Skip to main content
. 2021 Jul 16;54(Pt 4):1140–1152. doi: 10.1107/S1600576721006245

Table 1. Volume corrections for some common experimental geometries.

Geometry Equation Note References
Flat-plate, symmetric (Bragg–Brentano) V_{\rm SR} = {{A} / {(2\mu)}} Cheary et al. (2004)
Egami & Billinge (2003)
 
Flat-plate, asymmetric (grazing incidence) V_{\rm AR} = ({{A}/{\mu}})\left(1+{{\sin\alpha}/{\sin\gamma}}\right)^{-1} Toraya et al. (1993)
James (1967)
 
Flat-plate with finite thickness V = 2\left(1+{{\sin\alpha} /{\sin\gamma}}\right)^{-1} \left\{1-\exp\left[-\mu t({{1}/ {\sin\alpha}}+{{1} / {\sin\gamma}})\right]\right\rbrace} t = thickness Egami & Billinge (2003)
Symmetric geometry when α = γ
 
Capillary in transmission (Debye–Scherrer) A(\theta) = A_{L}\cos^{2}(\theta)+A_{B}\sin^{2}(\theta) z = 2μr Dwiggins (1972)
A_{L} = 2{I_{0}(z)-L_{0}(z)-{[{I_{1}(z)-L_{1}(z)}] /{z}}} Iν = νth-order modified Bessel function Sabine et al. (1998)
A_B = [I_1(2z) - L_1(2z)]/z Lν = νth-order modified Struve function