consistent with this, the bacterial metabolite 

propionate, a short-chain fatty acid (SCFA), appears to protect the BBB from damage via 

inhibiting oxidative stress thereby maintaining its integrity. [75]. LPS is typically associated 

with pathogenic strains, while commensal or non-pathogenic flora produce SCFAs. In 

rats, peritoneal LPS administration resulted in increased levels of inflammatory factors, 

notably IL-1, IL-6, and TNF-α, in the hippocampus, suggesting a role for the microbiome 

in the initiation of an innate immune response in AD [76]. Zhao and colleagues found 

immunohistochemical evidence of microbiome-derived LPS within the perinuclear region of 

human AD brains [77].

The natural biodiversity of the gut microbiome tends to decline with aging, with a relative 

reduction in commensal species, such as Bacteroides, Bifidobacteria, and Lactobacilli, and 

a relative increase in opportunists and potentially pathogenic species such as Enterobacteria, 
C. perfringens, and C. difficile [78]. In the ELDERMET cohort comprised of individuals 

over 65 years of age, there was a shift in the gut microbiota toward a Bacteroidetes­

predominated population in older individuals compared to younger participants[79]. The 

variation in microbial composition is also dependent on diet and lifestyle [80]. Diet-induced 

perturbation in the gut microbiome alters the shikimate metabolic pathway (responsible 

for the de novo synthesis of aromatic compounds in microorganisms [81]), which was 

associated with elevated levels of the cytotoxic amine tryptamine and increased symptoms 

among individuals affected by AD [82]. In human brain samples, a large bacterial load of 

Firmicutes species and P. acnes was observed in the cerebral cortex of AD patients [83].

Ongoing studies are exploring the role of probiotics used in gastrointestinal (GI) diseases for 

the treatment of AD patients. [84]. Certain probiotic formulations displayed neuroprotective 

effects in a transgenic mouse model of AD, including attenuation of microglial activation, 

reduction in Aβ load, and preservation of dendritic spine structure and function [85; 

86]. A relatively larger randomized controlled trial (N=60) revealed that intake of milk 

supplemented with Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, 
and Lactobacillus fermentum produced significant, albeit small magnitude improvement in 

Mini-Mental Status Examination scores (widely used to test cognitive function among the 
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elderly [87]) and improvement on various metabolic measures in AD patients [88]. With 

respect to the oral microbiome, a large scale retrospective case-control study of Alzheimer’s 

disease (AD) including participants from Taiwan’s national insurance database (N=209,112 

cases and 836,448 dementia-free controls) found negative associations with the per-person 

cost of dental care, number of root canals, and number of tooth extractions, and positive 

associations with the cost of dental imaging and dental emergencies [89].

6. Attention Deficit Hyperactivity Disorder

Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental 

disorder [90]. Diet potentially plays an important role in ADHD-related behavioral processes 

via its effect on the composition and functioning of the gut microbiome [91]. Apart from 

diet, host-microbe interaction with the gut-brain axis could be directly involved in the 

development of ADHD [92]. The host-microbiome interactions have implicated effects 

on hormones and neurotransmitter levels thought to be involved in the pathophysiology 

of ADHD [93; 94]. For instance, GABA production has been associated with different 

microbial genera including Bifidobacterium, Lactobacillus, and Escherichia coli [95]. Gut 

dysbiosis in combination with immune dysfunction caused by constant pathogen exposure 

could contribute to hyperactive behaviors observed in ADHD affected patients [96]. A 

study administering probiotics to ADHD patients showed that early intervention with 

Lactobacillus reduced the risk of ADHD development later in childhood [97]. ADHD 

has been associated with abnormalities in the predicted dopamine and noradrenaline 

synthesis, whose precursors are provided by the gut bacteria [90]. ADHD is often found 

to be associated with gut dysbiosis like enrichment or depletion of certain bacteria like 

Bifidobacterium [94].

7. Anorexia Nervosa

Anorexia nervosa (AN) is a mental illness characterized primarily by feeding restriction, 

distorted perceptions of and preoccupation with body weight and shape, and obsessive 

behaviors related to food [98]. Metabolic, immunologic, and weight regulating effects of 

the microbiome could influence the course and prognosis of the disease. Additionally, the 

interplay between stress-coping mechanisms and gut microbiome can also have important 

implications for AN [99].

AN patients have demonstrated altered diversity of bacterial species within the gut 

[100; 101; 102]. In particular, AN patients showed high gut levels of the archaeon 

Methanobrevibacter smithii [103]. This methane-producing archaeon is associated with food 

transformation processes in a very low-calorie diet [104]. AN patients also have significantly 

low amounts of total bacteria and obligate anaerobes, e.g. Clostridium coccoides group 

[105]. The reduced microbial diversity is associated with impaired immune response and 

reduced capacity to absorb calories from the diet [106]. Additionally, the genera Roseburia, 
Ruminococcus, and Clostridium were reduced in line with the AN depletion of total 

short-chain fatty acids, butyrate, and propionate [101]. Butyrate concentrations inversely 

correlated with anxiety levels, whereas propionate was positively associated with insulin 

levels and with an increased presence of Roseburia inulinivorans [101].
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Due to its therapeutic potential, the interaction of the human microbiome with dietary 

habits is a rapidly expanding research area in AN [107; 108]. For example, Roseburia sp. 
represents one of the candidates for AN probiotic intervention due to the lower rate of 

anxiety associated with affected patients [109]. However, more studies are needed to clarify 

whether the differences observed are a cause or consequence of the disease. Additionally, 

it will be important to understand how changes in AN microbiota are affected by the 

interactions among nutritional supply, nutritional supplements, probiotics (i.e., live bacteria), 

and prebiotics (i.e., fibers supporting the growth of certain types of bacteria) [110].

8. Autism Spectrum Disorder

Autism spectrum disorder (ASD) is characterized by impairment in communication, speech, 

social interaction, and the presence of restricted interests and repetitive or stereotyped 

behaviors [111; 112]. Due to the high prevalence of GI symptoms in ASD-affected 

individuals, considerable attention has been paid to the gut microbiome [113]. Altered 

age-related patterns have been associated with ASD-affected individuals, including cognitive 

impairments, difficulty in speech and motor coordination skills [114; 115]. A higher 

representation of Bacteroidetes, Proteobacteria, and Firmicutes has been reported in ASD 

patients when compared with healthy controls [116]. Conversely, ASD showed a reduction 

of Bifidobacterium, Klebsiella, Enterobacter, Prevotella, Coprococcus, and Veillonellacea 
[117; 118; 119]. Earlier studies also suggested that the imbalance in Bacteroides and 

Firmicutes gut has been associated with increased autism severity in ASD patients [120]. 

However, this finding was not replicated in certain cohorts, possibly due to different 

living conditions and eating habits [121]. Pyrosequencing of fecal microflora of ASD 

children showed a higher abundance of Desulfovibrio species and Bacteroides vulgatus 
when compared with healthy controls [122]. Late-onset autism patients presented a high 

incidence of Clostridium and Ruminococcus species with a particular enrichment for 

Clostridium cluster groups I and XI and Clostridium bolteae [123]. The accumulation of 

neurotoxin-producing bacteria such as Clostridia are associated with ASD symptoms [124]. 

Toxic molecules released by such microbes affect serotonin signalling [125], potentially 

leading to ASD behavioral patterns such as decreased socialization, decreased response to 

pain, abnormal language, and self-abusive or repetitive behaviors. ASD-affected individuals 

show altered levels of other potentially toxic compounds produced by several bacteria (e.g., 

Bifidobacterium, C. difficile, and C. histolyticum) [126; 127; 128; 129]. Among them, 

increased abundance of urinary and fecal paracresol (p-cresol) and its conjugated derivative 

p-cresylsulfate inhibit the enzyme dopamine-beta-hydroxylase [130]. Additionally, increased 

Clostridia-derived metabolite 3-(3-hydroxyphenyl)-3-hydroxy propionic acid has been 

detected in ASD-affected individuals, potentially reflecting an altered catecholamine 

metabolism. Treatment with vancomycin and probiotic Bifidobacterium was associated with 

normalized metabolite levels, decreased constipation, and a reduction in severity of ASD 

features [131].

Obesity- or diet-induced changes in the offspring gut microbiome have been examined as 

a potential mediator of the association of maternal obesity with ASD. In rodent models, 

offspring of mothers who were fed high fat diets showed altered gut microbial composition 

and deficits in social behaviors and social reward pathways thought to be relevant to ASDs 
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[132]. Fecal inoculation from offspring whose mothers were fed a typical diet (through 

either cohabitation or fecal transplant) were associated with normalization of social (but not 

repetitive) behaviors [132].

The gut microbiome metabolizes three classes of short-chain fatty acids (SCFA): propionic 

acid (PPA), acetic acid, and butyric acid. PPA and SCFA in general are capable of 

gaining access to the brain and inducing widespread effects on CNS function, including 

neurotransmitter synthesis and release, calcium influx, intracellular pH maintenance, lipid 

metabolism, intercellular gating, immune activation, and gene expression [133]. Perfusion of 

PPA in rats induced ASD symptoms, supporting the importance of gut-acquired factors [119; 

134].

A small open-label clinical trial evaluated the impact of microbiota transfer therapy 

(MTT; a combination of antibiotics, a bowel cleanse, a stomach-acid suppressant, and 

fecal microbiota transplant) on gut microbiota composition, GI symptoms, and ASD 

symptoms in eighteen affected individuals. [135]. The GI symptom rating scale exhibited an 

approximately 80% decrease of GI symptoms at the end of treatment, including significant 

improvements in symptoms of constipation, diarrhea, indigestion, and abdominal pain [135]. 

Additionally, ASD symptoms improved significantly and remained constant 8 weeks after 

treatment ended [135]. The overall bacterial diversity and the abundance of Bifidobacterium, 

Prevotella, and Desulfovibrio among other taxa increased following MTT, and these changes 

persisted after treatment stopped [135]. Parracho and colleagues conducted a double-blind 

placebo crossover trial in the United Kingdom with 22 children with ASD aged between 

3–16 years using Lactobacillus plantarum WCFS as a probiotic [136]. Although no major 

differences were observed in GI symptoms, a significant increase in Lactobacilli/Enterococci 
and a decrease in the Clostridium coccoides were reported in the stool samples of children 

with ASD when compared with the placebo group.

Another interesting area of ASD research is related to maternal immune activation (MIA) 

triggered by infectious or infection like stimuli [137]. A MIA mouse model showed 

significant behavioral changes in offspring of potential relevance to ASD [29]. These 

changes are accompanied by altered gut microbial composition. Oral treatment with human 

Bacteroides fragilis improved the communicative and stereotyped behaviors, as well as 

altered intestinal permeability associated with microbial composition [29]. The behavioral 

deficits appeared to be due to the Clostridium-associated metabolite 4-ethylphenyl sulfate, 

a molecule like p-cresol (4-methylphenol) [29]. This is a chemically related metabolite 

reported being a possible urinary ASD biomarker [138; 139]. In another study conducted 

on ASD-affected children (N=22), a sugar-free diet and probiotic capsules of L. acidophilus 
were associated with significant improvement in concentration and the ability to follow 

instructions in affected patients [128; 140]. In an additional clinical trial, an oral liquid 

dose of vancomycin 500 mg/day and followed by probiotic therapy (a mixture of L. 
acidophilus, L. bulgaricus, and B. bifidum) was associated with an improvement in the 

cognitive functioning of ASD patients [141].

Beyond the gut environment, microbiome variation in other body sites was also investigated 

with respect to ASD. For example, certain components of the oral microbiome (abundance 
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of Rothia, Neisseria, Moraxella, Megasphaera, and Gemella) were associated with autism in 

children [142].

9. Bipolar Disorder

Bipolar disorder (BD) is a chronic mood disorder characterized by periods of abnormally 

elevated mood in addition to periods of depression, and it is associated with high morbidity 

[143]. Several lines of evidence support the presence of chronic low-grade inflammation 

among BD-affected persons, with increased plasma cytokines, soluble cytokine receptors, 

chemokines, acute phase reactants, and T-cell activation. It is unclear the extent to which 

these findings may be linked with dysbiosis.

In a study comparing the gut microbiota of 115 BD patients and 64 healthy controls 

[144], Faecalibacterium levels were decreased in BD patients and abundance was negatively 

correlated with self-reported symptoms of depression severity. In a separate study, higher 

microbial variation was observed in BD-affected patients when compared to healthy controls 

[145]. Among patients affected by episodes of both mania and depression, the relative 

increase of Escherichia coli and Bifidobacterium adolescentis was higher in individuals with 

manic episodes, while Stercoris was higher in individuals with depressive symptoms [145; 

146]. Flavonifractor genus was associated with BD patients [147]. However, no difference in 

gut microbiota were observed between unaffected first-degree relatives of BD patients and 

healthy controls [147].

Few studies have examined microbiome interventions in BD. An investigation of 20 

euthymic BD-affected individuals, who received a probiotic supplement over 3 months, 

showed significant improvement in cognition and psychomotor processing speed [148]. 

Additionally, one observational study of atypical antipsychotic treatment showed a 

decreased alpha diversity of gut microbiota in BD female patients and altered abundance 

of Lachnospiraceae and Akkermansia in the whole BD group [149].

10. Major Depressive Disorder

Major Depressive disorder (MDD) is the 4th leading course of disability around the world 

[150]. Multiple studies reported associations between microbiome variation and certain 

biological changes associated with MDD pathogenesis (e.g., neurotrophic factor alterations 

neuroanatomical abnormalities, and endocrine and immune system dysfunction) [151; 152]. 

Depression appears to be generally associated with reduced microbial diversity [153]. 

The relative abundance of Bacteroidetes, Proteobacteria, and Actinobacteria phyla were 

increased in MDD patients whereas that Firmicutes abundance was significantly reduced 

[152]. MDD group also showed elevated levels of Enterobacteriaceae and Alistipes but 

reduced levels of Fecalibacterium, which were also negatively associated with MDD 

symptoms [152]. Coprococcus, Pseudobutyrivibrio, Dorea, and Clostridium genera were 

reported as overrepresented in MDD patients [154]. Conversely, MDD-depleted bacterial 

genera include butyrate-producing bacteria like Dialister, Fecalibacterium, and Butyvibrio 
[155; 156]. In female MDD patients, it was observed enrichment for Bacteroidetes, 

proteobaeteria, and Fusobacteria and depletion for Firmicutes and Actinobacteria phyla 
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[157]. In mouse models, the microbiome profile associated with depressive symptoms has 

been associated with specific changes in microbial genes and changes in gut metabolism of 

carbohydrate and amino acids [158; 159]. The composition of gut microbiota is significantly 

altered in MDD mice versus healthy GF (germ-free) controls [153; 160]. In mouse 

models, LPS-administration induces neuroinflammatory changes that effect synaptic and 

non-synaptic plasticity in basolateral amygdala projection neurons associated with anxiety­

related behavior [161]. Additionally, the endocrine system communicates bidirectionally 

with the gut microbiota also via sex hormones, like androgens, estrogens, and others, 

which can influence MDD-related neuroinflammation [162; 163]. Indeed, androgens seem 

to exhibit anxiolytic properties whereas estrogens have been found to elevate HPA activity 

[164]. Fluctuations in levels of oxytocin are correlated positively with changes in the gut 

bacterial taxa whose abundance was altered in clinical depression [160].

Probiotics consumption for extended periods showed beneficial effects on depression-related 

behaviors, [165]. One of the other potential therapeutic approaches for depression based on 

FMT microbial manipulation is the. This therapeutic approach showed positive effects in 

treating Clostridium difficile mediated infection[166]. GF mice receiving FMT from patients 

with depression exhibited greater depressive behaviors compared to GF mice receiving FMT 

from healthy control individuals [158].

11. Schizophrenia

Schizophrenia (SCZ) is a chronic psychiatric disorder characterized by a range of symptoms, 

including delusions, hallucinations, disorganized thoughts, and cognitive deficits [167]. The 

role of microbial diversity in contributing to SCZ has been widely discussed. Imbalance 

of microbes produced either by pathogen invasion, stress, immune gene activation, 

or endothelial barrier compromise is associated cognitive impairments and has been 

hypothesized to occur in individuals with SCZ [168]. In 1845, Jean-Étienne Esquiro was 

the first to suggest that infectious diseases are involved in the vulnerability to psychoses 

[168]. More recently, SCZ risk has been associated with the exposure to neurotropic 

viruses (e.g., herpes simplex viruses, cytomegalovirus, Epstein-Barr virus, measles, and 

rubella) [169; 170; 171; 172]. Nevertheless, viral load in post-mortem brain samples did 

not show any significant difference between SCZ patients and healthy controls [173]. In 

addition to the established SCZ-associated pathogens, gut microbes could activate cytokine 

and complement systems, causing neuroinflammation and increasing the risk of psychotic 

symptoms [174]. In one study, maternal complement was elevated in peripheral blood at 

time of birth in mothers whose children went on to develop severe psychoses [175]. This 

complement activation during pregnancy can affect the development of neuronal networks 

[176]. Metagenomic studies showed increased fecal abundance of Lactobacillus among 

individuals with first-episode psychosis, as well as diminished response to treatment in those 

with the strongest evidence of dysbiosis [177]. Additionally, Lactobacillus phage phiadh 
showed increased abundance in the oropharyngeal microbiomes of SZ-affected individuals 

[177; 178].

Candida albicans and Saccharomyces cerevisiae were observed to be elevated in SCZ 

patients [179]. In a double-blind, placebo-controlled study, C. albicans was elevated in 
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SCZ and was associated with more severe cognitive impairments and psychiatric symptoms 

[180]. Probiotic treatment reduced C. albicans antibodies over the 14-week study period in 

males, but not in females.

Another study showed an association of the oropharyngeal microbe Ascomycota, being 

more abundant in SCZ patients than in non-affected individuals [181]. Significant 

enrichment of lactic acid-producing microbes like Candida and Eubacterium compared to 

Neisseria, Haemophilus, and Capnocytophaga, also suggests a specific dysbiosis signature 

in SCZ patients. Recently, the oropharyngeal microbiome showed an underrepresentation of 

Neisseria Weeksellaceae, and Prevotella in SCZ and individuals with manic episodes [51].

12. Substance Use Disorders

Gut dysbiosis has been reported among subjects with substance use disorders (SUD) 

and hypotheses have been made regarding whether these differences are consequences 

of substance use or they contribute to the psychopathology observed among the patients 

investigated [182]. As such, this section includes both studies of SUD-affected patients and 

the effects observed among users of addictive substances. Comparing intestinal microbiota 

in SUD patients and healthy controls, the species diversity index and the abundance 

of Thauera, Paracoccus, and Prevotella were increased in SUD individuals with over­

representation of microbial pathways related to translation, DNA replication and repair, 

and cell growth [183]. Changes in microbiome community composition suggest negative 

impact of alcohol dependence on gut microbiota [184]. Alcohol dependent subjects also 

show altered gut permeability, which is related to higher scores greater acute depression, 

anxiety, and alcohol craving after abstinence [185]. Gut permeability appears to induce 

neuroinflammation associated with changes in mood, cognition, and alcohol abuse [186]. 

Among the gut-derived bacterial products, the permeation of lipopolysaccharides and 

peptidoglycans was observed to stimulate certain inflammatory pathways in peripheral blood 

mononuclear cells associated with alcohol craving [187; 188].

While tobacco smoking generally decreases gut microbiome diversity, it increases the 

abundance of Proteobacteria, Clostridium, Bacteroides, and Prevotella [189]. Cigarette 

smoking is also associated with changes in the oral microbiome with differences between 

active smokers, former smokers, and never smokers. Active smokers show a depletion 

of Proteobacteria, Capnocytophaga, and Peptostreptococcus and Leptotrichia and an 

enrichment of Atopobium and Streptococcus [190]. Smoking-associated changes in oral 

microbiomes were related to changes in microbial genes associated with carbohydrate, 

energy, and xenobiotic metabolisms [190].

Taking the advantage of the resting-state functional magnetic resonance imaging technique 

for the analysis of brain functional networks, changes in brain functional connectivity 

(mainly including connectivity between brain default network and other task-positive 

networks) were observed to be associated with microbial imbalance caused by nicotine 

dependence in smokers [191]. A consistent association between gut microbiota and opioid­

related traits has been reported across multiple studies [192]. Mu-opioid receptors in neurons 

within the myenteric ganglia or on nerve terminals innervating smooth muscle cells appear 
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to affect analgesic tolerance to opioids [193]. In patients affected by type-2 diabetes, the 

abundance of Bifidobacterium and Prevotella genera in the gut microbiome appears to be 

regulated by the interaction of exogenous opioids with mu-opioid receptors in the gut [194]. 

In male C57Bl6/J mice treated with intermittent morphine, depletion of the gut microbiota 

showed increased neuroinflammation, reduced opioid analgesic potency, and impaired 

cocaine reward [195]. In mice, the bacterial depletion with oral gavage of an antibiotic 

cocktail reduced gut bacteria and morphine-induced gut permeability, also showing the 

ability to prevent tolerance while not altering naloxone withdrawal susceptibility [196]. In a 

self-directed intake model, a diet enriched for omega-3 polyunsaturated fatty acids increases 

microbial richness, phylogenetic diversity, and evenness, improving oxycodone-seeking 

behaviors [197].

In cannabis users, the abundance of Prevotella genera in gut microbiome was positively 

correlated with fluid cognition which is associated with the capacity of an individual to 

process information, flanker inhibitory control, working memory, and cognitive flexibility 

[198]. These associations were not present in cannabis non-users.

13. Conclusions

The study of the human microbiome in the context of psychiatric disorders is an emerging 

and promising field of study. To date, most studies are focused on the gut-brain axis 

and neuroinflammation, highlighting potential pathogenetic mechanisms in the context of 

psychiatric traits [63; 70]. Although there are a limited number of investigations, oral 

and skin microbiome can also affect mental health [56; 89; 199]. The current state of 

microbiome research in neuropsychiatry presents several major limitations. There is a 

general lack of statistical power in human studies due to the limited number of individuals 

tested [153]. Studies conducted examining the association of microbiome variation with 

psychiatric disorders often fail to account adequately for potential confounding factors, such 

as diet, age, sex, comorbidities, and their associated medications [200]. Another important 

limitation that is not limited to neuropsychiatry research in is the lack of established 

standards for microbiome analysis and interpretation that makes difficult to compare 

findings generated using different analytic frameworks [14; 15]. Although the number of 

associations between microbiome variation and psychiatric disorders is rapidly growing, 

there is a systematic lack of mechanistic studies to understand the underlying processes 

by which the human microbiome affects mental health. These should include human, in 
vitro, in vivo, and computational approaches focused on understanding the implications 

of microbiome function in the context of disease and behavior. A better comprehension 

of the relationship between the human microbiome and mental health will permit the use 

of many probiotics and prebiotics, which may augment the effects of current treatment 

approaches for neuropsychiatric disorders. This could particularly benefit a consistent 

portion of psychiatric patients not responding to current pharmacological therapies.
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Highlights

• The human microbiome in the context of psychiatric disorders is an emerging 

field of study.

• The gut-brain axis has been associated with several neuropsychiatric 

disorders.

• Oral and skin microbiome could affect mental health via inflammatory 

pathways.

• Large samples and appropriate designs are needed to verify the microbiome­

brain association.
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Figure 1: 
Microbiome across different anatomical sites and associated psychiatric disorders
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Table 1:

Microorganisms, anatomical sites, and associated psychiatric disorders.

Microorganism Type Anatomical sites Psychiatric Disorders

Lactobacillus fermentum Commensals Gut AD

Lactobacillus acidophilus AD, ASD

Lactobacilli

Roseburia inulinivorans AN

Roseburia

Methanobrevibacter smithii

Ruminococcus AN, ASD

B. bifidum ASD

Bifidobacterium

Collinsella stercosis

LactoBacillus bulgaricus

Lactobacillus fermentum

Lactobacillus plantarum WCFS

Veillonella

Bifidobacterium adolescentis

Preveotella

Akkermansia BD

Faecalibacterium

Flavonifractor

Lachnospiraceae

Butyrivibrio MDD

Coprococcus

Dorea

Pseudobutyrivibrio

Lactobacillus phage phiadh SZ

Leptotrichia Gut, Oral Cavity SUD

Peptostreptococcus Gut, Oral cavity, Skin, Vagina

Propionibacterium acnes Gut, Skin AD

Corynebacterium Skin ASD, AD, MDD

Weeksellaceae SZ

Enterobacteria Pathogens Gut AD, ASD

Clostridium difficle

Enterobacter AD, MDD, ASD

Clostridium AN, ASD

Clostridium bolteae ASD

Klebsiella

Clostridium coccoides
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Microorganism Type Anatomical sites Psychiatric Disorders

Clostridium histolyticum

Escherichia coli

Alistipes MDD

Measles morbillivirus SZ

Saccharomyces cerevisiae Gut, Skin SZ

Streptococcus Oral cavity ADHD, ASD, BD, MDD

Neisseria ASD

Megasphaera ASD, SZ

Moraxella ASD, SZ, BD

Capnocytophaga SUD

Rothia

Capnocytophaga SZ

Haemophilus

Herpes simplex virus Oral cavity, Skin, Vagina

Cytomegalovirus Oral cavity, Urinary tract

Epstein–Barr virus Oral cavity, Vagina

Rubella Urinary tract

Candida albicans Vagina

Abbreviations- AD: Alzheimer’s disease, ADHD: Attention Deficit Hyperactivity Disorder, AN: Anorexia Nervosa, ASD: Autism Spectrum 
Disorder, BD: Bipolar Disorder, MDD: Major Depressive Disorder, Schizophrenia: SZ, SUD- Substance Use Disorder.
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