| Flat-plate, symmetric (Bragg–Brentano) |
V_{\rm SR} = {{A} / {(2\mu)}} |
– |
Cheary et al. (2004 ▸) |
| Egami & Billinge (2003 ▸) |
| |
| Flat-plate, asymmetric (grazing incidence) |
V_{\rm AR} = ({{A}/{\mu}})\left(1+{{\sin\alpha}/{\sin\gamma}}\right)^{-1} |
– |
Toraya et al. (1993 ▸) |
| James (1967 ▸) |
| |
| Flat-plate with finite thickness |
V = 2\left(1+{{\sin\alpha} /{\sin\gamma}}\right)^{-1} \left\{1-\exp\left[-\mu t({{1}/ {\sin\alpha}}+{{1} / {\sin\gamma}})\right]\right\rbrace} |
t = thickness |
Egami & Billinge (2003 ▸) |
| Symmetric geometry when α = γ |
| |
| Capillary in transmission (Debye–Scherrer) |
A(\theta) = A_{L}\cos^{2}(\theta)+A_{B}\sin^{2}(\theta) |
z = 2μr
|
Dwiggins (1972 ▸) |
| A_{L} = 2{I_{0}(z)-L_{0}(z)-{[{I_{1}(z)-L_{1}(z)}] /{z}}} |
Iν = νth-order modified Bessel function |
Sabine et al. (1998 ▸) |
| A_B = [I_1(2z) - L_1(2z)]/z |
Lν = νth-order modified Struve function |
|