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Abstract

Background: Early prediction of hospital mortality is crucial for ICU patients with
sepsis. This study aimed to develop a novel blending machine learning (ML) model
for hospital mortality prediction in ICU patients with sepsis.

Methods: Two ICU databases were employed: eICU Collaborative Research Database
(eICU-CRD) and Medical Information Mart for Intensive Care III (MIMIC-III). All adult
patients who fulfilled Sepsis-3 criteria were identified. Samples from eICU-CRD
constituted training set and samples from MIMIC-III constituted test set. Stepwise
logistic regression model was used for predictor selection. Blending ML model which
integrated nine sorts of basic ML models was developed for hospital mortality
prediction in ICU patients with sepsis. Model performance was evaluated by various
measures related to discrimination or calibration.

Results: Twelve thousand five hundred fifty-eight patients from eICU-CRD were
included as the training set, and 12,095 patients from MIMIC-III were included as the
test set. Both the training set and the test set showed a hospital mortality of 17.9%.
Maximum and minimum lactate, maximum and minimum albumin, minimum PaO2/
FiO2 and age were important predictors identified by both random forest and
extreme gradient boosting algorithm. Blending ML models based on corresponding
set of predictors presented better discrimination than SAPS II (AUROC, 0.806 vs.
0.771; AUPRC 0.515 vs. 0.429) and SOFA (AUROC, 0.742 vs. 0.706; AUPRC 0.428 vs.
0.381) on the test set. In addition, calibration curves showed that blending ML
models had better calibration than SAPS II.

Conclusions: The blending ML model is capable of integrating different sorts of
basic ML models efficiently, and outperforms conventional severity scores in
predicting hospital mortality among septic patients in ICU.

Keywords: Sepsis, Intensive care unit, Hospital mortality prediction, Machine
learning, MIMIC-III, eICU-CRD
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Background
Sepsis is a syndrome characterized by infection and infection-induced organ dysfunc-

tion. The Third International Consensus Definition for Sepsis (Sepsis-3) updated the

definition as a “life-threatening organ dysfunction caused by a dysregulated host re-

sponse to infection”, and recommended usage of the Sequential Organ Failure Assess-

ment (SOFA) score instead of the Systemic Inflammatory Response Syndrome (SIRS)

score for identifying organ dysfunction [1]. With an increasing incidence and preva-

lence over the last decades, sepsis has become the most common cause of admission to

intensive care unit (ICU) and in-hospital death [2–5]. Despite considerable advances in

diagnosis and management of sepsis, it is still a great clinical challenge due to a high

mortality rate (about 20–30%), even in developed countries [3, 6]. And the care for sep-

sis results in an economic burden on individuals, families and health care systems [2].

Early prediction of hospital mortality is crucial for evaluating severity of illness and

initiating adequate treatment for ICU patients with sepsis. Since it is difficult for clini-

cians to accurately predict hospital mortality of critically ill patients by an initial intu-

ition, several severity scores have been developed for this purpose in the past decades,

such as the Acute Physiology and Chronic Health Evaluation (APACHE), the Simplified

Acute Physiology Score (SAPS) and the Mortality Probability Models (MPM) [7]. These

conventional severity scores generally base on a multivariable logistic regression model,

and predict hospital mortality using patient’s clinical characteristics measured within

the first 24 h of the ICU stay. Despite wide application in clinic, these severity scores

show limited performance since the logistic regression algorithm assumes that a linear

and additive combination of predictors is reasonable for computing the outcome math-

ematically. However, that is not competent for simulating the real situation.

Machine learning (ML) is an interdiscipline of mathematics (probability theory, statis-

tics) and computer science, and focuses on how computer learn from large data sets

containing a multitude of variables. It is based on mathematical algorithms which iden-

tify potential patterns of data, and is implemented by computer programming which is

capable of calculating a huge size of data. ML provides a novel approach for developing

prediction model and has been gradually introduced into the medical field in recent

years. One common application of ML is to predict mortality in various disease groups.

In this study, we developed and validated a novel blending ML model, in which various

ML algorithms were integrated, for hospital mortality prediction in ICU patients with

sepsis.

Methods
Source of data

A retrospective cohort study was conducted in two large US-based ICU databases: the

eICU Collaborative Research Database (eICU-CRD) [8] and the Medical Information

Mart for Intensive Care III (MIMIC-III) [9]. The eICU-CRD is a multi-center ICU data-

base comprising 200,859 ICU stays for 139,367 unique patients who were admitted to 335

ICUs in 208 hospitals located throughout the US during 2014 to 2015. And the MIMIC-

III database is a single-center ICU database comprising 61,532 ICU stays for 46,476

unique patients who were admitted to 6 ICUs in the Beth Israel Deaconess Medical Cen-

ter between 2001 and 2012. Both of the two databases provided comprehensive records of
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demographic characteristics, diagnoses, vital signs, laboratory tests, treatment information

and other details from bedside monitors and nursing charts. These two databases were

built with local ethical review board (ERB) approval and all tables of them were deidenti-

fied in accordance with the Health Insurance Portability and Accountability Act (HIPAA)

standards, thus ERB approval from our institution was exempted. This study was con-

ducted according to the Transparent Reporting of a multivariable prediction model for In-

dividual Prognosis or Diagnosis (TRIPOD) [10].

Participants

From both datasets, we included patients admitted to the ICU with sepsis, according to

the sepsis-3 criteria [1]. Sepsis was defined as organ dysfunction consequent to an in-

fection (or suspected infection). We firstly selected patients who met any of the follow-

ing two criterion within a time window from 24 h before to 24 h after the ICU

admission: 1. Having documented infection-related diagnoses according to the Inter-

national Classification of Diseases, ninth revision, Clinical Modification (ICD-9-CM)

codes provided by Angus et al. [2]; 2. Fulfilling the “suspected infection” criteria defined

by Seymour CW et al. [11]. Then we identified consequent organ dysfunction as an

acute change in SOFA ≥2 points within the first 24 h of ICU stay. In line with previous

research [12–14], a baseline SOFA of zero was assumed for all patients since both these

two datasets lack data prior to ICU admission. We included only the first ICU stay dur-

ing a hospitalization and excluded patients with multiple hospitalizations to ensure a

sample representing an independent patient for our prediction model. Besides, patients

were excluded if any of the following exclusive criterion was met: 1. Age not between

16 and 89 years old; 2. ICU stay duration< 24 h; 3. Organ donor (liver, kidney, heart,

cornea); 4. Missing rate of total variables (mentioned in the next section) more than

70%; 5. Missing survival status at discharge from hospital; 6. Obvious data error (e.g

unrealistic extremum, wrong negative value). The outcome to be predicted in this study

was the survival status at discharge from hospital. All eligible patients were included

for development and validation of our ML model, without extra attempt to assess the

appropriate sample size for this study.

Predictors

A total of 65 variables, concerning demographic characteristics, vital signs, conscious-

ness, laboratory tests, comorbidities, pivotal treatments and fluid balance within the

first 24 h of an ICU stay, were extracted from these two databases as predictors. For

some variables, both the maximum and minimum values within the first 24 h were col-

lected considering that both abnormally high and low values could indicate severity of

disease clinically. These 65 variables were referred to as the total variables in this study.

And besides, three subsets of the total variables were selected in order to evaluate

model performance. The first subset contained variables which were selected by a step-

wise logistic regression model with both forward selection and backward elimination.

The second subset contained variables applied in the SAPS II score. And the third sub-

set contained variables applied in the SOFA score. The total variables and its three sub-

sets were summarized in Table 1.
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Training set and test set

Each eligible patients represented a sample for ML model. In this study, samples from

the eICU-CRD constituted the training set for model development, and samples from

the MIMIC-III constituted the test set for model validation. Such design pattern en-

sured that the training set and the test set were independent in order to obtain a con-

vincing evaluation on model performance.

Conventional severity scores

Two widely used conventional severity scores, the SAPS II and SOFA scores, were se-

lected as benchmarks for model validation. Individual predicted probability of death for

the SAPS II score was calculated according to the following formula by its authors [15]:

log
pr death½ �

1−pr death½ �
� �

¼ −7:7631þ 0:0737�SAPS II þ 0:9971� log 1þ SAPS IIð Þ

However, the SOFA score could not be directly used to calculate the probability of

death. In fact, the SOFA score was initially developed for assessment of multiple organ

dysfunction rather than for mortality prediction, but many clinicians tended to use it to

estimate the risk of death. Thus, we trained a SOFA score based logistic regression

model by the training set to map the SOFA score to predicted probability of death, and

we defined it as the refitted SOFA.

Blending machine learning model

The blending ML model was composed of two layers of basic ML models. The first

layer comprised various ML models and the second layer was a single ML model. In

this study, a total of 9 ML models were applied in the first layer, including logistic re-

gression (LR), linear discriminant analysis (LDA), classification and regression tree

(CART), Naive Bayes model (NB), K-nearest neighbors (KNN), multi-layer perceptron

Table 1 Variables summary

Variable type Variable

Demographic
characteristics

agea,b, gender, ethnicity, BMIa, admission typea,b

Vital signs max HRb, min HRa,b, max RRa, min RRa, max temperatureb, min temperaturea, max SBPb,
min SBPa,b, max DBP, min DBP, max MAP, min MAPa,c, max SpO2, min SpO2a

Consciousness min GCSa,b,c

Laboratory tests max pHa, min pHa, max PaO2, min PaO2a, max PaCO2a, min PaCO2, max bicarbonate,
min bicarbonateb, min PaO2/FiO2a,b,c, max WBCa,b, min WBCa,b, max hematocrit, min
hematocrit, max platelet, min plateleta,c, max hemoglobina, min hemoglobin, max
bilirubina,b,c, min bilirubina, max albumina, min albumina, max creatininea,c, min
creatinine, max BUNb, min BUNa, max sodiumb, min sodiuma,b, max potassiumb, min
potassiuma,b, max glucose, min glucose, max lactatea, min lactatea, max PTa, min PT

Comorbidities AIDSa,b, hematological tumora,b, metastatic cancera,b

Pivotal treatments Mechanical ventilationa,b,c (including invasive and noninvasive ventilation), Renal
replacement therapya, Max dose of vasoactive drugs (dopaminec, dobutaminec,
epinephrinec, norepinephrinec)

Fluid balance 24 h Urine outputa,b,c

Abbreviations: BMI body mass index, HR heart rate, RR respiratory rate, SBP systolic blood pressure, DBP diastolic blood
pressure, MAP mean arterial pressure, GCS Glasgow Coma Scale, WBC white blood cell count, PT prothrombin time
aFirst subset: variables selected by stepwise regression model
bSecond subset: SAPS II related variables
cThird subset: SOFA related variables
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(MLP), support vector machine (SVM), random forest (RF) and extreme gradient

boosting (XGB). And logistic regression was applied in the second layer. A brief intro-

duction of these basic ML models was provided in Supplement A. Before training the

blending model, hyperparameters of basic ML models in the first layer were tuned

through an internal five-fold cross validation (CV) on the training set. And a set of

hyperparameters corresponding to the highest mean area under the receiver operating

characteristic curve (AUROC) in the five-fold CV was searched by a grid search

strategy.

The process of training the blending model was as follows: firstly, the training set was

randomly and equally divided into training set 1 and training set 2, then the training

set 1 was used to train the nine basic ML models in the first layer so that these trained

basic ML models were capable of predicting probability of in-hospital death of a new

sample with original variables (items in the total variables mentioned before); secondly,

these nine trained models predicted original samples in the training set 2 to produce

nine probabilities for each sample; thirdly, the original training set 2 was transformed

to a new training set 2 by replacing original variables with the nine predicted probabil-

ities which were referred to as new variables; finally, the new training set 2 was used to

train the LR model in the second layer so that this trained LR model was capable of

predicting a new sample with new variables. After these four steps the blending model

was trained. Notably, division of the training set was responsible for avoiding informa-

tion leakage during model training. In the first step above, the first-layer basic ML

models were trained on the training set 1 through fitting their predicted probabilities

to the true label (survival status). Thus, the second-layer LR model should trained on

another training set rather than the training set 1, ensuring that it did not use the

label-fitted predicted probabilities as its new variables to fit the label.

Then the trained blending ML model was used to predict samples in the test set.

Firstly, the trained basic models in the first layer predicted samples using their original

variables; secondly, just like the third step of the model training process, the original

test set was transformed to a new test set; finally, the trained LR model in the second

layer predicted samples using their new variables and outputted the final predicted

probabilities of in-hospital death. The processes of blending model training and predic-

tion were summarized in Fig. 1.

Data preprocess

KNN imputation [16] was applied to handle missing variables before model training

and prediction. And besides, standard scale, which handled variables by removing the

mean and scaling to unit variance, was applied in LR, LDA, NB, KNN, MLP, SVM.

Standard scale was unnecessary for decision tree models such as CART, RF and XGB.

Statistical analysis

Baseline characteristics between the training set and the test set were compared using

either Student t test, rank-sum test or Chi-square test as appropriate. Continuous vari-

ables were described as mean (standard deviation) or median [interquartile range], and

categorical variables were described as number (percentage).
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Model performance was evaluated by various measures. AUROC was applied to assess

discrimination of a model. DeLong’s test [17] was used to compare AUROCs between dif-

ferent models. Calibration curve, which was able to show the proximity between predicted

mortality and actual mortality, was applied to assess model calibration. The more conven-

tional Hosmer-Lemeshow statistic was abandoned considering its limited performance in

large samples [18]. Area under the precision-recall curve (AUPRC) was also applied since

it was valuable for unbalanced data set. The other measures included accuracy, recall, pre-

cision and F1 score. In order to estimate the influence of different variable sets to model

performance, we built four blending ML models based on the total variables, the variables

selected by stepwise logistic regression model, SAPS II related variables and SOFA related

variables. And they were named as BM_total, BM_reg, BM_SAPSII and BM_SOFA re-

spectively. To reduce randomness in single division of the training set, model training and

prediction for all these blending ML models were repeated 10 times and mean and 95%

confidence interval (CI) of these measurements were calculated. Besides, in order to com-

pare predictive performance between blending ML model and conventional severity

scores, the BM_SAPSII was compared to the SAPS II score and the BM_SOFA was com-

pared to the refitted SOFA.

ML models were built using the scikit-learn package version 0.23.1, a machine learning

package based on Python. Statistical analyses were performed using IBM SPSS Statistics

software version 25.0. Two tailed P < 0.05 was considered as statistical significance.

Results
Participants

Twelve thousand five hundred fifty-eight patients in the eICU-CRD were included as

the training set, and 12,095 patients in the MIMIC-III were included as the test set

(Fig. 2). Number of enrolled hospitals, distribution of ICU type, SOFA score, length of

ICU stay and hospital mortality were presented in Table 2. There were significant stat-

istical differences between the training set and the test set in SOFA score (5.3 vs. 5.5)

and length of ICU stay (70.0 h vs. 74.0 h). As shown in Table 2, naming methods of

ICU type were not identical between these two databases, thus ICU type was not

Fig. 1 Blending machine learning model. Abbreviations: LR logistic regression, LDA linear discriminant
analysis, CART classification and regression tree, NB Naive Bayes, KNN K-nearest neighbors, MLP multi-layer
perceptron, SVM support vector machine, RF random forest, XGB extreme gradient boosting
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selected as a predictor. Comparisons of the total variables were summarized in Supple-

ment B. Notably, most of the total variables had significant statistical differences be-

tween the training set and the test set.

Stepwise logistic regression model

The stepwise logistic regression model selected a total of 34 variables as predictors. As

shown in Table 3, advanced age (OR for every 10 years increment, 1.269; 95% CI, 1.219

to 1.322), admission type of internal medicine (OR referring to unscheduled surgery,

Fig. 2 Flow chart of sample inclusion

Table 2 Baseline characteristics between training set and test set

Train set Test set P-value

Data source eICU-CRD MIMIC-III

Number of hospitals 198 1

Number of patients 12,558 12,095

Unit type, n (%) Med-Surg ICU 8255 (65.7) MICU 4938 (40.8)

MICU 1479 (11.8) SICU 1839 (15.2)

CCU 927 (7.4) CCU 1328 (11.0)

CCU-CTICU 775 (6.2) CSRU 2459 (20.3)

SICU 541 (4.3) TSICU 1531 (12.7)

NICU 302 (2.4)

CSICU 135 (1.0)

CTICU 144 (1.1)

SOFA score
(mean (SD))

5.3 (2.8) 5.5 (3.1) < 0.001

Length of ICU stay (hours, median [IQR]) 70.0 [43.0, 127.0] 74.0 [43.9, 155.8] < 0.001

Hospital mortality (%) 17.9 17.9 0.999

Abbreviations: SD standard deviation, IQR interquartile range, CCU cardiac care unit, CSICU cardiac surgical intensive care
unit, CSRU cardiac surgery recovery unit, CTICU cardiothoracic intensive care unit, MICU medical intensive care unit, NICU
neuro-intensive care unit, SICU surgical intensive care unit, TSICU trauma surgical intensive care unit
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Table 3 Variable selection of stepwise logistic regression model

Variables OR [95% CI] P-value

Demographic characteristics

BMI 0.986 [0.979, 0.993] < 0.001

Age (with each 10 years increment) 1.269 [1.219, 1.322] < 0.001

Admission type (unscheduled surgery as reference)

Internal medicine 1.526 [1.185, 1.964] 0.001

Scheduled surgery 0.936 [0.504, 1.738] 0.834

Comorbidities

AIDS 2.281 [1.343, 3.873] 0.002

Hematological tumor 2.279 [1.661, 3.126] < 0.001

Metastatic cancer 2.593 [1.858, 3.618] < 0.001

Vital signs

Minimum HR (with every 10 beats/min increment) 1.110 [1.073, 1.147] < 0.001

Maximum RR 1.016 [1.009, 1.022] < 0.001

Minimum RR 1.022 [1.012, 1.033] < 0.001

Minimum temperature 0.811 [0.766, 0.858] < 0.001

Minimum SBP (with every 10 mmHg increment) 0.922 [0.880, 0.966] 0.001

Minimum MAP (with every 10 mmHg increment) 0.927 [0.872,0.986] 0.016

Minimum SpO2 0.981 [0.976, 0.986] < 0.001

Laboratory tests

Minimum PaO2 (with every 10mmHg increment) 1.020 [1.005, 1.035] 0.010

Maximum PaCO2 (with every 10 mmHg increment) 1.075 [1.041, 1.109] < 0.001

Minimum PaO2/FiO2 (with every 20 mmHg increment) 0.940 [0.926, 0.955] < 0.001

Maximum WBC 0.989 [0.979, 0.998] 0.023

Minimum WBC 1.021 [1.009, 1.034] 0.001

Minimum platelet (with every 20*1012/L increment) 0.981 [0.971, 0.992] 0.001

Maximum hemoglobin 0.942 [0.918, 0.966] < 0.001

Minimum bilirubin 1.073 [1.048, 1.098] < 0.001

Maximum albumin 0.679 [0.578, 0.799] < 0.001

Minimum albumin 0.848 [0.720, 0.999] 0.049

Maximum creatinine (with every 0.1 mg/dl increment) 0.991 [0.987, 0.996] < 0.001

Minimum BUN 1.009 [1.006, 1.012] < 0.001

Minimum sodium (with every 10 mmol/L increment) 0.900 [0.830, 0.975] 0.010

Minimum potassium 1.110 [1.018, 1.211] 0.019

Maximum lactate 1.072 [1.043, 1.102] < 0.001

Minimum lactate 1.120 [1.067, 1.176] < 0.001

Maximum PT 1.013 [1.006, 1.020] < 0.001

Minimum GCS 0.943 [0.927, 0.960] < 0.001

Mechanical ventilation 1.687 [1.506, 1.891] < 0.001

Renal replacement therapy 1.730 [1.274, 2.349] 0.037

24 h urine output (with every 200 ml increment) 0.973 [0.963, 0.983] < 0.001

Abbreviations: OR odds ratio, CI confidence interval, BMI body mass index, HR heart rate, RR respiratory rate, SBP systolic
blood pressure, MAP mean arterial pressure, GCS Glasgow Coma Scale, WBC white blood cell count, PT prothrombin time
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1.526; 95% CI, 1.185 to 1.964), mechanical ventilation (OR, 1.687; 95% CI, 1.506 to

1.891), renal replacement therapy (OR, 1.730; 95% CI, 1.274 to 2.349), higher minimum

lactate (OR, 1.120; 95% CI, 1.067 to 1.176), higher maximum lactate (OR, 1.072; 95%

CI, 1.043 to 1.102) and comorbidities such as metastatic cancer (OR, 2.593; 95% CI,

1.858 to 3.618) were associated with increased probability of in-hospital death. Con-

versely, higher minimum albumin (OR, 0.848; 95% CI, 0.720 to 0.999), higher max-

imum albumin (OR, 0.679; 95% CI, 0.578 to 0.799), higher Glasgow Coma Scale (GCS)

(OR, 0.943; 95% CI, 0.927 to 0.960) and increased urine output (OR for every 200 ml

increment, 0.973; 95% CI, 0.963 to 0.983) were associated with decreased probability of

in-hospital death.

Model performance

Predictive performance of different blending ML models, SAPS II and refitted SOFA

was evaluated by an external validation (EV) on the test set. All the numerical measures

were summarized in Table 4 and the graphical calibration curves were showed in Fig. 3.

Comparisons of AUROCs between models were provided in the last column of Table

4. The BM_total and the BM_reg showed the best discrimination according to their

AUROCs (0.815; 95% CI, 0.808 to 0.822 vs. 0.817; 95% CI, 0.810 to 0.823, P = 0.251).

However, quantity of variables used in the BM_total was much more than that in the

BM_reg (65 vs. 34). The BM_reg showed a significantly greater AUROC than the BM_

SAPII and the BM_SOFA (0.817; 95% CI, 0.810 to 0.823 vs. 0.806; 95% CI, 0.799 to

0.813, P < 0.001 and 0.742; 95% CI, 0.734 to 0.749, P < 0.001, respectively). For compar-

ing AUROCs between blending ML model and conventional severity score, the BM_

SAPSII outperformed the SAPS II score (0.806; 95% CI, 0.799 to 0.813 vs. 0.771; 95%

CI, 0.764 to 0.779, P < 0.001), and the BM_SOFA outperformed the refitted SOFA

(0.742; 95% CI, 0.734 to 0.749 vs. 0.706; 95% CI, 0.698 to 0.714, P < 0.001). And in

Table 4 Predictive performance of blending models, SAPS II and refitted SOFA on test set
Accuracy
[95% CI]

Recall
[95% CI]

Precision
[95% CI]

F1 score
[95% CI]

AUPRC
[95% CI]

AUROC
[95% CI]

P-value for comparison between
AUROCs

BM_total 0.845
[0.844,
0.846]

0.203
[0.190,
0.216]

0.748
[0.737,
0.758]

0.318
[0.302,
0.335]

0.536
[0.534,
0.539]

0.815
[0.808,
0.822]

vs. BM_reg: p = 0.251

BM_reg 0.845
[0.844,
0.845]

0.192
[0.183,
0.201]

0.768
[0.759,
0.776]

0.306
[0.295,
0.318]

0.542
[0.540,
0.544]

0.817
[0.810,
0.823]

vs. BM_SAPSII: p < 0.001
vs. BM_SOFA: p < 0.001

BM_SAPSII 0.842
[0.841,
0.844]

0.198
[0.179,
0.216]

0.726
[0.706,
0.746]

0.309
[0.286,
0.331]

0.515
[0.511,
0.518]

0.806
[0.799,
0.813]

vs. SAPSII: p < 0.001

BM_SOFA 0.835
[0.834,
0.836]

0.154
[0.145,
0.163]

0.679
[0.668,
0.690]

0.251
[0.239,
0.262]

0.428
[0.426,
0.431]

0.742
[0.734,
0.749]

vs. SOFA: p < 0.001

SAPS II 0.798 0.458 0.438 0.448 0.429 0.771
[0.764,
0.779]

Refitted
SOFA

0.833 0.130 0.680 0.218 0.381 0.706
[0.698,
0.714]

Abbreviations: AUPRC area under the precision-recall curve, AUROC area under the receiver operating characteristic curve,
CI confidence interval, SAPS II Simplified Acute Physiology Score II, SOFA Sequential Organ Failure Assessment, BM_total
blending model based on the total variables, BM_reg blending model based on variables selected by stepwise regression
model, BM_SAPSII blending model based on SAPS II related variables, BM_SOFA blending model based on SOFA
related variables
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terms of comparing AUPRCs, the results were consistent with AUROCs. Figure 2

showed that the calibration curves of the blending ML models and the refitted SOFA

presented a better fitness to the identity line than that of the SAPS II.

Basic machine learning models

For each basic ML model, major tuned hyperparameters were provided in Supplement

C. Besides, Appendix C also demonstrated AUROCs of all the basic ML models in in-

ternal five-fold CV on the training set and AUROCs in EV on the test set. XGB showed

the highest mean AUROC (0.805; 95% CI, 0.801 to 0.809) in internal five-fold CV and

the highest AUROC (0.814; 95% CI, 0.807 to 0.821) in EV. And CART showed the low-

est mean AUROC (0.733; 95% CI, 0.731 to 0.736) in five-fold CV and the lowest

AUROC (0.711; 95% CI, 0.703 to 0.719) in EV. Among these basic ML algorithms, RF

and XGB were capable of evaluating variable importance according to the sum of times

that a variable was used to classify death versus survival in all basic trees of RF/XGB.

Variable importance was assessed and the top 10 variables judged by both the two algo-

rithms were showed in Fig. 4. Maximum and minimum lactate, maximum and mini-

mum albumin, minimum PaO2/FiO2, and age were included into the most 10

important variables by both RF and XGB.

Discussion
Hospital mortality prediction in ICU patients with sepsis has become an issue of great

concern due to its guiding significance for clinicians. In this study, we developed and

Fig. 3 Calibration curves for external validation on the test set. For each model, the calibration curve was
drew by dividing predicted probabilities into ten subgroups according to deciles of the [0,1] interval and
plotting mean predicted probability versus mean actual probability for each subgroup. As shown, each blue
point of a calibration curve represented a subgroup and the size of the gray circle around represented
sample size of this subgroup. The dotted line was the identity line of y = x representing perfect calibration.
The closer a calibration curve was to the identity line, the more similar predicted mortality was to actual
mortality, indicating a better calibration of a model. Abbreviations: SAPS II Simplified Acute Physiology
Score II, SOFA Sequential Organ Failure Assessment, BM_total blending model based on the total variables,
BM_reg blending model based on variables selected by stepwise regression model, BM_SAPSII blending
model based on SAPS II related variables, BM_SOFA blending model based on SOFA related variables
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validated a novel blending ML model for this issue, and meanwhile we screened out

various variables which were associated with hospital mortality of septic patients in

ICU. Compared to conventional severity scores, our blending ML model showed better

performance both in terms of discrimination and calibration. Lactate, albumin, mini-

mum PaO2/FiO2 and age were identified by both RF and XGB algorithm as top im-

portant predictors.

We reviewed previous studies concerning applications of ML models for predicting

mortality of patients with sepsis. In 2011, Ribas VJ et al. demonstrated that SVM

showed a higher prediction accuracy and AUROC compared to Lasso and ridge regres-

sion and APACHE II score [19]. In 2016, Taylor RA et al. assessed RF, CART and LR

model for predicting mortality of septic patients in emergency department and reported

an increased AUROC for RF [20]. In 2019, also in emergency department, Perng JW

et al. applied KNN, SVM, RF and SoftMax and reported an improved AUROC com-

pared to quick SOFA and SIRS [21]. In 2020, Yao RQ et al. focused on mortality pre-

diction in postoperative septic patients in MIMIC-III and showed that XGB

outperformed LR and SOFA score in terms of discrimination and calibration [22], and

Kong GL et al. reported that gradient boosting machine (GBM) showed a better per-

formance compared to LR, Lasso regression, RF and SAPS II for mortality prediction in

septic patients in MIMIC-III [23]. Compared with these previous studies, our study has

two major advantages: firstly, two large ICU databases are applied as sources of the

training set and the test set respectively, ensuring that model validation is really inde-

pendent from model development; secondly, the blending ML model developed in this

study is capable of integrating various sorts of ML models.

This study is a retrospective cohort study on two large ICU databases. The multi-

center eICU-CRD has been selected as source of the training set in this study because

it provides multi-source data to be mined by ML models. Our statistical analyses show

a heterogeneity of ICU septic patients between the eICU-CRD and the MIMIC-III. Des-

pite approximate hospital mortality, there are significant statistical differences in SOFA

score, length of ICU stay and most of the total variables between the training set and

the test set (Table 2 and Supplement B). It is interpretable since data of these two sep-

tic cohorts is from different hospitals, periods and distributions of ICU types. Although

the test set presents a certain degree of difference from the training set, all the basic

ML models employed in this study represent good generalization abilities since there is

Fig. 4 Variable importance derived from RF and XGB. Abbreviations: RF random forest, XGB extreme
gradient boosting
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not obvious decrement of AUROC in EV on the test set compared to internal five-fold

CV on the training set (Supplement C).

Our study indicates that the blending model outperforms conventional severity scores

in predicting hospital mortality among septic patients in ICU. Furthermore, it provides

a flexible method to integrate different sorts of ML models. Although various ML algo-

rithms have been applied for mortality prediction, there is no conclusion about that

which algorithm possesses the best performance. An objective fact is that a single sort

of algorithm will not always suitable for identifying all the different potential patterns

in big data. According to previous studies mentioned above, ensemble algorithms, such

as RF, XGB and GBM, seem to possess more potential for such a complicated predict-

ive task. In essence, the blending model is also an ensemble algorithm. The main differ-

ence is that the blending model is competent to integrate various sorts of ML models

through its concise two-layer architecture, while RF, XGB and GBM are composed of

homogenous basic models (generally CART). Thus, the blending model has advantages

on mining data patterns using more heterogeneous ML algorithms. To our best know-

ledge, such a blending model has not been reported to be used for mortality prediction

before.

The training and predictive processes of the blending model are efficient. Both the

first-layer and the second-layer basic ML models are trained once without repeated

training, using mutually exclusive two subsets of the training set. Besides, in the case of

sample size in our study, equal division of the training set does not trend to affect per-

formance of blending model due to reduction of sample size for training basic models.

In fact, our results indicate that the BM_total performs at least as well as the most ex-

cellent basic model (XBG model based on the total variables) which is trained using the

total training set, in terms of AUROC (Table 4 and Appendix C). The blending model

is convenient to be extended to other medical predictive tasks by altering the combin-

ation of basic models and even the second-lay model according to different situations.

In this study we also explored significant variables for predicting hospital mortality

among septic patients in ICU. The set of total variables includes the most common

clinical characteristics obtained in ICU routine work for facilitating application of the

predictive model. While the 34 variables selected by stepwise logistic regression model

can build a more concise blending model with comparable predictive performance and

reduced computing cost. Furthermore, through selecting variables by stepwise logistic

regression model and assessing variable importance by RF and XGB algorithms, two

important variables, which are rarely included in conventional severity scores, are iden-

tified in our study. One is lactate in the first 24 h of ICU stay. Our result suggests that

both higher maximum and minimum lactate indicate an increased hospital mortality.

Previous studies also show that hyperlactatemia is associated with high mortality

among septic patients and other critically ill patients [24–26]. A widely held view is that

elevated serum lactate is due to anaerobic glycolysis induced by tissue hypoxia and/or

hypoperfusion which is common in sepsis, particularly in septic shock. And tissue hyp-

oxia and/or hypoperfusion are considered to be a major cause of organ failure and

mortality. However, the pathophysiology and clinical significance of hyperlactatemia in

sepsis is still not fully understanded [27]. The other variable is albumin. Our research

suggests that both lower maximum and minimum albumin indicate an increased hos-

pital mortality. This result is also supported by several previous studies [28–30]. As the

Zeng et al. BioData Mining           (2021) 14:40 Page 12 of 15



most common protein in the human body, serum albumin has important physiological

functions such as maintaining plasma osmotic pressure, buffering function and binding

capacity. Although hypoalbuminemia seems to predict a poor prognosis, infusion of al-

bumin has not been confirmed to be an effective therapy to improve mortality in septic

patients [31, 32]. Thus, further research is needed to clarify the role of these two vari-

ables in sepsis.

This study has several limitations. Firstly, data missing inevitably exists in such a

retrospective cohort study using large public databases. Data missing can affect model

performance, and severe data missing may also exclude some potential valuable vari-

ables for prediction. Thus, prospective cohorts are needed for further model validation

and model updating. Secondly, our predictive model is capable of providing clinicians

an early estimation about hospital mortality, but it has limited ability of give real-time

prediction throughout ICU stay duration. A dynamic predictive model based on time

series of clinical variables is planned in our future work. Finally, in this study the pre-

dicted outcome merely included hospital mortality. Long term mortality and other im-

portant clinical complications is also needed to be investigated.

Conclusions
In conclusion, the blending ML model is capable of integrating different sorts of basic

ML models efficiently, and outperforms conventional severity scores in predicting hos-

pital mortality among septic patients in ICU. The blending ML model show its applica-

tion value, since it provides clinicians an early prediction of hospital mortality and

subsequently prompts adequate treatments for high-risk patient. Besides, some import-

ant variables ignored by conventional severity scores are proved to be valuable for such

predictive issue. Further prospective research is expected to validate and improve the

model.
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