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A B S T R A C T

The evolution the novel corona virus disease (COVID-19) as a pandemic has inflicted several thousand
deaths per day endangering the lives of millions of people across the globe. In addition to thermal scanning
mechanisms, chest imaging examinations provide valuable insights to the detection of this virus, diagnosis and
prognosis of the infections. Though Chest CT and Chest X-ray imaging are common in the clinical protocols
of COVID-19 management, the latter is highly preferred, attributed to its simple image acquisition procedure
and mobility of the imaging mechanism. However, Chest X-ray images are found to be less sensitive compared
to Chest CT images in detecting infections in the early stages. In this paper, we propose a deep learning based
framework to enhance the diagnostic values of these images for improved clinical outcomes. It is realized as
a variant of the conventional SqueezeNet classifier with segmentation capabilities, which is trained with deep
features extracted from the Chest X-ray images of a standard dataset for binary and multi class classification.
The binary classifier achieves an accuracy of 99.53% in the discrimination of COVID-19 and Non COVID-
19 images. Similarly, the multi class classifier performs classification of COVID-19, Viral Pneumonia and
Normal cases with an accuracy of 99.79%. This model called the COVID-19 Super pixel SqueezNet (COVID-
SSNet) performs super pixel segmentation of the activation maps to extract the regions of interest which carry
perceptual image features and constructs an overlay of the Chest X-ray images with these regions. The proposed
classifier model adds significant value to the Chest X-rays for an integral examination of the image features
and the image regions influencing the classifier decisions to expedite the COVID-19 treatment regimen.
1. Introduction

The novel corona virus disease (COVID-19) has emerged as a pan-
demic threat and public health concern over the world. Existing insti-
tutional arrangements and prevailing healthcare priorities in COVID-19
management are focused on a person-centered, cure-centric system
rather than being socially sustainable. Health systems need to be re-
vamped, be socially and economically sustainable, and address systemic
drivers that currently limit accessibility, equity and affordability of
care. COVID-19 pandemic has re-emphasized the urgent need to re-
design health systems to prioritize the broader social determinants of
health. This redesign will need to be approached in multiple ways to
ensure a long-term healthcare model that acknowledges the current
constraints on the existing systems.
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Recent researches on COVID-19 management advocate the need
for building a sustainable and health environment employing artificial
intelligence and touch-less approaches (Megahed & Ghoneim, 2020).
In line with this, an extensive survey on deep learning approaches
for COVID-19 detection and containment in smart cities is presented
in Bhattacharya et al. (2021) and Murugappan, Bourisly, Krishnan,
Maruthapillai, and Muthusamy (2021). The authors review several deep
learning paradigms for medical image analysis in COVID-19 outbreak
prediction, infection tracking, diagnosis, treatment, and drug research.
This paper provides deep insights on various deep learning approaches
in combatting COVID-19 and advocates the need to design COVID-
19 detection systems with optimum accuracy. The mortalities due to
COVID-19 pandemic can be considerably reduced by early detection of
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the infections, isolation of the subjects and administration of anti-viral
drugs. At present, the Reverse Transcription Polymerase Chain Reaction
(RT-PCR) (Wang, Xu, et al., 2020) test on clinical specimens, is the most
widely employed screening protocol which is time consuming, highly
sensitive to infinitesimal DNA contamination and less accurate.

Along with examinations of symptoms and pathogenic testing, imag-
ing examinations are found indispensable in the diagnosis in the screen-
ing, detection, diagnosis and prognosis of COVID-19 (Aradhya, Mah-
mud, Agarwal, & Kaiser, 2021; Bhapkar, Mahalle, Shinde, & Mahmud,
2021; Dey, Rajinikanth, Fong, Kaiser, & Mahmud, 2020; Kaiser, Al Ma-
mun, Mahmud, & Tania, 2021; Murugappan et al., 2021; Singh, Kumar,
Mahmud, Kaiser, & Kishore, 2021). In a study on imaging modalities
in the diagnosis of COVID-19, Yang et al. (2020) have shown that
Computed Tomography (CT) images are very effective in capturing
Ground Glass Opacity (GGO), consolidations and patchy areas in the
peripherals of the lungs, in the early and advanced stages of infections.
This investigation also reveals that Chest X Ray (CXR) images are less
sensitive to these characteristics in the early stages whereas progressive
opacities and consolidations are captured well in the advanced stages.
However, CXR is recommended as an initial screening tool due the
difficulties encountered in establishing CT scanning facilities in low
resource settings and shifting patients to the CT scanning suites.

With the infiltration of COVID-19, time consumption in CT scanning
and susceptibility of infections at the CT scanning sites, there is a
growing need for the detection of valuable diagnostic features from
CXR images. Significant research has been conducted in this context
and deep learning models with high sensitivity towards COVID 19
features in CXR images have been proposed. A deep Convolutional
Neural Network (CNN) called the COVID-Net (Wang, Lin, & Wong,
2020) based on residual Projection Expansion Projection Extension
(PEPX) demonstrates an accuracy of 93.3% and 91% sensitivity on an
exclusive dataset.

In addition to COVID-19 detection, segmentation of infections can
provide great insights to accelerate clinical decisions. Generally, UNet
(Ronneberger, Fischer, & Brox, 2015) an improved version of the
Convolutional Network (CNN) architecture, is widely employed in the
semantic segmentation of biomedical images. It follows a symmetric
encoder–decoder structure with several upsampling and downsampling
layers with skip connections between every level to propagate gradients
from low resolution images to higher resolution ones. Several variants
of UNet have been introduced in the recent years to harness the
potential of the symmetric UNet architecture.

The Residual Dilated Attention Gate-UNet (RDA-UNet) (Zhuang, Li,
Joseph Raj, Mahesh, & Qiu, 2019) is built with residual units and
attention gates in each layer. In addition, dilated kernels are adopted
to improve the network performance by expanding the receptive field.
This model employed in lesion detection from breast ultrasound images
was enhanced with a Generative Adversarial Network (GAN) to elimi-
nate false positives and precise segmentation of boundaries. This model
called the Residual Dilated Attention Gate UNet Wasserstein GAN (RDA
UNET WGAN) (Negi, Raj, Nersisson, Zhuang, & Murugappan, 2020)
trains faster and is highly stable compared to the RDA-UNet. Gener-
ally, a GAN comprises a generator and discriminator which compete
with each other. The generator produces new samples with the same
probability distribution as the training samples and the discriminator
attempts to determine whether the samples are genuine or fake. Once
the generator can give a set of samples that have high similarity to the
training samples, it can generate incrementally higher-quality samples.
WGAN is a GAN variant implemented with two separate neural net-
works and a gradient reversal layer, for computing exact gradients of
the 1-Wasserstein distance, contributing to improved stability.

The Attention Gate-Dense Network-Improved Dilation Convolution-
UNET (ADID (Raj et al., 2021), for lung lesion segmentation from chest
CT images for COVID-19 detection is implemented with attention gate
mechanism, dense networks and dilation convolution mechanisms. The
2

attention module focuses on the target lesions of arbitrary shapes and
sizes for precise segmentations. The dense connections between the
dilation convolution layers and the skip connection reduce the gradi-
ents and enhance the localization ability. The Eff-UNet (Baheti, Innani,
Gajre, & Talbar, 2020) is built with a compound scaled EfficientNet
as encoder and a UNet decoder for segmentation in unstructured en-
vironments. This model incorporates low level spatial information and
high-level features for precise segmentation of objects from road scenes.
The Multiscale Statistical U-Net (MSU-Net) (Wang et al., 2019) for
cardiac MRI segmentation employs a Statistical Convolutional Neural
Network (SCNN) which models the inputs as multi scale canonical
distributions to speed up the segmentation process, also exploiting
spatio-temporal relationships between the samples. Further, the UNet
is realized as a parallel architecture to statistically process the inputs.
A detailed analysis of the architectures of UNet and its variants reveal
that the performance of these networks considerably increases with the
addition attention gate, densenet and dilation convolution modules.

Evincing the need for an integral model for COVID-19 detection
and infection segmentation, we propose a light weight deep learning
classifier based on SqueezeNet (Iandola et al., 2016) for COVID-19
detection from CXR images. This model is also coupled with a seg-
mentation module to semantically separate the Region of Interest (ROI)
using super pixels for a thorough examination of the images. We
call our proposed framework as the COVID-19 Super pixel SqueezNet
(COVID-SSNet) model. The contributions of this research are as below.

1. A lightweight model for COVID-19 detection and segmenta-
tion which more than 99% accuracy for binary and three class
classifications is proposed.

2. It is established that a classification-segmentation pipeline is
ideal for COVID-19 detection and infection segmentation.

3. Gradient based class activations coupled with super pixel seg-
mentation provide best classification and segmentation abilities
of the SqueezeNet based model.

Performance evaluation of our model with a standard dataset and,
interpretations of visual and quantitative results signify its superior-
ity compared to the state-of-the-art classification and segmentation
models.

This paper is organized as below. In Section 2, we present a review
of the relevant work in the context of our research. The dataset,
methods employed in realizing the framework and details of imple-
mentation are described in Section 3. In Section 4, we present the
architecture of the proposed framework with schematic diagrams. In
Section 5, we describe our experimental results, performance analyses
and comparisons. The paper is concluded in Section 6.

2. State-of-the-art

2.1. Deep CNN models for COVID-19 detection from CXR images

In this section we give a comprehensive review on the existing deep
learning models for COVID-19 detection from CXR images. Radiological
studies (Salehi, Abedi, Balakrishnan, & Gholamrezanezhad, 2020) show
that GGOs, peripheral distribution and bilateral involvement are widely
observed in CXR images. A deep CNN model for COVID-19 detection
must be capable of learning these features from the CXR images.

Narin, Kaya, and Pamuk (2020) have employed three pre-trained
deep learning models for COVID-19 detection from CXR images. The
authors have tested the convolutional ResNet50, InceptionV3 and In-
ception ResNet V2 networks on a small dataset with 50 COVID-19 and
50 normal CXR images and report the highest classification accuracy
of 98% with ResNet50. Similarly, the MobileNetv2 and VGG19 models
demonstrate high accuracy and specificity compared to the Inception,
Xception and Inception ResNet V2 models, tested with two relatively
larger datasets comprising CRX images of COVID-19, pneumonia and

normal cases in Apostolopoulos and Mpesiana (2020). Though two
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class and three class accuracies are best for the VGG19, specificity
is reportedly high with the MobileNetv2 which signifies low falsified
negative predictions of individual disease classes.

In Apostolopoulos, Aznaouridis, and Tzani (2020), the MobileNetv2
is extended to the detection of six pulmonary diseases including edema,
effusion, fibrosis, emphys, pneumonia and Covid19, achieving 99.18%
accuracy in COVID-19 detection. Inspired by the high classification
accuracy of this model, the authors advocated further investigation
of the extracted features to standardize them as potential biomarkers.
Farooq and Hafeez (2020) have introduced Covid-ResNet in the detec-
tion of COVID-19, viral and bacterial infections and normal cases from
the COVIDx dataset, achieving an overall accuracy of 96.23%. This
classifier, a variant of the pre-trained ResNet50 model is adaptively
fine-tuned in three stages with decaying learning rates, ensuring the
consistency of the weights in the layers, contributing to the stability
of the classifier. Covidx-net (Hemdan, Shouman, & Karar, 2020) is a
unified framework of binary classifiers for COVID-19 detection from
a small subset of CXR images from the public COVID-19 dataset.
This framework comprising seven deep CNNs, all trained with unique
learning rates demonstrates 90% accuracy with VGG19 and Densenet
models. Capsule (Hinton, Sabour, & Frosst, 2018) networks based on
Expectation Maximization (EM) are demonstrated to exhibit better
accuracy on smaller datasets compared to CNNs. The COVID-CAPS (Af-
shar et al., 2020) is a binary COVID-19 classifier built on a capsule
network, shown to achieve an accuracy of 95.7% and 98.3% without
and with pre-training respectively on a small CXR dataset. The perfor-
mance of this model matches the one proposed in Sethy, Behera, Ratha,
and Biswas (2020) which employs ResNet50 for deep feature extraction
and Support Vector Machine (SVM) for classification.

In addition to classification, CNN models are also employed in the
segmentation of lungs from CXR images in the COVID-19 diagnostic
pipeline. Lung segmentation from CXR images is essential in the de-
tection of lung nodules, quantification and staging of infections. The
adversarial U-Net (Gaál, Maga, & Lukács, 2020) architecture for lung
segmentation is found to generalize well with arbitrary CXR datasets
with a Dice Score of 97.5%. Similarly, COVID_MTNet (Alom, Rahman,
Nasrin, Taha, & Asari, 2020) is an integral framework for COVID-19
detection and segmentation of infected regions from both CT and CXR
images. It is implemented with two distinct networks, an Inception
Recurrent Residual Convolutional Neural Network (IRRCNN) model for
COVID-19 detection and a NABLA-N (Alom, Aspiras, Taha, & Asari,
2019) network for segmentation of infected regions.

A deep learning framework for COVID-19 detection presented in
Sharifrazi et al. (2021) follows a fusion approach with sobel filtering,
CNN and SVM. Initially, the edges of the CXR images are extracted
with the sobel filters and fed as input to the CNN. The CNN outputs
are further classified by a SVM and a Sigmoid function separately.
Experimental results show that combination of Sobel, CNN and SVM
provides the best classification accuracy of 99.02%.

A deep CNN called the (DeTraC) (Abbas, Abdelsamea, & Gaber,
021) performs decomposition, transfer learning and composition oper-
tions in sequence, to eliminate irregularities in the test data, extracting
rincipal components of the CXR images. This process reduces the size
f the CXR feature space and the original classes are decomposed into
subset of classes. An ImageNet (Deng et al., 2009) pretrained CNN is

hen trained with these components and the class labels corresponding
o the decomposed classes are assigned. VGGNet (Alam, Ahsan, Based,
aider, & Kowalski, 2021) is a CNN classifier model built by training
VGG-19 model with fused features extracted from CXR images with
istogram Oriented Gradient (HOG) descriptors and a customized con-
olutional neural network (CNN). In this model Anisotropic diffusion
s applied to filter the noise from the test images before classifica-
ion. Following COVID-19 identification from a test image, Watershed
egmentation is used to segment the infected regions.

A customized CNN model called the CoroDet (Hussain et al., 2021)
3

erforms COVID-19 detection, binary, 3-class and 4-class classification
of CXR and CT images. It is built with convolution, pooling and dense
layers incrementally evaluating combinations of the layers and activa-
tion functions. The 22 layer model achieves classification accuracies of
91.2%, 94.2% and 99.1% for 4-class, 3-class and binary classifications
of COVID-19, Viral Pneumonia, bacterial pneumonia and normal cases.
A comprehensive review (Nayak, Nayak, Sinha, Arora, & Pachori, 2021)
on the application of deep learning approaches for COVID-19 detec-
tion from CXR images evaluates the binary classification performance
of eight pre-trained models. Experimental analyses with pre-trained
AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34,
ResNet-50 and Inception-V3 models on normal and COVID-19 images
show that the best classification accuracy of 98.33% is achieved by
ResNet-34. Though the structure of ResNet-50 is deeper than ResNet-
34, it achieves an accuracy of 97.50 for a batch size of 32. This
result signifies that better results can be achieved by comparatively less
deeper networks trained at optimal learning rates.

2.2. Interpretation of outputs in CNN virus detection models

Though the CNN models are demonstrated to exhibit high accu-
racy in the discrimination of COVID-19 and other bacterial and viral
pneumonia from CT and CXR image, their behavior is not understand-
able due to their intrinsic black box nature. According to Shi et al.
(2020), analyses of CXR images reveal frequent occurrences of GGOs in
peripheral, posterior, medial and basal areas, air space consolidation,
traction bronchiectasis, traction bronchiectasis and septal thickening in
COVID-19 patients. Rather than completely relying on the quantitative
performance metrics such as accuracy and precision, examination of the
Region of Interest (ROI) activating the classifier models can improve
the clinical decisions. In this context, several research works have
been performed for visualization and interpretation of the CNN models
by localization of the ROIs relevant to the input classified. In Wang
et al. (2017), the authors have shown that a disease detection and
localization framework can be constructed with a multi class classifier
and gradient based algorithm to detect and localize pneumonia in CXR
images. Similarly, discrimination of pneumonia versus normal cases
and bacterial versus viral pneumonia from CXR images, performed with
an Inception V3 model was followed by an occlusion test to identify the
significant ROI contributing to the decision of the network in Kermany
et al. (2018).

Similarly, the Chexnet (Rajpurkar et al., 2017) a 121 layered dense
CNN trained with CXR images determines the probability of 14 patholo-
gies and localizes pneumonia with activation maps. A two branch
Attention Guided CNN (AG-CNN) (Guan et al., 2018) based on ResNet,
fuses global features extracted from the CXR images with those from
salient regions of these images, segmented with a mask derived from
the heatmaps. It is shown that best accuracy is achieved with com-
bined features rather than classifications with global and local features.
Class Activation Mapping (CAM) (Zhou, Khosla, Lapedriza, Oliva, &
Torralba) which generates heatmaps from feature maps, highlighting
salient regions of the images is vital in the visual interpretation of the
behaviors of the CNN models. A generalized Gradient-weighted Class
Activation Mapping (Grad-CAM) (Selvaraju et al., 2017), constructs
class discerning localization maps from the gradients of the target
class and the image feature maps for diverse CNN classifier models.
In the detection of pneumonia from pediatric (Rajaraman, Candemir,
Kim, Thoma, & Antani, 2018) CXRs, Grad-CAM is used to visualize
the outputs of a customized VGG16 to localize the ROI. Similarly,
the DarkCovidNet (Ozturk et al., 2020) model for binary and multi
class COVID-19 classification with CXR images, also presents the heat
maps to the radiologists to analyze the behavior of the model. The
radiologists find that these maps are effective in the discrimination
of normal COVID-19 cases, manifesting high intensity concentrations
in the affected regions. Chowdhury, Rahman, et al. (2020) report a
classification accuracy of 98.3% for both binary and multi class COVID-
19 classifications with a SqueezeNet model. The authors show that
the discriminating features of COVID-19, viral pneumonia and normal

images are detected by the 14th layer of the SqueezeNet model.
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2.3. Super pixel based knowledge infusion in deep learning models

Super pixels are groups of semantically similar pixels, carrying high-
level information which provide a compact representation of images.
While conventional deep learning models are trained to learn features
from raw images, recently computer vision models are constructed as
CNNs infused with domain knowledge captured using super pixels. A
hybrid model employing a CNN to capture spatial information and
Graph Neural Network (GNN) to capture information from super pixels
is proposed in Chhablani, Sharma, Pandey, and Dash (2021). This
model Evaluated with standard and domain specific image datasets
demonstrates that superior prediction performances can be achieved by
incorporating domain knowledge with CNN classifiers. In line with this,
the SP-CNN (Xie, Gao, Jin, & Zhao, 2021) based on super pixel pool-
ing, encoder–decoder architecture and transfer learning is proposed
for classification of Hyper Spectral Images (HSI). Experimental results
with benchmark datasets show that best classification accuracies are
achieved by fusing spatial structures captured by the super pixels, with
spectral features.

Similarly, a deep learning framework for skin lesion classification is
proposed in Afza, Sharif, Mittal, Khan, and Jude Hemanth (2021). Ini-
tially, the dermoscopy images are subjected to super pixel segmentation
to separate the lesions. Then a pretrained ResNet-50 model is trained
with the lesion images for feature extraction by transfer learning. The
features extracted are further optimized with a bio inspired algorithm
and then classified with a naïve Bayesian classifier. In Tello-Mijares and
Woo (2021), a two-level classifier employing Simple Linear Iterative
Clustering (SLIC) (Achanta et al., 2012) super pixel clustering approach
for automated detection of GGOs and pulmonary infiltrates is presented
for follow-up assessment in COVID-19 patients. From a detailed review
of literature on deep learning models for COVID-19 detection, interpre-
tations of the classifier outputs and significance of super pixel driven
classifier models, it is evident that unified approaches incorporating su-
per pixel segmentation and deep learning approaches are getting wide
research attention recently. Efficient deep learning classifier models
leveraging super pixel segmentation for COVID-19 detection are yet to
be benchmarked. In this research, we strive to bridge this gap with a
novel classifier for COVID-19 detection from chest X-ray images, which
can be generalized to other modalities.

3. Materials and methods

In this section, we describe our dataset and the methods employed
in the construction of the proposed classification-segmentation frame-
work.

3.1. Model assumptions

The proposed model is realized with a classification-segmentation
pipeline with the following assumptions.

1. Due to variable nature of COVID-19 symptoms, COVID-19 detec-
tion from segmented ROI may lead to ambiguous feature learn-
ing of the model. Hence, the proposed model is realized as a cas-
caded classification-segmentation framework which facilitates
learning biomarkers by visualizing classifier outputs.

2. Gradients of a target class flowing to the final learnable layer of
a classifier highlight the discriminating features influencing the
classifier decisions. Hence color based GMM super pixel segmen-
tation is employed to localize the homogeneous regions of the
Grad-CAM which guide the classifier in assigning a target label.
This capability helps to identify infections of various degrees
ranging from mild to intensive manifestations.
4

Fig. 1. Fire module in SqueezeNet.

3.2. Dataset and experimental setup

In this research, we have constructed training and testing datasets
from the award winning Kaggle CXR public database (Chowdhury
et al., 2020), comprising 219 COVID-19 positive images, 1345 viral
pneumonia images and 1341 normal images. Originally these images
are of dimension 1024 × 1024 in png format. The database is divided
into two distinct training and testing subsets, with images resized
to 227 × 227. Then the training dataset is augmented with images
generated by applying the translation, rotation and scaling operations
on the training images. The description of the dataset is given in
Table 1. The proposed framework is implemented with Matlab 2021b
software in an i7-7700K processor with 32GB DDR4 RAM equipped
with a NVIDIA GeForce GTX1060 3GB Graphics card.

3.3. SqueezeNet architecture

As stated earlier, we have employed a variant of the SqueezNet
model for extraction of deep features from the candidate images for
classification in this research. This model characterized by fewer pa-
rameters is considerably smaller and highly accurate compared to the
conventional CNNs. It consists of a stack of fire modules shown in
Fig. 1, comprising a squeeze layer of 1 × 1 filters and an expansion
layer comprising 1 × 1 and 3 × 3 filters. While the squeeze layer
downsamples the input channels, the expansion layer performs cross
channel pooling with the 1 × 1 filters and captures the spatial structures
with the 3 × 3 filters, resulting in expansion.

The conventional SqueezNet classifier architecture proposed in
Alom et al. (2019) is shown in Fig. 2 which comprises the convolutional
layers, fire modules, max pooling layers and soft max layers.

3.4. Gaussian mixture model superpixels

Super pixels are group of pixels with common characteristics such
as pixel intensity, color and energy. Images are segmented into super
pixels of arbitrary shape and size, for object detection in computer
vision problems such as semantic labeling, semantic segmentation,
object tracking etc. The SLIC algorithm constructs super pixels which
are approximately equal in size by clustering the pixels based on their
proximity and similarity in color, guided by a weight factor. However,
these pixels are not accurate as the SLIC segmentation results in several
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Table 1
Description of training and testing dataset.

Infection No. of images
in database

No. of training
images

No. of training images
after image augmentation

No. of testing images

Binary
classification

Multiclass
classification

COVID-19 219 119 476 100 100

Viral Pneumonia 1345 645 2580 1400 700

Normal 1341 641 2564 700
Fig. 2. SqueezeNet architecture.

isolated regions, influenced by the number of the clusters assumed by
the kmeans segmentation algorithm.
𝑁
∑

𝑛=1
𝜋𝑛 = 1 (1)

𝑝
(

𝑧𝑛 = 1 ∣ 𝑥
)

(2)

The Gaussian Mixture Model (GMM) (Smith, Kindermans, Ying,
& Le, 2018) super pixels exhibit better segmentation accuracies than
the SLIC algorithm, as each super pixel is modeled as a Gaussian
representation, by randomly choosing a distribution initially from a
group of Gaussian distributions. A Gaussian distribution 𝑛 is associated
with a covariance ∑, mean 𝜇𝑛 and 𝜋 the mixing probability, such
that the condition in Eq. (1) is satisfied. Maximum Likelihood (ML)
estimation is performed to find if the data points are fitted within each
Gaussian.
5

For an arbitrary data point x, the probability that it belongs to a
Gaussian 𝑛 is given in Eq. (2) where the latent variable 𝑧𝑛 takes the
value 1 when 𝑥 belongs to the cluster n and 0 otherwise.

𝜋𝑛 = 𝑝
(

𝑧𝑛 = 1 ∣ 𝑥
)

(3)

𝑝(𝑧) = 𝑝
(

z1 = 1
)𝑧1 𝑝

(

z2 = 1
)𝑧2 … 𝑝

(

z𝑁 = 1
)𝑧𝑁 =
𝑁
∏

𝑛=1
𝜋𝑧𝑛𝑛

(4)

𝒑(𝒙 ∣ 𝒛) =
𝑁
∏

𝒏=𝟏
𝒑
(

𝒙 ∣ 𝝁𝒏, 𝛴𝒏
)𝒛𝒏
𝒊 (5)

For a Gaussian 𝑛, the mixing coefficient 𝜋𝑛 is given in Eq. (3) which
is the probability that a data point belongs to 𝑛. The set of all latent
variables is represented as 𝑧 = 𝑧1,… , 𝑧𝑁 and the probability with which
all the data points belong to the Gaussians is given in Eq. (4). For a
given data point 𝑥, the probability that it belongs to a Gaussian 𝑛 is
given in Eq. (5).

𝑝
(

𝑧𝑛 = 1 ∣ 𝑥
)

=
𝜋𝑛𝑝

(

𝑥 ∣ 𝜇𝑛, 𝛴𝑛
)

∑𝑁
𝑖=1 𝜋𝑖𝑝

(

𝑥 ∣ 𝜇𝑛, 𝛴𝑛
)
= 𝛾

(

𝑧𝑛
)

(6)

The probability of a latent variable 𝑧𝑛 such that a data point 𝑥
exists in a Gaussian n is given in Eq. (6). The parameters of this model
determined by EM are collectively expressed as 𝜃𝑛 =

{

𝝁𝑛, 𝛴𝑛
}

.

𝑳𝒃𝑖= arg𝒏 max
𝒏∈𝑁𝑖

𝑝
(

𝑧;𝜽𝑛
)

∑

𝑙∈𝑁𝑖 𝒑
(

𝑧;𝜽𝑛
) (7)

Given a 2D image I of dimension M×K, the total number of pixels
𝑃 = 𝑀 × 𝐾 labeled 𝑝𝑖 ∈ 1, 2,… , 𝑃 , can be assigned to a super pixel
𝑛 ∈ 1,… , 𝑁 which is analogous to the clustering P data points into
𝑁 Gaussians. For a pixel 𝑝𝑖 ∈ 1, 2,… , 𝑃 , the superpixel label 𝐿𝐵𝑖 is
computed as in Eq. (7)).

It can be seen that these labels are computed from the posterior
probability after evaluation of 𝜃𝑛 for a cluster n, which facilitates
precise grouping of pixels compared to the SLIC algorithm. In this
paper, we employ superpixel segmentation to segmentation the ROI
from the heat maps.

4. Proposed work

The proposed COVID-SSNet model realized as an integral frame-
work merging the classification and segmentation processes is illus-
trated in Fig. 3. This is built by extending the standard SqueezeNet
classification model with Grad-CAM and super pixel pooling. In this
framework, we apply the Grad-CAM on the image feature maps from
the final convolutional layer CL12 to construct the activation map. This
heat map is given as input to the Super Pixel Pooling Layer (SPP)
for segmentation and a normalized class score in the range [0 1] is
computed from the active super pixels. The schematic of this layer
depicting the super pixel segmentation operations is shown in Fig. 4.

Followed by classification, we segment the activation maps to sep-
arate the ROI attributing to the classification decision. In an activation
map, red regions heavily influence the classification decisions while
the blue regions are less significant. From an empirical analysis on the
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Fig. 3. SqueezeNet architecture.
Fig. 4. Superpixel pooling.
super pixel labeling based on mean RGB components, we perceive that
the super pixels are assigned one of the labels from a set of colors
Red, Orange, Red-Orange, Maroon, Yellow, Olive, Gray, Blue, Black . The
potential regions focused by the network contain super pixels labeled
Red, Orange, Red-Orange, Maroon, Yellow and Olive. The super pixels of
the activation maps are selectively merged based on their color label
using Algorithm (shown in Fig. 5) to construct the segmented activa-
tions maps which are then overlaid on the test images for localization
of the infected regions.

The computation of the class score for the segmented heat map is
described below. For each input image 𝐼 , let 𝐻 be its heat map and
{𝑆𝑖|𝑖 ∈ 1, 2⋯𝑁} be the set of 𝑁 superpixels of 𝐻 . For each superpixel,
𝑆𝑖, an activation score 𝐴𝑖 is assigned corresponding to the mean color of
the super pixel as 6-Red, 5- Orange, 4-Red-Orange, 3-Maroon, 2-Yellow,
1-Olive, 0- Gray, Blue, Black. The class score 𝐶 is computed as the
summation of the activation scores in Eq. (8) and normalized in the
range [0 1] by min–max normalization.

𝐶 =
𝑁
∑

𝑛=1
𝐴𝑛 (8)

The softmax layer SM14 assigns the target class label to the input
images based on the class score of each image and the input from the
Global Average Pooling layer GAP13.
6

5. Experimental results and discussion

In this paper, we follow deep transfer learning employing the pre-
trained SqueezeNet model which is trained on the ImageNet dataset.
We further fine-tune this network training it with the training dataset
constructed from Singh et al. (2021). The SqueezeNet model is initially
trained on the training dataset for binary and three class classifications
and tested with the respective test datasets. As shown in Table 1,
the dataset is separated into training and testing subsets. For binary
classification, the images ascribing to the viral pneumonia and the
normal cases are merged for training and testing.

The hyperparameters of the proposed framework are given in
Table 2. The values of these parameters are finalized after several
empirical evaluations of the stability of the proposed system. The
Stochastic Gradient Descent with Momentum (SGDM) optimizer em-
ploys the momentum, a moving average of the gradients. SGDM itera-
tively updates the weight of the network with a linear combination of
the gradients and the previous updates, while training the model. Here,
the contribution of the previous updates is maximized by assuming 0.9
for the momentum. The framework was initially trained for 50 epochs
with a batch size of 32 and a constant learning rate of 0.001. With the
model weights optimized by SGDM and varying the batch size, best
accuracy was obtained at 100 epochs for a batch size of 128.

For fine-tuning the pre-trained SqueezeNet for binary and three
class classifications for COVID-19 detection, the last learnable convo-
lutional layer, was modified with 2 and 3 filters separately to discern
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Fig. 5. Pseudocode for activation map segmentation.
Table 2
Hyper parameters of COVID-SSNet.

Parameter Value

Maximum Epochs 100
MiniBatchSize 32,64,128
Momentum 0.9
Learning Rate 0.001
L2 Regularization 0.0001
Optimization SGDM

the target class of the input image. Further, to prevent the model from
over-fitting, L2 regularization is applied to keep the weights and bias
values smaller. The regularization factor is assumed to be 0.0001 to
reduce the network weights slowly.

By transfer learning, we train the SqueezeNet model with 476
COVID 19 images, 2580 Viral Pneumonia images and 2564 normal im-
ages for multi class classification. Similarly, for binary classification the
model is trained with 476 COVID 19 images and 5144 Non-COVID-19
images. The training accuracies of the proposed model for binary and
multi class classification are shown as Receiver Operator Characteristics
(ROC) curves in Fig. 6 signifying a high training accuracy.

We exercise these trained models with the test dataset and show
the confusion matrices in Fig. 7. We see that the COVID-19 cases are
classified with an accuracy of 100% for both classifications with a few
misclassifications with viral pneumonia and normal cases.

5.1. Explainable artificial intelligence analysis

Though deep learning models demonstrate superior data representa-
tion and learning abilities across multiple domains, they appear to be a
black box to the end-user. XIA studies are performed to understand the
7

behavior of the models with respect to inputs. Particularly, in classifier
models, attribution is a kind of XIA approach to determine the contri-
bution of an input feature which strongly attributes the decision of the
classifier. This process generates an attribution map which visualizes
the significant input features influencing the classifier decision. In this
research, XIA is an implicit part of the proposed framework as the
activation maps are generated by Grad-CAM and segmented in the
super pixel pooling layer. The behavior of the proposed framework
is described in this section with illustrations and numeric prediction
scores for with correctly and erroneously classified samples as below.

The test images, activation maps, segmented activation maps and
composite images are shown in Fig. 8 for the correctly classified
images. It is seen that the discriminant features of the three classes
are clearly visible in the activation maps. Instead of construction of
overlays of the test images and activation maps, we perform super
pixel segmentation on these maps to separate the semantically identical
regions. It is evident that the segmented activation maps carry the
most representative discriminating features which are combined with
the images to construct the composite images. It is also observed that
the fine traces of hazy patches, consolidations and GGOs are captured
and segmented by the proposed model. For the selected test image,
COVID-19 is detected with score 1.0 by the proposed model focusing
on the upper and left lower region of the image and the hazy patches.
Similarly, viral pneumonia is detected with a score 1.0 with strong
activation in the lower middle and upper left regions of the image
and strong hazy patches in the upper right, upper left and lower
middle regions of the image. The normal case is predicted with strong
activations in the lower middle and lower right regions of the images
with an accuracy of 1.0.

From the confusion matrices generated for the test dataset, we see
that the COVID-19 images are classified with 100% accuracy with
no misclassifications. We present a visual analysis of the misclassified
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Fig. 6. ROC curves for training binary and multiclass classifiers.
Fig. 7. (a) Confusion matrix for binary classification (b) Confusion matrix for multi class classification.
images with the corresponding activation maps as shown in Fig. 9.
We see that the activation maps of the viral pneumonia images are
misclassified into COVID-19 and normal with prediction scores 0.7357
and 0.7852 respectively.

The misclassifications are attributed to the overlapping and non-
specific nature of the COVID-19 symptoms. A detailed analysis of the
misclassified samples with the class scores and visualizations can evalu-
ate the degree of overlap between the symptoms. Further investigation
in this line can provide deep insights on the relationship between
manifestation of the symptoms and disease progression.

5.2. Comparative analyses

We present a comparison of our proposed model with state-of-
the-art classifiers based on diverse CNN based classifiers modeled for
COVID-19 detection from CXR images in Table 3. It is seen that the
highest classification accuracy is achieved by our model.

In addition to the state-of-the art models, the proposed model is
compared with two SqueezeNet based COVID-19 detection models. For
a fair comparison, the models proposed in Ban, Liu, and Cao (2018)
and Ucar and Korkmaz (2020) are evaluated with the dataset described
in Table 1. The performance metrics including balanced scores and
8

training times are evaluated as in Table 4. Generally, the decision to
use a certain batch size often is driven by some intuition regarding the
computation time of the model and the effort to train the model on a
specific dataset. Larger batch sizes usually lead to faster convergence
and a higher accuracy. Large batch sizes are preferred to maximize the
performance as the gradient updates are very large. Conversely, small
batch sizes influence updates of small sizes on the gradients. The batch
sizes determine the samples drawn from the dataset for training. For
data spread analysis, the squeezeNet based models are evaluated with
3 batch sizes viz. 32, 64 and 128. The mean values of the accuracy,
sensitivity, specificity, precision, F1-score and Mathews Correlation
Coefficient (MCC) metrics with standard deviation, evaluated with Eqs.
(9)–(14) are given in Table 4.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(10)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(11)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (12)

𝑇𝑃 + 𝐹𝑃
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Fig. 8. Network activation for correct classifications.
𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(13)

𝑀𝐶𝐶 = 𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(14)

where, TP — True Positive, TN — True Negative, FP — False Positive,
FN — False Negative.

From the above table, it is seen that our COVID-SSNet demonstrates
superior performance compared to the conventional SqueezeNet model
for binary and multi class classifications. In this paper, in addition
to the conventional performance measures, the balanced measures F1
score and MCC are employed to evaluate the classifier models under
imbalanced training and testing data. The MCC in the range [ −1.0
+1.0] evaluates closer to +1.0, when the balanced ratio of the TP, FP,
TN and FN measures is high. When MCC is around 1.0, the classification
is perfect. F1 score is computed as the weighted average of the precision
and sensitivity metrics. Precision is the ratio of the number of correct
positive predictions out of the total number of positive predictions and
sensitivity is the ratio of the number of correct positive predictions to
the total number of positive samples. F1 in the range [0.0 1.0] evaluates
to 1.0 under ideal classification.

Though the model proposed in Chowdhury, Rahman, et al. (2020) is
also based on SqueezeNet and SGDM, it observed that the performance
of the model is comparatively lower. This model is trained with a
momentum of 0.9, and an initial learning rate of 0.0003. Though
the momentum is similar to our model, low classification accuracy is
ascribed to lower learning rate which results in slow convergence of
this model. Further, it is seen that the performance of the Bayesian
optimization based squeezeNet classifier proposed in Ucar and Korkmaz
(2020) is also inferior to the proposed SGDM optimized COVID-SSNet.
This degradation of the Bayesian SqueezeNet is attributed to the esti-
mation of posteriors in optimizing the learning rate by approximation.
The training times are also found to be better for the proposed model,
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which show that SGDM optimization can stabilize the model, while the
learning rate is constant.

Additionally, analysis of the standard deviation also shows that
the proposed model is highly stable irrespective of the batch size. It
implies that the impact of data spread across batches has a minimal
effect on the proposed model. Whereas, for the other two models, the
training samples drawn in different batches affect their performance
due to variable learning rates. Further, this inference also aligns with
the results of Smith et al. (2018) which show that best classification
accuracy can be achieved by increasing the batch size without decaying
the learning rate.

Further, the segmentation capabilities of the proposed model are
evaluated with the objective metrics Dice, Structure Measure (SM) (Fan,
Cheng, Liu, Li, & Borji, 2017) and Enhance -Alignment Measure (EM)
(Fan et al., 2018). The ground truths required for these evaluations are
obtained with the Ground Truth Labeler App of Matlab 2021b under
the guidance of a medical expert.

The Dice metric which is the measure of the overlap between the
prediction 𝑃 and the ground truth 𝐺 is given in Eq. (15).

𝐷𝑖𝑐𝑒 =
|2𝑃 ∩ 𝐺|
|𝑃 | + |𝐺|

(15)

The SM which evaluates the similarity between the segmented output
and the ground truth mask is given in Eq. (16), where 𝑆𝑜, 𝑆𝑟, 𝛼, 𝑆𝑝 and
𝐺 refer to the object-aware similarity, region-aware similarity, balance
factor between 𝑆𝑜 and 𝑆𝑟, prediction and the ground truth respectively.
We have evaluated 𝑆𝑀 with 𝛼=0.5, the default specified in Fan et al.
(2017).

𝑆𝑀 = (1 − 𝛼) ∗ 𝑆0(𝑆𝑝, 𝐺) + 𝛼 ∗ 𝑆𝑟(𝑆𝑝, 𝐺) (16)

The EM which is a measure of the global and local similarity
between binary maps is given in Eq. (17), where 𝑤 and ℎ are the width
and height of ground truth mask 𝐺 and 𝜓 is the enhanced alignment
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Fig. 9. Network activation for misclassifications.
matrix.

𝐸𝑀𝜓 = 1
𝑤ℎ

𝑤
∑

𝑥

ℎ
∑

𝑦
𝜓(𝑆𝑝𝑥, 𝑦), 𝐺(𝑥, 𝑦) (17)

Given a prediction 𝑆𝑝, 𝐸𝑀𝜓 is constructed by constructing a binary
mask, thresholding each pixel in the range [0 255], The alignment
matrix 𝜓 captures the pixel-level and image-level similarity between
the prediction 𝑆𝑝 and 𝐺 based on the global means. We present a
comparison of the segmentation results of the proposed model for
consolidations, GGOs and hazy patches in Table 5. It is seen that the
segmentation metrics are better for GGOs compared to consolidations
and hazy patches which shows that the structure of consolidations and
hazy patches are ambiguous compared to GGOs. It is also seen that
the EM which measures the global and local similarity differ with the
thresholds employed in the construction of the alignment matrix 𝜓 .
Closer observation of the metrics shows that EM values are smaller
when the threshold is high for this dataset. However, it may differ with
other datasets due to the inherent image features.

In addition to classification, our model presents extended capabil-
ities to segment the biomarkers and construct composite CXR images,
enhancing their diagnostic values. It is seen that the activation regions
featuring GGOs, consolidations and fine patches are localized by the
proposed model. From an extensive literature review and clinical case
studies we understand that bilateral, basal, medial, peripheral, multi-
focal, subpleural and posterior GGOs manifest in the CXR images of
COVID-19 patients. However, GGOs seem to be unilateral and follow
a central distribution in the CXR images of viral pneumonia patients.
10
Air space consolidations are found to coexist with the GGOs in COVID-
19 and viral pneumonia cases. Studies also show that people with
normal X-rays are also infected with COVID-19. From Afza et al.
(2021), it is apparent that COVID-19 imaging features are variable
and non-specific and correlate with that of Middle East respiratory
syndrome coronavirus (MERS-COV), H7N, H7N9, Human parainfluenza
and Respiratory syncytial viruses.

The proposed model simplifies the separation of potential ROIs from
the images through geometric, spatial and morphological analyses of
the activation regions for the differential diagnosis of COVID-19 to
identify the potential biomarkers. Further, it can be trained exclusively
with these biomarkers and extended to severity analysis.

There are three potential limitations of the proposed network which
need to be addressed.

1. Lack of benchmarking standard datasets for performance eval-
uation is a major limitation with COVID-19 detection systems.
Though several CXR and CT image datasets are introduced in
recent works on COVID-19 detection, it is difficult to select
suitable datasets to train and evaluate a model for comparative
performance analyses due to the diversities with respect to the
size and subset classes. The proposed model is compared with
several models in Table 3, based on quantitative results reported
in existing literature. Further, only two SqueezeNet based mod-
els are evaluated with the dataset considered in this research for
want of time.

2. In this research, super pixel segmentation of the activation maps
is performed with constant values of horizontal and vertical
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Table 3
Performance comparison with state-of-the-art methods.

Reference Model Test images Accuracy Observations

Proposed Model COVID-SSNet 100 COVID19
1400 Non-COVID19
100 COVID
700 Viral
Pneumonia
700 Normal

0.9953
0.9960

The highest classification accuracy is achieved for
binary and three class classifications.

Sethy et al. (2020) ResNet50 + SVM 25 COVID-19 (+)
25 COVID-19 (-)

95.38 ResNet50 is employed in feature extraction only.
SVM adds computational overheads.

Chowdhury, Rahman, et al. (2020) SqueezeNet 60 COVID-19
60 Viral Pneumonia

60 Normal
60 COVID-19
60 Normal

98.3
98.3

SqueezeNet demonstrates superior performance compared
to AlexNet, ResNet18 and DenseNet201 with few parameters.

Wang et al. (2020) COVID-Net 53 COVID-19 (+)
5526 COVID-19 (-)
8066 Normal

92.4 Long-range connectivity among network layers increase
the computational complexity.

Hemdan et al. (2020) COVIDX-Net
VGG19
DenseNet201

25 COVID-19 (+)
25 Normal

90.0 Best classification results are achieved by VGG19 and DenseNet201
compared to ResNetV2, InceptionV3, InceptionResNetV2, Xception,
and MobileNetV2.
Best performance is attributed to the composite operation of
Densenet
and the highly non-linear activation function of VGG19

Narin et al. (2020) ResNet50
InceptionV3
InceptionResNetV2

50 COVID-19 (+)
50 COVID-19 (-)

98.0
97.0
87.0

ResNet50 model provides good classification performance
attributed
to its depth and skip connections.

Sharifrazi et al. (2021) CNN+SVM+Sobel 77 COVID-19 (+)
256 Normal

99.02 The architecture of the CNN is not explicitly specified for a fair
comparison.

Abbas et al. (2021) Deep CNN (DeTraC) 105 COVID-19 (+)
80 Normal
11 SARS

93.1 DeTraC Decompose, Transfer, and Compose operations are
performed
to eliminated irregularities in the CXR images before training.

Alam et al. (2021) Fusion features
(CNN+HOG) +
VGG19 pre-train model

1979 COVID-19
3111 normal

99.49 The proposed model is very complex. It employs HoG and CNN for
feature extraction. After fusion, the features are gien as input to
VGG19.

Hussain et al. (2021) CoroDet 500 COVID-19
800 Viral
Pneumonia
800 Normal
500 COVID-19
800 Normal

94.2
99.1

22-layer customized CNN is built iteratively trying different layer,
activation function and optimization parameter combinations.

Nayak et al. (2021) ResNet-34 203 COVID-19 (+)
203 Normal

98.33 Best classification accuracy is achieved by ResNet-34 compared to
ResNet-50, GoogleNet, VGG-16, AlexNet, MobileNet-V2,
Inception-V3 and SqueezeNet. Superior performance of ResNet-34
is attributed to better performance-accuracy trade-off.
Table 4
Performance comparison with SqueezeNet.

Mod. Clas. ILR Acc. Sens. Spec. Prec. F1S MCC TT (ms)

1 2-class 0.001 (C) 99.53±0.003 99.51±0.001 99.62±0.009 99.71±0.008 99.65±0.001 99.41±0.004 1570
3-class 0.001 (C) 99.60±0.0026 99.71±0.015 99.80±0.017 99.81±0.003 99.21±0.006 99.25±0.007 1586

2 2-class 0.0003 (VWE) 98.71±0.093 96.68±0.106 98.52±0.130 98.47±0.129 98.54±0.122 98.13±0.104 1972
3-class 0.0003 (VWE) 98.13±0.102 96.20±0.128 98.12±0.098 98.33±0.184 98.29±0.974 98.02±0.982 1920

3 2-class 0.001 (VWE) 99.01±0.140 99.12±0.135 98.51±0.274 98.89±0.099 98.93±0.196 98.32±0.197 1932
3-class 0.001 (VWE) 98.81±0.162 98.74±0.150 98.82±0.167 98.71±0.154 98.82±0.159 98.52±0.165 1941

Legend– Mod.: Model; Clas.: Classification; ILR: Initial Learning Rate; C: Constant; VWE: Varies With Epochs; Acc.: Accuracy; Sens.: Sensitivity; Spec.: Specificity; Prec.: Precision;
F1S: F1Score; MCC: Mathews Correlation Coefficient; TT: Training time.
1: Proposed – COVID-SSNet; 2: Chowdhury, Rahman, et al. (2020) – SqueezeNet; 3: Ucar and Korkmaz (2020) – Bayes-SqueezeNet.
pixel window sizes which constrain the size of the super pixels.
Varying these windows can facilitate capturing biomarkers of
arbitrary sizes ranging from very fine nodules to large infection
patterns. Evaluating the performance of the proposed model for
different window sizes is computationally expensive.

3. Severity analysis, a major concern in COVID-19 management is
not dealt in this research. With a suitable mathematical model,
the quantitative class scores obtained from the Grad-CAMs can
11
be mapped to disease severity. The above limitations drive the
enhancement of the proposed model as below.

A voluminous labeled dataset comprising images of various infec-
tions featuring diverse morphological structures can be constructed to
train the proposed model for COVID-19 detection, multi class segmen-
tation and severity analysis from images of different modalities. This
dataset will serve as an image corpus for deep learning approaches
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Table 5
Segmentation metrics.

Infection Metrics

Dice EM (Threshold = 64) EM (Threshold = 128) SM

GGO 0.9206 0.9401 0.9072 0.8545
Consolidations 0.8542 0.9272 0.8957 0.8529
Hazy Patches 0.8792 0.9164 0.8484 0.8317

at various stages in COVID-19 management. Further, GMM super pix-
els segmentation can be enhanced to multi scale segmentation for
segmentation of infections without size constraints.

It is evident that the proposed framework follows domain adapta-
tion kind of transfer learning which fine-tunes the ImageNet pretrained
SqueezeNet model with a completely different and a relatively very
smaller chest X-ray dataset. The classification ability of this framework
is testified with the classification results. Further, this framework can
be extended to detect COVID-19 and segment infections from images
of other modalities as well including chest CT images. It can be ac-
complished by freezing the weights of the COVID-SSNet for feature
extraction and training it with multi-modal image datasets.

6. Conclusion

In this paper, we have proposed a novel deep learning frame-
work for COVID-19 detection and segmentation of the infected regions
from CXR images. We have constructed a variant of the conventional
SqueezeNet model incorporating a super pixel pooling layer for seg-
mentation of the infected region. We have shown that this model
achieves more than 99% of training and testing accuracies for binary
and multi class classifications with a standard dataset signifying its
reliability. The segmentation of infected regions and their localization
in CXR images achieved with the SqueezeNet is highly significant com-
pared to the state-of-the-art models. The proposed system demonstrates
it classification efficacy, feature driven classification decision and lo-
calization of infections. Contrary to the observations that CXR images
have less diagnostic value, this model enhances the potential clinical
values of these images. With the growing severity of the pandemic day
by day, many countries have introduced mobile CXR units to capture
images from the susceptible and infected people. The proposed model is
ideal in the present scenario for rapid diagnosis and prognosis towards
reducing the morbidity and mortality of COVID-19 cases. This model
also paves way for further research on investigation of the symptoms in
the segmented regions and combinations of occurrences in CXR images,
for standardizing them as potential biomarkers of COVID-19.
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