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Abstract

Posttraumatic stress disorder (PTSD) is a complex mental disorder afflicting approximately 7% 

of the population. The diverse number of traumatic events and the wide array of symptom 

combinations leading to PTSD diagnosis contribute substantial heterogeneity to studies of 

the disorder. Genomic and complimentary–omic investigations have rapidly increased our 

understanding of the heritable risk for PTSD. In this review, we emphasize the contributions of 

genome-wide association, epigenome-wide association, transcriptomic, and neuroimaging studies 

to our understanding of PTSD etiology. We also discuss the shared risk between PTSD and other 

complex traits derived from studies of causal inference, co-expression, and brain morphological 

similarities. The investigations completed so far converge on stark contrasts in PTSD risk between 

sexes, partially attributed to sex-specific prevalence of traumatic experiences with high conditional 

risk of PTSD. To further understand PTSD biology, future studies should focus on detecting 

risk for PTSD while accounting for substantial cohort-level heterogeneity (e.g., civilian versus 

combat-exposed PTSD cases or PTSD risk among cases exposed to specific traumas), expanding 

ancestral diversity among study cohorts, and remaining cognizant of how these data influence 

social stigma associated with certain traumatic events among underrepresented minorities and/or 

high-risk populations.
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Introduction

The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 

defines a traumatic event as direct or indirect exposure to threatened death, serious injury, 

or sexual violence and includes a new category for trauma- and stressor-related disorders 

(i.e., disorders in which exposure to a traumatic or stressful event is listed explicitly as a 

diagnostic criterion) (American Psychiatric Association, 2013). Posttraumatic stress disorder 

(PTSD) is the most recognized among these diagnoses. According to the DSM-5, PTSD 
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diagnosis includes multiple criteria (Table 1): stressor, intrusion symptoms, avoidance, 

negative alterations in cognitions and mood, alterations in arousal and reactivity, duration, 

functional significance, and exclusion. In addition to the diagnostic criteria, there are two 

additional specifications PTSD-affected patients are expected to experience: dissociative 

specification (depersonalization: being an outside observer of or detached from oneself; 

derealization: experience of unreality, distance, or distortion) and delayed specification (full 

diagnostic criteria are not met until at least six months after the trauma(s), although the 

onset of symptoms may occur immediately). Due to the presence of multiple diagnostic 

symptoms, PTSD is among the most heterogeneous psychiatric diagnoses. There are 

636,120 possible PTSD diagnostic combinations (i.e., any set of symptoms for a disorder 

such that an individual meets criteria for that disorder if he or she exhibits that set 

of symptoms) and 52% of them (N=336,000) are disjoint combinations (i.e., diagnostic 

combinations occurring among sets of symptoms that have no overlap) (Olbert, Gala, & 

Tupler, 2014). Since its introduction in the DSM classification, several critiques were made 

with respect to PTSD diagnosis (Ball & Stein, 2012). These include: symptom overlap, 

high rates of comorbidity with other psychiatric disorders, the inability of PTSD diagnostic 

criteria to reflect the complexity of trauma response, and the variability of PTSD construct 

across contexts and cultures (Frueh, Elhai, & Acierno, 2010; Papa, Neria, & Litz, 2008). 

Although these criticisms represent valid viewpoints, DSM diagnostic criteria are used in 

most of the human studies of PTSD. Molecular studies of PTSD can help disentangle the 

complexities of PTSD diagnosis through the understanding of the biological basis linking 

exposure to traumatic events to psychiatric disorders and physical health outcomes. Here, 

we review the progress made by genomic research of PTSD from twin studies to large­

scale genome-wide association studies (GWAS; Figure 1). We also describe investigations 

focused on other omics domains and brain imaging and their contributions to understanding 

the molecular changes associated with PTSD in brain and non-brain tissues. Finally, we 

conclude by discussing the clinical and therapeutic implications of PTSD and trauma 

genomic research.

Epidemiology

General population studies have shown that a large proportion of people in developed 

countries have been exposed to at least one traumatic event in their lifetime (estimates 

from 28 to 90%) with 82.7% prevalence of exposure to any traumatic event in the United 

States (Benjet et al., 2016). There are known differences among trauma types with respect 

to the consequent PTSD risk. In surveys from the World Health Organization (WHO), 

the investigators obtained representative data on trauma-specific PTSD from 24 countries 

(68,894 subjects) and assessed 29 lifetime traumas (Kessler et al., 2017). Trauma involving 

interpersonal violence had the highest risk. PTSD burden, determined by multiplying 

trauma prevalence by trauma-specific PTSD risk and persistence, was 77.7 person-years/100 

respondents. The trauma types with the highest proportions of this burden were rape 

(13.1%), other sexual assault (15.1%), being stalked (9.8%), and unexpected death of a 

loved one (11.6%). The broad category of intimate partner sexual violence accounted for 

nearly 42.7% of all person-years with PTSD. Due to trauma-specific PTSD risk, the disease 

prevalence varies depending on population and trauma type. In the North American general 

Polimanti and Wendt Page 2

Psychol Med. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adult population, lifetime PTSD prevalence ranges from 6% to 9% while the one-year 

prevalence is between 3.5% and 5% (Sareen, 2020). However, ~2% prevalence was reported 

by WHO for upper-middle income and lower-middle income countries included in their 

survey (Koenen, Ratanatharathorn, et al., 2017). In contrast, a recent systematic review of 

PTSD prevalence studies in Africa found an overall current pooled prevalence of PTSD of 

25% (Ng et al., 2020).

In addition to trauma-specific PTSD risk, several pre-trauma risk factors can influence 

PTSD development: gender, age at trauma, education, socioeconomic status, psychiatric 

comorbidities, being in a confiding relationship as an adult, history of previous traumatic 

experience, childhood adversity and abuse, social support, and initial reaction severity 

to the traumatic event (Wild et al., 2016). Accordingly, the interplay between traumatic 

events and pre-trauma risk factors can consistently affect the frequency with which PTSD 

occurs. For instance, PTSD risk shows evident differences between sexes: women are four 

times more likely to develop PTSD when compared with men when accounting for the 

exposure to traumatic events. Considering specific traumas, PTSD rates between women 

and men are similar for accidents, natural disasters, and the sudden death of a loved one 

(Sareen, 2020). Differently, although women are >10-times more likely as men to be raped, 

PTSD incidence after rape is higher in men than that observed in women. An opposite 

scenario for sex-specific PTSD incidence is present for molestation and physical assault 

(Chivers-Wilson, 2006). PTSD is associated with several psychiatric comorbidities including 

depression (Dunn, Nishimi, Powers, & Bradley, 2017), substance abuse and dependence 

(Roberts, Roberts, Jones, & Bisson, 2015), and suicidal behaviors (Victor & Klonsky, 2014). 

Additionally, PTSD has also been implicated in the etiology of various physical disorders 

(Boscarino, 2004; Gupta, 2013; Lohr et al., 2015) such as cancer (Roberts et al., 2019; 

Shand, Cowlishaw, Brooker, Burney, & Ricciardelli, 2015), gastrointestinal disorders (Savas 

et al., 2009), and cardiovascular disease (Koenen, Sumner, et al., 2017). However, the 

studies regarding the physical health sequelae of PTSD are in some cases conflicting and 

there is still an open debate about possible explanations.

Pedigree Analyses

The study of PTSD familiarity permitted researchers to understand the genetic and 

environmental factors involved in the propensity to traumatic events and the vulnerability 

to PTSD. In particular, studies comparing monozygotic (MZ) and dizygotic (DZ) twins 

partitioned genetic factors into additive and non-additive effects to understand shared 

environmental and non-shared environmental effects (Afifi, Asmundson, Taylor, & Jang, 

2010). In line with the sex difference observed in PTSD epidemiology (higher prevalence in 

women) (Rivollier et al., 2015), twin studies observed that, while sex-combined cohorts 

presented a 40–60% heritability, all-female cohorts showed higher PTSD heritability 

estimates than all-male cohorts (~70% vs. ~30%, respectively) (Duncan, Cooper, & Shen, 

2018). As mentioned, PTSD risk is influenced by the type of trauma and several pre-trauma 

risk factors. Accordingly, the variation of heritability estimates observed across different 

cohorts is likely to be partially affected by the characteristics of the samples investigated. 

Additionally, exposure to certain traumatic experiences appears to present a consistent 

familiarity (Stein, Jang, Taylor, Vernon, & Livesley, 2002). A study of 222 monozygotic 
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and 184 dizygotic twin pairs demonstrated that the variance of assaultive traumatic events 

(e.g., robbery, being held captive, being beaten up, and sexual assault) is accounted by 

20% additive genetic factors, 21% shared environmental factors, and 58% non-shared 

environmental factors (Stein et al., 2002). Conversely, non-assaultive traumatic events 

(e.g., sudden death of a family member, motor vehicle accident, fire, tornado, flood, and 

earthquake) did not have a detectable genetic component and were accounted by shared 

and non-shared environmental effects (39% and 61%, respectively) (Stein et al., 2002). The 

environmental components of assaultive and non-assaultive traumatic events appear to be 

mostly independent of each other: the shared environmental correlation was 0.31 and the 

non-shared environmental correlation was estimated at −0.20 (Stein et al., 2002). On the 

other hand, the genetic components of PTSD and the exposure to certain traumatic events 

are highly overlapping (Smoller, 2016). They also overlap with the genetic component 

of resilience, i.e. the ability to maintain or regain normal psychological and physical 

functioning in the face of adversity (Wu et al., 2013). In 3,318 male twin pairs from the 

Vietnam Era Twin Registry assessed with the PTSD Checklist and the Connor‐Davidson 

Resilience Scale‐10, PTSD and resilience shared a single genetic factor accounting for 59% 

of their correlation (Wolf, Miller, et al., 2018). These shared genetic factors are not unique 

to trauma exposure, PTSD, and resilience, but they also overlap with other psychiatric 

disorders. A study conducted in 2,591 participants (996 female and 536 male twins; 625 

female and 434 male nontwin siblings) reported a high genetic overlap of high-risk trauma 

exposure with both PTSD and major depressive disorder (MDD) (Sartor et al., 2012). Recent 

twin studies focused their attention on the genetic overlap of PTSD with insomnia and 

sleep duration (Cox, Taylor, Strachan, & Olatunji, 2020; McCall et al., 2019). A consistent 

phenotypic covariance of PTSD symptoms and insomnia was explained by genetic factors 

(36–44%) with a significant genetic correlation of insomnia with PTSD re-experiencing 

and avoidance symptoms (Cox et al., 2020). In a cohort including 1,865 monozygotic 

and 758 dizygotic twin pairs from the community-based Washington State Twin Registry, 

the variance in sleep duration attributable to the shared environment was moderated by 

PTSD severity, while the variance in PTSD symptoms attributable to additive genetics was 

moderated by sleep duration (McCall et al., 2019).

In addition to twin-based studies, family-based investigations contribute to characterizing 

the genetic vulnerability to PTSD (Skelton, Ressler, Norrholm, Jovanovic, & Bradley­

Davino, 2012). For example, adult children of PTSD cases exposed to extremely severe 

traumatic events (e.g., Holocaust survivors and Cambodian refugees) received more 

frequently a PTSD diagnosis than adult children of individuals without PTSD that were 

exposed to the same traumatic experience (Sack, Clarke, & Seeley, 1995; Yehuda, Halligan, 

& Bierer, 2001). An important limitation of pedigree analyses is that PTSD can be assessed 

only in individuals that experience a traumatic event and we cannot determine the PTSD 

status of trauma-unexposed subjects.

From Candidate Genes to Genome-wide Investigations

Genetic liability to PTSD is characterized by the effect of thousands of loci across the 

genome. These variants present individual small effects on the overall disease risk. To 

identify these effects, genetic association studies test the allele frequency of genetic variants 
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with respect to binary and quantitative traits (e.g., PTSD diagnosis and PTSD severity, 

respectively). Over the years, the designs of association studies were developed based on 

the genotyping technologies available. Early genetic association studies were based on the 

ability to genotype a limited number of variants in small cohorts. The genetic variants 

of interest were selected considering genes included in biological pathways known from 

the scientific literature to be related to the pathogenesis of PTSD and related psychiatric 

disorders. This particular approach is known as “candidate gene”. The first candidate 

gene study of PTSD observed a positive association of DRD2*A1 allele in two samples 

including a total of 37 PTSD cases and 19 controls (Comings, Muhleman, & Gysin, 

1996). Because of the genotyping technology progress, larger studies reported associations 

of variants across multiple genes expected to play a key role in PTSD pathogenesis: 

serotonin transporter gene (SLC6A4) (Kilpatrick et al., 2007), dopamine transporter gene 

(SLC6A3) (Segman et al., 2002), catechol-O-methyltransferase gene (COMT) (Kolassa, 

Kolassa, Ertl, Papassotiropoulos, & De Quervain, 2010), steroid receptor chaperone FK506 

binding protein 5 (FKBP5) (Zhang et al., 2020), adenylate cyclase activating polypeptide 1 

(ADCYAP1) gene (Ressler et al., 2011), and brain-derived neurotrophic factor (BDNF) gene 

(Zhang et al., 2006). Similar to other complex traits, candidate gene studies of PTSD are 

often inconsistent across the different samples investigated (Sheerin et al., 2020).

With the advent of genome-wide arrays and genotype imputation based on large reference 

panels, genome-wide analyses permitted psychiatric geneticists to move from hypothesis­

driven studies (candidate gene design) to hypothesis-generating studies (GWAS design). 

Genetic studies based on such wide screening can uncover loci in molecular pathways that 

were not previously expected to be associated with PTSD, generating novel hypotheses 

about disease pathogenesis. Between 2013 and 2017, several PTSD GWAS with sample size 

ranging from 147 to 13,690 participants identified risk alleles in several genes, including 

RORA (RAR Related Orphan Receptor A) (Logue et al., 2013), TLL1 (Tolloid Like 1) (Xie 

et al., 2013), lincRNA AC068718.1 (long intergenic non-protein coding RNA AC068718.1) 

(Guffanti et al., 2013), PRTFDC1 (Phosphoribosyl Transferase Domain Containing 1) 

(Nievergelt et al., 2015), ANKRD55 (Ankyrin Repeat Domain 55) (Stein et al., 2016), and 

ZNF626 (zinc finger protein 626) (Stein et al., 2016).

Although GWAS are powerful tools, their gene discovery can be affected by confounders 

(systematic biases affecting the analyses) (Sul, Martin, & Eskin, 2018), winner’s curse 

(overestimation of genetic effects) (Palmer & Pe’er, 2017), and polygenicity (thousands 

of variants with small effects) (Holland et al., 2020). A better understanding of the 

genetics of complex traits permitted investigators to establish the unreliability of results 

generated by candidate gene studies and relatively-small GWAS of PTSD. Indeed, similarly 

to other complex traits, findings of underpowered genetic association studies of PTSD 

independently from their design are likely to be false positive results. To conduct statistically 

powerful GWAS, investigators analyzed the massive cohorts via collaborative initiatives and 

large biobanks. The Psychiatric Genomics Consortium (PGC) is the largest collaborative 

experiment in the history of psychiatry, including >800 investigators from >150 institutions 

in >40 countries (Sullivan et al., 2018). Among PGC workgroups, PGC-PTSD investigators 

focus on the harmonization of genome-wide data from multiple studies to conduct powerful 

PTSD GWAS meta-analyses. In 2017, the first PGC-PTSD GWAS was finalized including 
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20,730 individuals from 11 cohorts (Duncan, Ratanatharathorn, et al., 2018). Although 

this was the first large PTSD GWAS meta-analysis, the sample size was too limited to 

identify associations surviving genome-wide multiple testing correction. However, these 

data were powerful enough to conduct the first analyses of PTSD polygenic inheritance. 

PGC-PTSD investigators reported higher PTSD SNP-heritability (i.e., the proportion of 

phenotypic variance attributable to the additive effects of common genetic variants) in 

women and significant genetic correlation (rg; i.e., the proportion of phenotypic variance 

that two traits share due to common genetic causes) of PTSD with schizophrenia and 

MDD (Duncan, Ratanatharathorn, et al., 2018). After this first GWAS meta-analysis, 

access to large biobanks rapidly increased the number of PTSD-informative individuals 

with genome-wide information. In 2019, a GWAS of PTSD reexperiencing symptoms 

was conducted in >165,000 participants of the US Million Veteran Program (MVP) 

(Gelernter et al., 2019). MVP investigators identified eight distinct risk alleles and 30 gene­

based associations; reported 400 significant genetic correlations with psychiatric disorders, 

behavioral traits, and other complex phenotypes; and observed functional enrichments for 

cortex, hypothalamus, amygdala, hippocampus, basal ganglia medium, and spiny neurons 

in the striatum (Gelernter et al., 2019). Leveraging reexperiencing-symptom data from 

117,900 UK Biobank participants of European descent, the MVP findings were replicated 

at a single-variant level and at a polygenic level (rg= 0.88, SE = 0.07). The same year a 

second PTSD GWAS meta-analysis was finalized by PGC-PTSD investigators (Nievergelt 

et al., 2019). This novel study included over 30,000 PTSD cases and 170,000 controls 

(combining UK Biobank with 60 other datasets), identifying ancestry- and sex-specific risk 

loci (African ancestry, European ancestry, and male sample) and confirming that PTSD 

SNP-based heritability varies by sex with estimates ranging around 5–20% (Nievergelt 

et al., 2019). To investigate the genetics of PTSD in diverse populations, PGC-PTSD 

investigators developed a framework for improving the inclusion of admixed individuals 

in large-scale association studies, using a local-ancestry informed regression model to 

generate ancestry-specific effect size estimates (Atkinson et al., 2020). Recently, MVP 

investigators completed a PTSD GWAS analyzing data from more than 250,000 MVP 

participants and testing a validated electronic health record-based algorithmically-defined 

PTSD diagnosis phenotype (48,221 cases and 217,223 controls), and PTSD quantitative 

symptom phenotypes (212,007 individuals) (Stein et al., 2019). Beyond the risk loci 

identified with respect to case-control and quantitative phenotypes, this novel MVP study 

showed that PTSD symptom sub-domains share most of their genetic liability (rg 0.93 – 

0.98) and identified novel potential treatment from a drug repositioning analysis conducted 

with respect to the loci identified (CRHR1 antagonist; TCF4: darinaparsin; TCF4-PLXNA1: 

otenzepad; PLEKHM1: dopamine receptor antagonists, acetylcholine receptor antagonists, 

and angiotensin receptor antagonists) (Stein et al., 2019). Findings from PGC and MVP 

PTSD GWAS are summarized in Figure 2. Novel methods are being developed to conduct 

multivariate genome-wide investigations of complex traits, increasing the statistical power 

and to model the pleiotropy widespread across the human genome (Grotzinger et al., 2019). 

A multivariate GWAS conducted in a military cohort combining pre- and post-deployment 

biochemical and behavioral phenotypes identified novel loci associated with human stress 

response (Schijven et al., 2019). With respect to rare variants, although whole-exome 

sequencing (WES) is very rarely used to investigate PTSD, a study identified rare variants 
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located in TROVE2 gene as associated with emotional memory and PTSD (Heck et al., 

2017).

In addition to the relevant biology uncovered by genome-wide analyses, the data generated 

are being used as a base to conduct follow-up analyses to disentangle further the 

pathogenesis of PTSD. In a study focused on genetically regulated gene expression 

comparing 29,539 PTSD cases and 166,145 controls (Huckins et al., 2020), a substantial 

genetic heterogeneity based on ancestry, cohort type (military versus civilian), and sex was 

observed, but two significant tissue-gene associations were observed: ZNF140 (zinc finger 

protein 140) is predicted to be upregulated in whole blood, and SNRNP35 (small nuclear 

ribonucleoprotein U11/U12 subunit 35) is predicted to be downregulated in the dorsolateral 

prefrontal cortex.

Leveraging data from large-scale GWAS, several studies have been conducted to investigate 

PTSD comorbidities, applying mainly two approaches: linkage score regression to calculate 

genetic correlation (Bulik-Sullivan et al., 2015) and Mendelian randomization (MR) for 

causal inference (Smith & Ebrahim, 2003). With respect to PTSD sex differences, the 

polygenic component of body shape and reproductive behaviors appear to be associated 

with PTSD in women with potential evidence linking body shape and sexual trauma to 

PTSD (Polimanti et al., 2017). As shown by twin studies (Cox et al., 2020; McCall et al., 

2019), there is a genetic overlap of PTSD with insomnia and sleep duration. GWAS data 

confirmed a moderate genetic correlation of PTSD with insomnia symptoms (rg range 0.36–

0.49), oversleeping (rg range 0.32–0.44), undersleeping (rg range 0.48–0.49), but no causal 

effects were observed using the MR approach applied to the first PGC-PTSD GWAS (Lind 

et al., 2020). A causal inference analysis based on PGC-PTSD GWAS demonstrated that 

this genetic overlap between PTSD and educational attainment is due to a negative causal 

effect of socioeconomic status (measured as household income) on PTSD (Polimanti et al., 

2019). Using a similar causal-inference approach, certain blood metabolites showed putative 

causal effects on PTSD (Carvalho et al., 2020). A more complex network of bidirectional 

associations was observed among PTSD, serum C-reactive protein, childhood support, and 

socioeconomic status (Muniz Carvalho et al., 2020). Leveraging a different GWAS-based 

approach, investigators also reported that the comorbidity between PTSD and late-onset 

Alzheimer’s disease may be due to common genetic mechanisms involved in immune 

response (Lutz, Luo, Williamson, & Chiba-Falek, 2020).

Gene-by-Environment Interaction

The interplay of genetic susceptibility with traumatic experiences and pre-trauma risk 

factors is expected to play a key role in the PTSD pathogenesis. Numerous gene-by­

environment (GxE) studies of PTSD have been conducted testing candidate genes (e.g., 

FKBP5, BDNF, and COMT) (Jin, Jeon, Hyun, & Lee, 2019; van Rooij et al., 2016; Wang, 

Shelton, & Dwivedi, 2018). Similarly to candidate gene association studies, these GxE 

investigations present the same important limitations due to the lack of power and the 

potential presence of systematic bias from selection of candidate loci and environmental 

moderator(s) (Border et al., 2019). Some genome-wide studies explored the genetic interplay 

of traumatic experiences and PTSD with respect to other psychiatric traits. In a total sample 
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of >24,000 participants, a genome-wide gene-by-trauma interaction analysis of alcohol 

misuse identified PRKG1 (protein kinase cGMP-dependent 1) as a risk locus modulating 

the effect of trauma exposure (Polimanti, Kaufman, Zhao, Kranzler, Ursano, Kessler, 

Gelernter, et al., 2018). The homolog of this locus in Drosophila melanogaster (foraging 
gene) is well-known, because its activity controls synaptic transmission tolerance to acute 

stress (Burns et al., 2012). Additionally, the polygenic component of bipolar disorder and 

schizophrenia seemed to moderate the effect of trauma exposure on alcohol abuse with 

high voltage-gated calcium channel activity and Beta1/Beta2 adrenergic receptor signaling 

as key molecular pathways (Polimanti, Kaufman, Zhao, Kranzler, Ursano, Kessler, Stein, et 

al., 2018). Recently, a multivariate GEWIS investigated the genetic interplay of traumatic 

experience and posttraumatic stress with respect to suicidality, identifying risk loci and 

sex-specific cell-type transcriptome enrichments related to the potential role of extracellular 

matrix biology and synaptic plasticity as biological mediators (Frank R. Wendt et al., 

2020). A study showed enrichments for excitatory synaptic transmission and plasticity in the 

interaction between MVP re-experiencing PRS and attachment style with respect to PTSD 

symptoms assessed in the National Health and Resilience in Veterans Study (Tamman et 

al., 2020). Investigators have also begun to characterize the genetic architecture of traumatic 

experiences that appears to have a strong genetic overlap with PTSD and other psychiatric 

disorders and may be linked to externalizing behaviors or to a greater likelihood of reporting 

maltreatment (Dalvie et al., 2020). Additionally, traumatic experiences appear to affect also 

the genetic liability to other psychiatric disorders. A study conducted in the UK Biobank 

reported that MDD SNP-heritability is higher in individuals that reported trauma with a 

genetic overlap among trauma exposure, body composition, and MDD (Coleman et al., 

2020). Further studies will be needed to understand how to disentangle the genetic and the 

environmental components of traumatic experiences and their effect on PTSD risk.

Epigenetics

The development of high-throughput technologies expanded the possibilities across different 

genomic features (Hasin, Seldin, & Lusis, 2017). Differently from genetic variation, other 

omics changes can be related to causative mechanisms (i.e., the molecular change is causal 

with respect to the trait-of-interest) or to downstream consequences (i.e., the molecular 

change is induced by the trait) with a consistent overrepresentation of the latter with respect 

to the former and accordingly often have higher effect size. With respect to PTSD research, 

epigenetic variation appears to be an obvious target because of its potential ability to 

reflect the molecular changes induced by traumatic events. Epigenome-wide association 

studies (EWAS) on brain specimens are expected to be informative for understanding 

PTSD pathogenesis, but there is limited availability of such samples and there may be 

also issues regarding the transferability of potential brain biomarkers to peripheral tissues 

of living participants. Accordingly, most EWAS are being conducted on peripheral tissues, 

mainly whole blood and saliva. Several candidate-gene and small PTSD EWAS have been 

performed (Zannas, Provencal, & Binder, 2015), but, similarly to what observed when the 

same designs were applied to genetic data, their results are likely to be affected by low 

statistical power and unaccounted confounders. Due to the well-known impact of PTSD 

among military personnel (Zang et al., 2017), several epigenetic studies have focused their 
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attention on understanding whether there are specific epigenetic patterns of PTSD between 

individuals exposed to combat traumas and non-combat civilian traits (Hammamieh et al., 

2017; Kuan, Waszczuk, Kotov, Marsit, et al., 2017; Mehta et al., 2013; Yang et al., 2013). 

In a cohort of military veterans (378 lifetime PTSD cases and 135 controls), an epigenome­

wide significant association at cg19534438 in the gene G0S2 (G0/G1 switch 2) was 

observed and replicated in other military cohorts (Logue et al., 2020). A longitudinal PTSD 

EWAS conducted with respect pre- and post-deployment of 532 military participants showed 

that combat-related PTSD is associated with distinct methylation patterns mainly related to 

loci involved in the immune system (Snijders et al., 2020). Conversely, in civilian cohorts 

(545 participants), whole blood-derived DNA methylation levels at CpG sites located in 

HGS (hepatocyte growth factor-regulated tyrosine kinase substrate) and NRG1 (neuregulin 

1) genes were associated with current PTSD (Uddin et al., 2018). Although the findings 

reported were replicated in some cases, they could be still due to unaccounted confounders, 

the limited sample size, or to differences in temporal stability of methylation signatures 

over time. PGC-PTSD workgroup is leading the largest collaborative effort to identify 

reliable epigenetic associations. Additionally, since the epigenetic variation is expected to be 

affected by many potential confounders, the PGC-PTSD workgroup developed a multi-site 

analysis pipeline to account adequately for ancestry population stratification and type I 

error inflation (Ratanatharathorn et al., 2017). In the PGC-PTSD EWAS meta-analysis (796 

PTSD cased and 1,100 trauma-exposed controls from military and civilian cohorts) (Smith 

et al., 2020), ten epigenome-wide significant associations were observed in genes previously 

liked to other psychiatric disorders. Four signals mapped within AHRR (aryl-hydrocarbon 

receptor repressor) locus, which is well-known to present large methylation changes in 

response to tobacco smoking. The AHRR epigenetic associations observed in PGC-PTSD 

EWAS appeared to be independent of smoking status and were stronger in non-smokers 

than in smokers (Smith et al., 2020). Additionally, in a subsample with metabolomics data, 

AHRR methylation was associated with kynurenine level (an inflammatory marker), which 

was lower in PTSD subjects than in controls (Smith et al., 2020).

Epigenetic variation can also be used to assess accelerated cellular aging. Traumatic 

experience and posttraumatic stress are expected to have an impact on cellular regulation 

accelerating certain negative outcomes. In two studies conducted on US military veterans, 

accelerated DNA methylation aging was associated with different PTSD symptoms 

(avoidance, numbing, and hyperarousal) (Wolf et al., 2019; Wolf, Logue, et al., 2018). 

However, the pattern observed across the two studies was not completely concordant (i.e., 

the symptoms reported as associated were not the same). Additionally, differences were 

also observed across different algorithms used to estimate the accelerated DNA methylation 

aging. In 2018, a large PGC-PTSD meta-analysis across nine cohorts including a total 

of 2,186 participants from civilian and military cohorts reported that traumatic stress is 

associated with advanced epigenetic age and this relationship may be due to the function of 

immune cells (Wolf, Maniates, et al., 2018).

Growing evidence is highlighting the potential role of transgenerational effects of 

paternal exposure to stress vs. positive stimuli on the behavioral, affective, and cognitive 

characteristics of their progeny (Yeshurun & Hannan, 2019). These mechanisms appear to 

be related to sperm-specific epigenetic mechanisms (e.g., DNA methylation changes and 
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variation small non-coding RNAs) (Yeshurun & Hannan, 2019). However, transgenerational 

epigenomics is in its infancy and further studies will be needed to understand the role of 

parental traumatic stress in the progeny’s physical and mental health.

Transcriptomics

Transcriptomic analyses are also contributing to understand the molecular changes 

associated with PTSD and traumatic experiences. A blood-based transcriptomic analysis 

comparing 229 PTSD and 311 controls showed co-expression networks related to specific 

functional modules depending on sex and modes of trauma: wound-healing module 

downregulated in men exposed to combat traumas; IL-12-mediated signaling module 

upregulated in men exposed to interpersonal-related traumas; modules associated with lipid 

metabolism and mitogen-activated protein kinase activity upregulated in women exposed 

to interpersonal-related traumas (Breen et al., 2018). Shared PTSD functional network 

modules were detected with respect to cytokine, innate immune, and type I interferon 

pathways (Breen et al., 2018). In an independent whole-blood transcriptome-wide study 

conducted in 324 World Trade Center responders (Kuan, Waszczuk, Kotov, Clouston, et 

al., 2017), a polygenic expression achieved sensitivity/specificity of 0.92/0.51, respectively 

for identifying current PTSD with current and past PTSD groups scoring higher than 

trauma-exposed controls without any history of PTSD. In a subset of the same cohort (39 

World Trade Center responders) (Kuan et al., 2019), cell-specific and shared differentially 

expressed genes across four immune cell subpopulations (CD4T, CD8T, B cells, and 

monocytes) and enrichments for pathways related to mast cell activation and regulation 

in CD4T, interferon-beta production in CD8T, and neutrophil-related gene sets in monocytes 

were reported. In prefrontal cortex tissues from 22 donors with PTSD and 22 matched non­

PTSD control donors, a study observed lower relative expression of TSPO and microglia­

associated genes TNFRSF14 and TSPOAP1 in the female PTSD subgroup (Bhatt et al., 

2020). In a recent study analyzing four prefrontal cortex subregions, a gene network of 

downregulated interneuron transcripts was associated with PTSD with converging evidence 

with MVP GWAS results related to the interneuron synaptic gene ELFN1 (Girgenti et al., 

2021).

Neuroimaging

To investigate further the neurobiology of PTSD, genetic investigations can integrate 

information regarding brain structural and functional variation from imaging techniques. 

The study of brain imaging phenotypes in the context of PTSD genetics can lead to 

a more comprehensive understanding of the interplay between traumatic experiences 

and PTSD vulnerability. The PGC-PTSD workgroup joined forces with the ENIGMA 

(Enhancing NeuroImaging Genetics through Meta-Analysis) consortium to combine their 

different expertise to dissect the pleiotropic mechanisms linking PTSD and brain imaging 

phenotypes (Nievergelt et al., 2018). In an initial study conducted in a small sample (66 

PTSD cases and 91 non-PTSD controls) (Morey et al., 2017), pleiotropic associations 

were observed between caudate volume and childhood trauma and between right lateral 

ventricular volume and lifetime alcohol use disorder. Leveraging ENIGMA and PGC-PTSD 

genome-wide association statistics, novel PTSD risk loci were identified when accounting 
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for the genetic associations of putamen volume, supporting a possible involvement for 

the glutamatergic system (van der Merwe et al., 2019). Recently, ENIGMA-PGC-PTSD 

investigators investigated hippocampal markers of PTSD, depression, and the interaction 

of these conditions across 31 cohorts worldwide (N=3,115) (Salminen et al., 2019). Their 

findings highlighted that the comorbidity of PTSD and depression is strongly associated 

with hippocampal volumetry with the latter having a larger contribution than the former.

Future Perspectives

There are several challenges we need to overcome before translating molecular findings into 

PTSD clinical practice. There is still a consistent missing heritability (i.e., the difference 

between twin-based and SNP-based heritability estimates) with respect to PTSD genetics. 

Whole-genome sequencing data may be able to address this, improving our ability to 

investigate uncommon genetic variants in low LD regions (Wainschtein et al., 2019). 

Additionally, the diagnostic complexity of psychiatric disorders was associated with the 

predicted effect size variance for trait-associated loci (F. R. Wendt et al., 2020). Improving 

the ability to investigate genetic variation while addressing diagnostic heterogeneity will 

surely boost PTSD gene discovery, potentially leading to genetic instruments to identify 

high-risk individuals and characterize molecular targets to develop effective treatments. 

Similarly, the ongoing technological progress is helping to conduct more powerful 

epigenetic, transcriptomic, and brain-imaging studies that can contribute to design PTSD 

biomarkers. Additionally, several approaches are being proposed to integrate data generated 

from different high-throughput experimental data and conduct more holistic investigations of 

PTSD (Chakraborty, Meyerhoff, Jett, & Hammamieh, 2017; Thakur et al., 2015). In addition 

to these analytic challenges, like many other human diseases and traits, PTSD research has 

a serious diversity imbalance where underserved minorities are under-investigated (Sirugo 

et al., 2019). Although findings from PGC and MVP studies were generated from cohorts 

including individuals with diverse ancestral background, the vast majority of the participants 

are individuals of European descent. To avoid the widening of health disparities, molecular 

studies of PTSD need to increase the diversity of the cohorts analyzed to reflect adequately 

human variation and generate results transferrable across worldwide populations. Large­

scale efforts, such as MVP and AllOfUs, are currently recruiting more diverse populations 

and will provide resources useful to partially address the present disparities in PTSD 

molecular research.

Conclusions

Our understanding of the molecular basis of PTSD is progressing rapidly, mainly because 

of international collaborations and large biobanks leading to an increase in statistical 

power. While technological and analytic progress are improving the ability to dissect PTSD 

pathogenesis, investigators have to continue to be particularly careful about communicating 

their findings to the general public to avoid that molecular insights are distorted to support a 

“blaming the victim” rhetoric. This is particularly important with respect to certain traumatic 

events like sexual assaults that are more likely to be stigmatized (Kennedy & Prock, 2018). 

Genetic studies of PTSD should be a further opportunity to address how to reduce the 

burden of traumatic experiences in human societies.
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Figure 1. 
Summary of multifaceted investigations into the etiology of posttraumatic stress disorder 

ranging from environmental effects, genetics, multi-omics, and neuroimaging efforts.
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Figure 2. 
Locus discovery from genome-wide association studies of biobank and consortia case­

control and continuous (i.e., symptom count) measures of posttraumatic stress disorder.
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Table 1.

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) diagnostic criteria for posttraumatic stress 

disorder.

DSM 
Criterion Description Qualifiers

A
Exposure to actual or threatened 
death, serious injury, or sexual 
violence

• Directly experiencing the event

• Witnessing the event as it occurred to others

• Learning about the event happening to a loved one

• Experiencing repeated or extreme exposure to aversive details of the event

B
One or more intrusive symptom 
associated with the traumatic event 
that begins after the event occurred

• Recurrent, involuntary, and intrusive memories

• Recurrent distressing dreams

• Dissociative reactions such as flashbacks

• Intense or prolonged psychological distress when exposed to cues or 
reminders of the event

• Physiological reactions when exposure to cues or reminders of the event

C Persistent avoidance of trauma­
associated stimuli

• Avoid distressing memories, thoughts, feelings

• Avoid external reminders that may arouse distressing memories, thoughts, 
feelings

D Negative alterations in cognitions 
and mood

• Inability to remember traumatic event details

• Persistent and exaggerated negative beliefs/expectations about oneself, 
others, or the world

• Persistent, distorted cognitions about cause/consequence of the trauma

• Negative emotional stat

• Diminished interest in participation in significant activities

• Detached feelings

• Persistent inability to experience positive emotions

E Alterations in arousal and reactivity

• Irritable behavior and angry outbursts towards people or objects

• Reckless/self-destructive behavior

• Hypervigilance

• Heightened startle response

• Difficulty concentrating

• Disrupted sleep cycle

F Duration of disturbance is at least one (1) month

G Clinically significant distress or impairment in social, occupational, or other important areas of functioning

H Disturbance is not attributable to the physiological effects of an illicit substance, medication, or other medical condition
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