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BACKGROUND: Clinicoradiologic differentiation between benign and malignant
peripheral nerve sheath tumors (PNSTs) has important management implications.
OBJECTIVE: To develop and evaluate machine-learning approaches to differentiate
benign frommalignant PNSTs.
METHODS:We identified PNSTs treated at 3 institutions and extracted high-dimensional
radiomics features from gadolinium-enhanced, T1-weightedmagnetic resonance imaging
(MRI) sequences. Training and test sets were selected randomly in a 70:30 ratio. A total of
900 image features were automatically extracted using the PyRadiomics package from
Quantitative Imaging Feature Pipeline. Clinical data including age, sex, neurogenetic
syndrome presence, spontaneous pain, andmotor deficit were also incorporated. Features
were selected using sparse regression analysis and retained features were further refined
by gradient boost modeling to optimize the area under the curve (AUC) for diagnosis. We
evaluated theperformanceof radiomics-based classifierswith andwithout clinical features
and compared performance against human readers.
RESULTS: A total of 95 malignant and 171 benign PNSTs were included. The final classifier
model included 21 imaging and clinical features. Sensitivity, specificity, and AUC of 0.676,
0.882, and 0.845, respectively, were achieved on the test set. Using imaging and clinical
features, human experts collectively achieved sensitivity, specificity, and AUC of 0.786,
0.431, and 0.624, respectively. The AUC of the classifier was statistically better than expert
humans (P = .002). Expert humans were not statistically better than the no-information
rate, whereas the classifier was (P = .001).
CONCLUSION: Radiomics-based machine learning using routine MRI sequences and
clinical features can aid in evaluation of PNSTs. Further improvement may be achieved by
incorporating additional imaging sequences and clinical variables into future models.

KEY WORDS: Machine learning, Magnetic resonance imaging, Malignant peripheral nerve sheath tumor,
Peripheral nerve sheath tumor, Radiomics, Sensitivity, Specificity
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A ccurate differentiation between benign
(BPNST) and malignant (MPNST)
peripheral nerve sheath tumors is critical

because the treatment paradigms differ greatly.
BPNSTs are often managed nonoperatively
with serial imaging, whereas MPNSTs are

ABBREVIATIONS: BPNST, benign peripheral nerve sheath tumor; gad, gadolinium; GLCM, Gray-Level Co-
occurrence Matrix; GLDM, Gray-Level Dependence Matrix; GLRLM, Gray-Level Run-Length Matrix; GLSZM,
Gray-Level Size Zone Matrix; LASSO, least absolute shrinkage and selection operator; MPNST, malignant
peripheral nerve sheath tumor; NGTDM, Neighboring Gray-Tone Difference Matrix; NIR, no-information rate;
PNST, peripheral nerve sheath tumor;QIFP,Quantitative Imaging Feature Pipeline

Supplemental digital content is available for this article at www.neurosurgery-online.com.

rapidly progressive and require aggressive, multi-
disciplinary treatment. Even with aggressive
treatment, the 5-yr survival rate for patients with
MPNSTs is ∼18% to 50%.1 Early identification
and appropriate management offers the best
chance of survival.
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Differentiation between BPNSTs and MPNSTs with conven-
tional imaging and clinical data remains error-prone.1-3 18-
Fluoro-deoxyglucose positron emission tomography (FDG-PET)
and percutaneous biopsy are alternatives for diagnosis but are also
beset with potential risks and diagnostic imprecision.4-8 Thus,
there remains a substantial need for improved discrimination
between BPNSTs and MPNSTs using noninvasive modalities.
Machine-learning approaches to image analysis can add quanti-

tative insights to existing qualitative interpretation. Radiomics
evaluates at a voxel level to identify significant quantitative image
features that can be used to develop artificial intelligence-based
prediction models. The availability of large digital image data
offers the potential to clinically translate radiomics techniques,
which have been successfully applied to other tumors to aid
diagnosis.9-13 The same approach could provide another lens for
distinguishing BPNSTs from MPNSTs.
We used a multi-institutional cohort of patients with PNSTs

to develop and evaluate radiomics-based classifiers to distinguish
between benign and malignant lesions using basic clinical data
and conventional imaging.

METHODS

Study Population
Patients with PNSTs were identified at 3 participating institutions.

The surgical pathology was used as ground truth. Exclusion criteria
were lack of preoperative magnetic resonance imaging (MRI) and poor-
quality, nondiagnostic MRI. For PNST imaging that passed quality
control, axial T1-weighted, gadolinium-enhanced MRI (T1-gad) was
identified as the most commonly acquired imaging across the partici-
pating centers. Many available studies either lacked T2-weighted images
or, if these were available, they comprised heterogeneous T2-weighted
imaging protocols (eg, T2 short tau inversion recovery, T2 fast spin echo,
and T2 iterative decomposition of water and fat with echo asymmetry
and least-squares estimation) and imaging planes (sagittal, coronal, or
axial). Features used for MRI and gradient boost modeling are included
in the Supplemental Digital Content. Thus, T1-gad was chosen for
computational image feature extraction and machine-learning model
development (see Table S1 in Supplemental Digital Content).

Patient demographic and clinical variables were abstracted via chart
review. The institutional review boards at all 3 institutions approved the
study, with waiver of consent. The report was prepared according to the
Strengthening the Reporting of Observational Studies in Epidemiology
guidelines.

Clinical Variables
Clinical variables abstracted for analysis included age at operation, sex,

neurogenetic diagnosis (NF1 or NF2 or schwannomatosis), and presence
of spontaneous pain or preoperative motor deficit.

Image Segmentation, Preprocessing, and Feature
Extraction

The volumetric regions of interest for each PNST were delineated
and verified by 2 board-certified neuroradiologists using ITK-SNAP
(University of Pennsylvania, Philadelphia, Pennsylvania). A total of 900

image features were automatically extracted using the PyRadiomics
package on the Quantitative Imaging Feature Pipeline (QIFP),14
including first-order statistics, 2D/3D Shape, Gray-Level Co-occurrence
Matrix (GLCM), Gray-Level Run-LengthMatrix (GLRLM), Gray-Level
Size Zone Matrix (GLSZM), Neighboring Gray-Tone Difference Matrix
(NGTDM), and Gray-Level Dependence Matrix (GLDM), as defined
by the Imaging Biomarker Standardization Initiative (see Table S2 in
Supplemental Digital Content).15 First-order features depend upon the
individual value of voxels, without spatial relationship to other voxels
in the image. Matrix evaluations consider spatial relationships between
voxels. MRI studies were normalized for voxel size (1 × 1 × 1 mm) and
intensity (scale factor of 100). A fixed bin width (10) was used for gray-
value discretization. Preprocessing filters included wavelet (8 coefficients)
and Laplacian of Gaussian (3 sigma). Feature extraction was calculated
for classes including first-order statistics and gray-level derivatives.

Feature Selection and Validation
Patients were randomly allocated into training and test sets in a 70:30

ratio. Feature selection for the allocated training set was performed using
sparse regression analysis by a least absolute shrinkage and selection
operator (LASSO), performed with 10-fold cross-validation and repeated
for 1000 cycles. The mean squared error was calculated for 100 lambdas
in each cycle. The optimal lambda was identified as the lowest mean
squared error value and used for feature reduction and coefficient calcu-
lations. Both radiologic and clinical variables were incorporated into the
primary model. Selected features represented in >80% of the cycles were
retained for subsequent classifier optimization.

Retained features were further refined by gradient boost modeling
using the caret package in R.16 Training was performed with 10-fold
cross-validation, repeated for 3 cycles. Final tuning was performed for
interactions, tree depth, minimal terminal node size, and shrinkage
(see Figure S1 in Supplemental Digital Content). The final radiomic
classifier was guided by maximizing the area under the curve (AUC).
The same process was repeated to generate separate secondary models
using only the imaging features or only the clinical variables. All classi-
fiers were then applied to the test cohort, and the predicted pathology
was evaluated against the pathological diagnoses. The relative influence
of the clinical and radiologic features was calculated as described previ-
ously.17 All modeling was performed using RStudio version 1.2.5033
(PBC, Boston, Massachusetts).

Test Set Evaluation by Human Evaluators
For comparison, the same test set was evaluated by human readers,

who were provided the T1-gad images plus T2- or proton-density-
weighted images when available and asked to classify the tumor as a
BPNST or MPNST. The evaluators were then provided the clinical
variables associated with the images and again asked to classify the tumor.
The human evaluators included 2 medical students, 2 peripheral nerve
surgery fellows, 2 attending peripheral nerve surgeons, and 2 attending
radiologists (1 general radiologist and 1musculoskeletal radiologist). The
attending peripheral nerve surgeons and radiologists were grouped as
expert human evaluators for analysis. To compare against the classifier,
a human expert score was generated for each tumor (1 point for each
malignant attribution and 0 for benign). With 4 experts, the maximum
score was 4 and the minimum score was 0. A receiver operating charac-
teristic (ROC) curve was generated for the human expert score and the
optimized threshold chosen to maximize AUC.
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TABLE 1. Comparison of Clinical Variables Between the Benign and
Malignant Peripheral Nerve Sheath Tumor Groups

Benign (N= 171) Malignant (N= 95) P value

Mean age, yr (SD) 45.5 (15.3) 43.3 (18.2) .320
Sex

Male 75 (44%) 54 (57%)
Female 96 (56%) 41 (43%) .042

Spontaneous pain 41 (24%) 71 (75%) <.001
Motor deficit 45 (26%) 31 (33%) .275
NF1 38 (22%) 41 (43%) <.001
NF2 10 (6%) 0 (0%) .016
Schwannomatosis 5 (3%) 0 (0%) .164

Values indicate number of patients (%), unless otherwise indicated.
SD = standard deviation.

Statistical Analysis
Categorical variables were analyzed using the χ2 test or Fisher

exact test, as appropriate, and continuous variables were analyzed using
Student’s t-test. A P-value < .05 was considered statistically significant
for all analyses. Sensitivity, specificity, positive predictive value, negative
predictive value, F1 score, and AUC for the ROC curve were calcu-
lated for each of the classifiers, the best-performing human evaluator,
and the human expert score. For these calculations, malignant was desig-
nated as “positive.” Accuracy was compared against the no-information
rate (NIR), a statistical evaluator based on comparison with random
chance within the known distribution of outcomes.18 ROC curves were
compared against one another using the method of DeLong.19 All data
analyses were performed using StataSE.

RESULTS

Comparison of Clinical Variables
Of the 266 patients with T1-gad imaging, 171 (64%) had

BPNSTs and 95 (36%) had MPNSTs (Table 1). Patients with an
MPNST were more likely to be male (P = .042), to have sponta-
neous pain (P < .001), and to have an NF1 diagnosis (P < .001).
Patients with a BPNSTwere more likely to have anNF2 diagnosis
(P = .016). There was no significant difference in age.

PrimaryModel: Imaging and Clinical Features
The primary model was created using both radiologic and

clinical features. After feature reduction, 19 textural features and
2 clinical features were retained. The textural features included
2 shape, 4 first-order, 3 GLCM, 6 GLSZM, and 3 GLRLM
features (see Table S2 in Supplemental Digital Content). The
clinical features included presence of spontaneous pain and NF2
diagnosis.
The 21 selected features were used to train a gradient boost

model. The imaging features that were most influential for classi-
fication were zone entropy, run variance, and diameter, and the
most influential clinical feature was spontaneous pain (Table 2;
Figure 1). Zone entropy is a measure of the randomness of features

TABLE 2. Relative Influence of the Top 4 Most Influential Features
Contributing to the Final Radiomics Classifier

Feature Relative influence

Texture: log-sigma-3-mm-3D-glszm_ZoneEntropy 19.8%
Clinical: pain 13.5%
Texture: wavelet-LHH_glrlm_RunVariance 11.6%
Shape: original_shape_Maximum2DDiameterSlice 11.5%

within the image, wherein a higher value indicates greater hetero-
geneity in patterns. Run variance is the variance in lengths of runs
of consecutive voxels that have the same gray value. Diameter
is the 2-dimensional maximal diameter. A drop-off in relative
influence was seen for the remaining imaging and clinical features
(Figure 2). A correlation matrix was constructed to assess for
any redundant textural features. One pair of features (difference
variance and autocorrelation) had a correlation >0.8, but neither
was an important contributor to the final model (see Figure S2
in Supplemental Digital Content).

When the final classifier was applied to the training and test
sets (see Table S3 in Supplemental Digital Content), the final
AUCs were 0.940 and 0.845, respectively (Figure 3; Table 3). The
accuracy significantly exceeded the NIR (P = .001).

Secondary Model: Imaging Features Alone
A secondary model was constructed using only imaging

features. Eight features were retained, with 7 contributing to
the final classifier (see Figure S3A in Supplemental Digital
Content). The final AUC for the test set was 0.773 (see
Figure S3B in Supplemental Digital Content; Table 3).

Secondary Model: Clinical Features Alone
A secondary model was constructed using only clinical features

(see Figure S4A in Supplemental Digital Content). The final
AUC for the test set was 0.749 (see Figure S4B in Supplemental
Digital Content; Table 3).

Human Evaluation of Test Set
The human expert score, using both clinical variables and

imaging, similar to the primary model classifier, had an accuracy
of 0.557 and AUC 0.624 (Figure 3). The accuracy did not exceed
the NIR (Table 3). When using imaging alone, the human expert
score had an accuracy of 0.557 and AUC 0.595 (see Figure S5
in Supplemental Digital Content). The accuracy did not exceed
the NIR (Table 3). Performance of all evaluators is provided in
Table S4 in Supplemental Digital Content.

Comparison of ROC Curves
The AUC for the ROC curve for the primary classifier (imaging

and clinical features) significantly exceeded the AUC for the best
human expert using imaging and clinical features (P = .048) and
using only imaging (P = .048) and for the human expert score
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FIGURE 1. Density plots of the top 3 radiologic features contributing to the final radiomics classifier, including A, zone entropy with 3 sigma filter (GLSZM), B, run
variance with LHH filter (GLRLM), and C, maximum 2D diameter.

using imaging and clinical features (P = .002) and using only
imaging (P < .001) (Table 4).

DISCUSSION

Accurate differentiation between BPNSTs and MPNSTs is
critical because the treatment paradigms are markedly different.
Unfortunately, precise differentiation on radiologic and clinical
features remains deficient. Even for experienced radiologists,
accuracy may only be ∼50%.2 Machine-learning radiomics
may offer a method for improving diagnosis. In this study,

we developed and evaluated radiomic classifiers to differentiate
between BPNSTs and MPNSTs.
Our primary classifier model using both clinical and imaging

parameters achieved an AUC on the ROC curve of 0.845.
Comparatively, expert human evaluators achieved an AUC of
0.624. The AUC for the primary classifier significantly exceeded
both the best-performing human expert and the human expert
score. The expert human readers were not statistically better than
having no information beyond the distribution of the binary
choices, whereas the primary classifier’s accuracy significantly
exceeded this measure against random chance. This is partic-
ularly impressive when considering that the radiomic classifier
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FIGURE 2. Bar plot of relative influence of clinical and radiologic features included in the primary radiomic classifier.

evaluated only T1-gad images, whereas the human readers were
provided any available T2- or proton density-weighted images.
T2-weighted images provide valuable information, such as perile-
sional edema and distal denervation. Thus, the human evalu-
ators may have had a significant advantage over the radiomic
classifier.
Perhaps not surprisingly, experienced clinicians tend to grade

in favor of a higher sensitivity at the expense of a lower speci-
ficity to avoid missing a malignancy (Figure 4). Our primary
classifier has the opposite properties, with a higher specificity and
lower sensitivity in part because of the methodology, which was
developed to maximize AUC, a balance between sensitivity and
specificity, in a training set enriched with BPNSTs. There is risk
to favoring either side. Favoring sensitivity over specificity will
lead to over-calling malignancies and potentially overaggressive
therapies.8 Conversely, favoring specificity over sensitivity will
lead to missing the rare diagnosis of malignancy. Aiming for
accuracy is an appropriate approach to balance risks; however,

radiomic analysis should not supplant expert evaluation and is
not sufficiently accurate to eliminate the potential need for further
preoperative diagnostic testing.
Malignancy in PNSTs has been associated with large

size (>5 cm), perilesional edema, irregular or peripheral
enhancement, intratumoral cystic components on imaging,
rapid tumor growth, spontaneous pain, and neurological deficits
clinically.20-25 Our machine-learning classifier identified features
similar to these qualitative imaging characteristics as providing
strong correlation to final diagnosis. For example, slice diameter
emerged as a strong predictor; this was similar to our prior
demonstration that increasing maximal dimension is associated
with malignancy but with considerable overlap.2,24,26 Similarly,
multiple radiomic textural features, including run variance
and zone entropy, match the expectation for greater hetero-
geneity among MPNSTs on postgadolinium sequences.23,24,27
Also importantly, spontaneous pain demonstrated significant
influence in the development of the final classifier. Compared
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FIGURE 3. Comparison of ROC curves for the primary classifier, human
expert score, and best human expert, all using both imaging and clinical
features. The AUC for the primary classifier significantly exceeded both the
human expert score and best human expert.

with prior qualitative associations, a radiomic approach
allows a more precise characterization and comparison in a
quantified manner, which allows for more discriminatory power.
Furthermore, radiomics is not dependent upon years of human
training and experience. A substantial advantage of the current
classifier model is that it uses a conventional MRI sequence (ie,
T1-gad), which provides potential for clinical use.
Diffusion-weighted imaging (DWI) has recently been

proposed as an additional sequence on conventional MRI
that can be discriminatory.28 BPNSTs tend to have a higher
apparent diffusion coefficient than MPNSTs.20,29 Although
these initial results are promising, the typical DWI sequence uses
a single-shot echo-planar imaging approach, mainly because of
its speed. Unfortunately, these images demonstrate susceptibility

artifacts that result in geometric distortion, signal drop-out, and
image blurring, which can pose challenges in evaluating PNSTs
in susceptibility-prone regions (eg, bone, air, and soft-tissue inter-
faces). There are several, typically vendor-specific, solutions to
these challenges, but divergent protocols limit multi-institutional
comparison with radiomics.30-36 Standardized and reduced
susceptibility DWI protocols could be included in subsequent
radiomics models.
FDG-PET offers another potential imaging modality to differ-

entiate benign from malignant nerve tumors.21,25,37,38 Although
there is certainly value in PET imaging, there are concerns with
using this technique to universally evaluate nerve tumors. First,
schwannomas, in particular, can demonstrate elevated maximum
standardized uptake value without clinical implications for malig-
nancy. An elevated value may prompt unnecessary biopsy or
patient concern if PET were indiscriminately used to evaluate
all PNSTs. Second, FDG-PET exposes the patient to radiation,
which is particularly concerning for tumor syndromes and for
serial imaging.
Overall, a radiomic classifier may provide the most accurate

option to categorize patients for further testing for MPNST, such
as PET imaging or biopsy, that could be used along with expert
opinion for increased sensitivity. A sequential strategy may prove
to reduce overall healthcare costs and reduce risks.

Limitations and Future Directions
Our classification algorithm shares many of the common

challenges in radiomics that limit its performance. Heterogeneity
in MRI acquisition technique as a result of institutional varia-
tions in machine technology and sequence selection can affect
the assignment of gray-level intensities and higher-level feature
calculations. These variations can also lead to differences in how
motion, fat-saturation, and contrast quality are captured, which
have downstream implications on how features are calculated.
The presence of lesions from various anatomic locations may
preclude reconciliation of features.

TABLE 3. Comparison of Metrics for the Human Evaluators and theMachine-Learning Classifiers

Evaluator Sensitivity Specificity PPV NPV F1 Score Accuracy (P-value) AUC (95% CI)

Imaging and clinical
Overall human evaluators 0.684 0.742 0.589 0.823 0.625 0.722 (P = .303) 0.704 (0.643-0.765)
Expert human evaluators 0.833 0.673 0.583 0.888 0.684 0.730 (P = .254) 0.746 (0.700-0.792)
Primary model classifier 0.676 0.882 0.760 0.833 0.717 0.810 (P = .001) 0.845 (0.823-0.979)

Imaging only
Overall human evaluators 0.704 0.723 0.582 0.826 0.632 0.716 (P = .347) 0.702 (0.655-0.749)
Expert human evaluators 0.833 0.686 0.594 0.890 0.691 0.738 (P = .241) 0.750 (0.708-0.792)
Secondary model classifier 0.607 0.784 0.607 0.784 0.717 0.722 (P = .096) 0.773 (0.693-0.894)

Clinical only
Secondary model classifier 0.643 0.804 0.643 0.804 0.643 0.747 (P = .036) 0.749 (0.630-0.867)

Accuracy was compared against the no-information rate.
PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; 95% CI, 95% confidence interval.
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TABLE 4. Pairwise Comparison of the Area Under the Curve for the Receiver Operating Characteristic Curves Using theMethod of DeLong

Best expert Human expert Classifier

Imaging+ clinical Imaging Imaging+ clinical Imaging Imaging+ clinical Imaging Clinical

Best expert Imaging + clinical – P = .999 P = .305 P = .180 P= .048 P = .396 P = .458
Imaging P = .999 – P = .305 P = .180 P= .048 P = .396 P = .458

Human expert Imaging + clinical P = .305 P = .305 – P = .459 P= .002 P = .072 P= .049
Imaging P = .180 P = .180 P = .459 – P< .001 P= .030 P= .015

Classifier Imaging + clinical P= .048 P= .048 P= .002 P< .001 – P = .057 P = .209
Imaging P = .396 P = .396 P = .072 P= .030 P = .057 – P = .951
Clinical P = .458 P = .458 P= .049 P= .015 P = .209 P = .951 –

Bold indicates statistical significance (P < .05).

FIGURE 4. A, Imaging from a 26-yr-old woman with spontaneous pain, a neurological deficit on examination, and NF1
for whom the expert human consensus was MPNST, but the primary classifier predicted benign. The tumor was a benign
neurofibroma. B, Imaging from a 62-yr-old man with no spontaneous pain, a neurological deficit on examination, and no
neurogenetic diagnosis. The expert human consensus in this case was malignant but the primary classifier predicted benign.
The tumor was a benign schwannoma. C, Imaging from a 74-yr-old woman with spontaneous pain, no neurological deficit on
examination, and no neurogenetic diagnosis. In this case, the expert human consensus was malignant, and the primary classifier
predicted benign. The tumor was a benign schwannoma. D, Imaging from a 55-yr-old man with no spontaneous pain, no
neurological deficit on examination, and no neurogenetic diagnosis for whom the expert human consensus was benign, but the
primary classifier predicted malignant. Tumor was a malignant peripheral nerve sheath tumor.
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In the future, we intend to gather a larger multi-institutional
series so that we can include T2-weighted imaging in the next
iteration. Furthermore, a larger cohort may allow for other
machine-learning techniques, such as deep learning, that may also
improve the classifier. Future iterations will again be set up to
maximize AUC, but it is not clear how incorporating a larger
cohort or incorporating T2-weighted images will affect sensitivity
vs specificity.

CONCLUSION

Optimal management of PNSTs depends on the clinical
distinction between benign and malignant lesions. Currently,
this distinction is drawn from a mixture of clinical art and
imaging interpretation that remains lacking in precision; however,
as radiomics becomes more integrated clinically, these tools may
offer greater precision and serve as an adjunct to our clinical
practice. Our machine-learning–based algorithm optimized for
AUC using axial, T1-weighted, postgadolinium images demon-
strated success at least equivalent, if not superior, to human inter-
pretation, even when humans were presented with more data.
Further refinement using T2-weighted imaging or DWI, larger
datasets, and deeper machine-learning techniques may provide
further discriminatory power and will likely become a critical
aspect of clinical evaluation.
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Supplemental digital content is available for this article at www.
neurosurgery-online.com.

Supplemental Digital Content. Four tables and 5 figures. The Supplemental
Digital Content provides MRI acquisition and gradient boost modeling features
and hyperparameters and their interpretations. It also includes demographic data
for the training and test sets of patients and comparison of the relative influence
of features in the classifiers and the ROC curves of the performance of the classi-
fiers. A comparison of the metrics for human evaluators of various skill levels is
presented.

COMMENT

T his approach comes to provide additional tool for preoperative
differentiation between PNST and MPNST. The authors present

a machine-learning classifier using computational radiomics (mostly
T1 + Gad) along with limited clinical data collection and compare it to
human evaluators showing a better diagnostic yield to the former when
balancing between sensitivity and specificity.

While prognosis is fundamentally different and lies on the 2 extrem-
ities of the diagnosis spectrum, preoperative misdiagnosis does not
account for a catastrophic outcomes as the authors suggest but should
rather serve as an important decision-making point. Furthermore,
cautioning against the current over utilization of unnecessary biopsies
along with associated sampling error and possible neurological injury
is an important point of discussion. Still, the certainty in which a
surgeon can rely nowadays exclusively on image characteristics of tumors
without putting into account other parameters remains controversial as
the authors allude.

Current surge in data learning prediction models is gaining increased
interest in both research and clinical utilization. Recent reviews consider
its superiority by addressing significant lack of transparent reporting
in ‘standard’ multivariable prediction model studies reporting and
human evaluation. Yet, the main drawback of this approach for clinical
utilization is by the non-linear and variable data sets it is provided with.

This approach is surely commendable and can definitely aid our
decision making, but one should take caution concentrating on inter-
preting a single image modality albeit being a purely objective tool
and caution overlooking neurological findings over time, extended
demographics and expert surgeon decision making.
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