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Abstract
The widespread Coronavirus Disease 2019 (COVID-19) is caused by infection with the novel coronavirus
SARS-CoV-2. Currently, we have a limited toolset available for visualizing SARS-CoV-2 in cells and tissues,
particularly in tissues from patients who died from COVID-19. Generally, single-molecule RNA FISH techniques
have shown mixed results in formalin fixed paraffin embedded tissues such as those preserved from human
autopsies. Here, we present a platform for preparing autopsy tissue for visualizing SARS-CoV-2 RNA using
RNA FISH with amplification by hybridization chain reaction (HCR). We developed probe sets that target
different regions of SARS-CoV-2 (including ORF1a and N) as well as probe sets that specifically target
SARS-CoV-2 subgenomic mRNAs. We validated these probe sets in cell culture and tissues (lung, lymph
node, and placenta) from infected patients. Using this technology, we observe distinct subcellular localization
patterns of the ORF1a and N regions, with the ORF1a concentrated around the nucleus and the N showing a
diffuse distribution across the cytoplasm. In human lung tissue, we performed multiplexed RNA FISH HCR for
SARS-CoV-2 and cell-type specific marker genes. We found viral RNA in cells containing the alveolar type 2
(AT2) cell marker gene (SFTPC) and the alveolar macrophage marker gene (MARCO), but did not identify viral
RNA in cells containing the alveolar type 1 (AT1) cell marker gene (AGER). Moreover, we observed distinct
subcellular localization patterns of viral RNA in AT2 cells and alveolar macrophages, consistent with
phagocytosis of infected cells. In sum, we demonstrate the use of RNA FISH HCR for visualizing different RNA
species from SARS-CoV-2 in cell lines and FFPE autopsy specimens. Furthermore, we multiplex this assay
with probes for cellular genes to determine what cell-types are infected within the lung. We anticipate that this
platform could be broadly useful for studying SARS-CoV-2 pathology in tissues as well as extended for other
applications including investigating the viral life cycle, viral diagnostics, and drug screening.

Introduction
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the betacoronavirus, Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. COVID-19 manifests in a highly variable manner
from person to person, with some infected individuals being completely asymptomatic, while others experience
symptoms ranging from mild upper respiratory disease to severe pneumonia to multiorgan failure1–3. With such
a diverse array of disease symptoms, characterizing the distribution of the SARS-CoV-2 virus across various
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human tissues is crucial to improving our understanding of COVID-19 pathogenesis, pathophysiology, and
identifying and rationally designing effective therapies.

Critical to defining the distribution of the SARS-CoV-2 virus in humans is determining which organs and cell
types become infected with SARS-CoV-2. Several studies4–9 have made predictions on the tissues and cell
types infected by SARS-CoV-2 based on host expression of  factors known to facilitate viral entry into the host
cell for closely related betacoronaviruses such as SARS-CoV-1 and MERS-CoV. While this approach has
helped to narrow down targets in humans, the confirmation of these predicted organs and cell types as true
targets of SARS-CoV-2 remains an ongoing process. Accordingly, in a limited set of human autopsy studies,
SARS-CoV-2 components (RNA and proteins) have been detected in multiple organs and organ systems
including the upper airway10,11, lung11,12, gastrointestinal tract13, placenta14,15, spleen16, myocardium17, and lymph
node16, using different combinations of RT-PCR, immunostaining, electron microscopy and in situ hybridization
techniques. A number of these studies that use techniques with single-cell resolution (such as immunostaining
and in situ hybridization) have identified alveolar type 2 (AT2) cells and alveolar macrophages in the lung11,
glandular epithelial cells in the gastrointestinal tract13, cytotrophoblasts and syncytiotrophoblasts in placenta18

and macrophages in the spleen and lymph nodes16 as specific cell types containing SARS-CoV-2 viral
components. Ultimately, defining the full range of SARS CoV-2 tropism requires direct detection approaches to
validate the predictions from bioinformatic analyses in large sets of human tissue samples from COVID-19
patients.

Similarly, our current knowledge about viral life cycle and sites of SARS CoV-2 RNA synthesis is incomplete
and largely based upon studies from SARS CoV-1 and MERS CoV. Upon cellular infection with these viruses,
one of the early stages of the viral life cycle is assembly of the replication/transcription complex (RTC), which is
the site of both viral replication and transcription of subgenomic mRNAs. Furthermore, coronaviruses both
replicate their genomic RNA and transcribe subgenomic mRNAs. The subgenomic mRNAs are generated by
discontinuous transcription that generates transcripts containing a conserved upstream leader sequence and a
downstream body encoding viral proteins19. While these transcripts have been documented by Northern blot
(for 40 years) and captured with sequencing techniques, they are yet to be directly visualized in situ in single
cells.

RNA fluorescence in situ hybridization (FISH) techniques are ideal to address questions both about the cell
types infected by SARS-CoV-2 and the subcellular localization of viral transcripts. Previously, robust RNA in
situ assays have been developed for a number of different viral targets20–22. However, most human specimens
from COVID patients are preserved with formalin fixation and paraffin embedding (FFPE) for long-term storage
and biosafety. FFPE preserved tissues are not well-suited for single-molecule RNA FISH as the probes
generate relatively low signal and the tissues have substantial autofluorescence. Furthermore, single-molecule
RNA FISH probes require large regions of unique target sequence, and thus, are not amenable to specifically
targeting subgenomic mRNAs, which have largely the same sequence as the genomic transcripts.

Herein, we present a platform and methodology for addressing these emerging questions about SARS-CoV-2
subcellular localization and cellular tropism using RNA fluorescence in situ hybridization (RNA FISH). We
leverage single-molecule RNA FISH23 and the signal amplification capabilities of hybridization chain reaction
v3.0 (HCR)24 to image different SARS-CoV-2 viral RNA species in cell culture infection models and FFPE
human autopsy specimens. We extend the assay to multiplex probe sets for viral and host RNAs to
simultaneously detect cells with viral RNA and determine their cell type. This platform allows us to observe
differences in RNA staining patterns of SARS-CoV-2 infection between AT2 cells and alveolar macrophages in
human lung autopsy tissue.
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Results
RNA in situ hybridization technologies offer the ability to visualize RNA within fixed cells and tissues. Such
technologies have been used for both cellular RNAs and viral RNAs in infected cells21–23,25,26. With the
emergence of the SARS-CoV-2 virus, we sought to use RNA in situ hybridization techniques to visualize the
viral RNA transcripts in both cell lines and tissues. To overcome limitations from background autofluorescence
and for robust RNA detection, we used hybridization chain reaction v3.0 (HCR) to achieve amplification of the
RNA FISH signal24. We developed probe sets consisting of multiple probe pairs that are tiled along the RNA
sequence of interest. Each probe pair, termed “split-initiator” probes, contains a region of complementarity to
the viral RNA and half of the initiator sequence for signal amplification via polymerization of dye-conjugated
DNA hairpins. Because the initiator sequence is divided between the two split-initiator probes, amplification
only occurs if both of the probes bind adjacently, providing additional specificity for the target of interest (Fig.
1a).  As previously described24, we used a two-stage protocol in which we first hybridize the split-initiator
probes and then amplify the signal using fluorescently labeled DNA hairpins. We can multiplex the assay for
multiple targets by using distinct hairpin sequences labeled with different fluorophores for each RNA target.

We first designed probe sets targeting the positive stranded SARS-CoV-2 RNA sequences of the ORF1a and
N regions (Fig. 1a). We tested these probe sets in A549ACE2 human lung cancer cells infected with
SARS-CoV-2 at a multiplicity of infection (MOI) of 1, as well as mock-infected A549ACE2 cells. We found high
intensity fluorescent labelling with both the ORF1a and N probe sets in the infected, but not in mock-infected
samples (Fig. 1b). Staining from both probe sets was confined to the cytoplasm of cells and did not stain inside
the cell nucleus. Interestingly, we observed that the ORF1a probe set (which labels only genomic RNA)
showed the highest intensity of staining in a region around the periphery of the nucleus of each cell. This
staining pattern is consistent with reported coronavirus RNA replication at replication/transcription complexes
(RTCs), which are networks consisting of host endoplasmic reticulum-derived, perinuclear, double-membrane
structures27–29. Meanwhile, the N region probe set showed more diffuse staining throughout the cytoplasm, but
higher intensity in the perinuclear region. Such a pattern could be expected for the N region probes as they are
likely binding both genomic RNA species in the RTCs and all the subgenomic mRNA species (Fig. 1a). These
subgenomic mRNAs are translated by the host ribosome, and thus are more diffuse through the cytoplasm
rather than largely confined to viral replication centers.

To further resolve the localization of genomic and subgenomic mRNA, we designed probes to uniquely label
the subgenomic mRNA species without simultaneously targeting SARS-CoV-2 genomic RNA. Such a probe
design is difficult because the subgenomic mRNA sequence is also contained within the genomic RNA, and
thus subgenomic and genomic transcripts would be simultaneously targeted with conventional probe designs.
Thus, to develop subgenome specific probes, we leveraged a feature of coronavirus transcription biology. To
generate subgenomic mRNAs, the viral polymerase first transcribes negative-strand intermediates from which
it then transcribes the subgenomic mRNAs. During this synthesis of negative-strand intermediates, the
polymerase terminates transcription when it encounters transcription regulatory sequences (TRSs) upstream of
each subgenomic mRNA open reading frame and resumes at a TRS located further towards the 5’ end of the
genomic template. This interrupted form of transcription, known as discontinuous transcription19,30, adds an
antisense copy of the genomic leader sequence to each subgenomic mRNA intermediate. Therefore, in the
subgenomic mRNAs only, there is a unique junction formed between the 3’ end of the leader sequence and the
5’ end of their gene sequence. To target each individual subgenomic mRNA, we designed HCR probe pairs
that span the unique junction sites, with one of the split-initiator probes positioned on the leader sequence and
the other split-initiator probe on the gene sequence (Fig. 1a). Because each split-initiator probe contains half
the initiator sequence, amplification should only occur if the two probes bind adjacent to each other, which
would be the case for each target subgenomic mRNA but not genomic RNA. With this strategy, we achieve
highly specific detection of the fusion transcripts containing the leader and each subgenomic sequence. We
designed these subgenomic probes for each of the eight different canonical subgenomic mRNA species and
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used them together on A549ACE2 cells infected with SARS-CoV-2 (Fig. 1b). We found that the subgenomic
mRNA probe sets showed a diffuse staining pattern throughout the cytoplasm that is distinct from both the
ORF1a and N probe sets. This diffuse staining pattern is consistent with the subgenomic mRNAs being
distributed throughout the cytoplasm for translation by free ribosomes or ER associated ribosomes (rather than
concentrated in the replication/transcription complex as seen for the ORF1a probe set).

Next, we quantified the fluorescence intensity from each of these probe sets in both the infected and
mock-infected cells. We found that the mean fluorescence intensity of infected cells was significantly higher
than the fluorescence intensity of uninfected cells in the mock infected sample (Fig. 1c). Of note, the infected
samples contained a mixture of infected and non-infected cells, which are clearly distinguishable in-situ. We
also designed conventional (non-amplified) single-molecule RNA FISH probes to the same regions of
SARS-CoV-2 genomic RNA and compared the signal from the amplified RNA FISH HCR to the non-amplified
single-molecule RNA FISH (Supp. Fig. 1). We again found with single-molecule RNA FISH that the ORF1a
probe set had a perinuclear staining pattern, while the N probe had a more diffuse cytoplasmic distribution.
Compared to non-amplified single-molecule RNA FISH, the RNA FISH HCR signal was significantly brighter,
requiring much shorter exposure times for imaging. Thus, we selected RNA FISH HCR for subsequent
experiments in tissues in which we expected higher background compared to cell culture conditions.

We next sought to use this assay in human tissues to localize sites of SARS-CoV-2 viral RNA. We analyzed
human autopsy specimens from research autopsies of COVID-19 patients performed at the University of
Pennsylvania and Children’s Hospital of Philadelphia in 2020. The tissues were fixed in neutral buffered
formalin, embedded in paraffin, sectioned, and then probed for SARS-CoV-2 RNA (Fig. 2a). We analyzed a
total of 14 different lung specimens from eight patients and found one case that showed extensive staining of
SARS-CoV-2 RNA in lung tissue (Supp. Table 1). Of note, the patient with extensive virus staining in the lung
was immunosuppressed, and decompensated within 2 days of arriving at the hospital. In this specimen, we
observed discrete regions of the lung containing infected cells (Fig. 2b, Lung) as well as regions with bright
fluorescence signal, but no nuclei present (Supp. Fig 2a). To find areas with SARS-CoV-2 staining, we
developed a computational pipeline (described in methods) to segment cells and then quantify the
fluorescence staining from the ORF1a viral probe set (output of the analysis is shown in Supp. Fig. 3). As a
control, we also examined lung tissue from patients who were not infected with SARS-CoV-2. In these controls,
our computational analysis did not identify any cells passing the threshold of significant ORF1a viral RNA
staining (Supp. Fig. 4).

From the same patient with extensive lung infection, we surveyed other tissues for SARS-CoV-2 RNA. We
performed RNA FISH HCR with the ORF1a virus probes on a total of eleven different tissues including
esophagus, kidney, liver, hilar lymph node, spleen, heart, stomach, ileum, duodenum, jejunum and trachea. Of
all of these tissues, we only detected viral RNA with our probe sets in the hilar lymph node. Of note, it is
possible that some of the other tissues from this patient also contained virus, but underwent more degradation
prior to RNA FISH HCR. In the lymph node specimen, we found ORF1a RNA FISH HCR signal localized to
cells scattered throughout the tissue (Fig. 2b). These results are consistent with other studies reporting the
detection of SARS-CoV-2 nucleocapsid-positive cells in hilar lymph nodes31,32.

We also analyzed two human placenta samples from cases in which the mother tested positive for
SARS-CoV-2. Both samples showed cells with ORF1a probe set staining localized predominantly along the
periphery of villi structures (Fig. 2b, Placenta). This pattern is consistent with other reports using
immunohistochemical assays, electron microscopy, and RNAscope in situ hybridization18,33–35 that show viral
localization to syncytiotrophoblasts, which are located along the villous periphery and interface with maternal
blood. We further confirmed this observation through comparison with an adjacent hematoxylin and eosin
(H&E) stained slide (Supp. Fig. 5).
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After using these probe sets to localize the virus across tissues, we next wanted to know whether multiplexed
RNA FISH HCR could be used to determine what cell types become infected with the virus in the lung. We
developed a robust strategy for selecting cell type specific marker genes for multiplexed in situ analysis along
with SARS-CoV-2 RNA. We used single-cell RNA-sequencing data from the human lung atlas36 to identify
genes that would uniquely label alveolar type 1 (AT1) cells, alveolar type 2 (AT2) cells, and alveolar
macrophages within the lung. For our analysis, we considered the specificity of the marker gene, the fraction of
cells that expressed the marker, and the expression level (as we needed genes with high enough expression
for accurate detection in situ). We only considered markers that were present in all of the human lung cell atlas
subjects to avoid genes with heterogeneous expression between individuals. We developed HCR probes for 1
marker of each cell type (AGER for AT1 cells, SFTPC for AT2 cells, and MARCO for alveolar macrophages,
Supp. Fig. 6).

We first performed multiplexed RNA FISH HCR on lung autopsy tissue using probe sets for AGER (to mark
AT1 cells), SFTPC (to mark AT2 cells) and SARS-CoV-2 ORF1a RNA (Fig. 3a). We observed AGER- and
SFTPC-high cells throughout the tissue (Fig. 3c). Reassuringly, we did not find many cells showing high levels
of both genes (only 1 observed), allowing us to identify AGER- and SFTPC-high cells as AT1 and AT2 cells,
respectively. Furthermore, the cells labeled by the AGER and SFTPC probe sets had morphologies consistent
with AT1 and AT2 cells, respectively. For each marker gene, we selected a threshold number of mRNA
molecules per cell to identify cells as either AT1 or AT2 cells (described in methods). We then analyzed the
fluorescence intensity of the ORF1a SARS-CoV-2 probe set signal across all 252,820 cells in the dataset from
patient 2 with high levels of infection in the lung. We found that a large fraction of the SFTPC-positive AT2 cells
also stained as positive for ORF1a RNA (27.4%) but that none (0%) of the AGER-positive AT1 cells were
positive for SARS-CoV-2 (Fig. 3b,d). There were also a substantial number of cells (647) that were ORF1a
RNA positive, but did not have expression of either SFTPC or AGER. Additionally, there were a number of cells
with viral RNA staining that lacked nuclear DAPI staining suggesting that these represent dead cells that were
previously infected (Supp. Fig. 2b). In sum, we demonstrated highly specific discrimination of AT1 and AT2
cells, and found that only the AT2 cell population had robust SARS-CoV-2 RNA consistent with these cells
being the major target of infection

We next sought to determine what other cell types contain SARS-CoV-2 RNA in the lung. We multiplexed a
probe set for a macrophage specific gene (MARCO) with the SARS-CoV-2 ORF1a probe set (Fig. 4a). We
found a large number of MARCO-positive cells that contained staining with the SARS-CoV-2 ORF1a probe set
(Fig 4b). However, in many of these cells, the subcellular localization of the signal was distinct from the staining
that we previously observed in SFTPC-positive AT2 cells (Fig. 4c). In many examples, the staining within
alveolar macrophages appeared to be compartmentalized within a smaller region of the cytoplasm (compared
to the AT2 cells). In AT2 cells, the ORF1a virus probe set typically stained the entire cell cytoplasm and around
the entire periphery of the nucleus. It is possible that in the alveolar macrophages these smaller regions of
staining represent restriction of the viral RNA to a subcellular compartment such as the phagolysosome. This
difference in RNA localization suggests that viral RNA enters alveolar macrophages through phagocytosis of
other infected cells or infected debris, which has been suggested by others37–39.

Discussion
In this paper, we outline methods and probe designs for visualizing SARS-CoV-2 RNA in cell lines and human
autopsy specimens. First, to enable compatibility with autopsy tissue from COVID-19 patients, we developed a
protocol for tissue processing (described in methods). Next, to tailor the probes to the SARS-CoV-2 virus, we
designed unique probe sets for the ORF1a and N region RNA. We further developed the assay to be able to
uniquely label subgenomic mRNAs, which is not possible with conventional probe designs. We validated each
of these probe sets in cell culture models and then applied them to autopsy tissues. We identified infected cells
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as those labeled by ORF1a RNA in lung, lymph node, and placenta. Finally, we performed multiplex RNA FISH
HCR with probe sets for cell-type specific marker genes to determine that AT2 cells and alveolar macrophages
contain SARS-CoV-2 RNA in the lung. Through subcellular visualization of the RNA localization, we found that
the subcellular localization of ORF1a-containing transcripts is different between AT2 cells and alveolar
macrophages. This finding further supports previous studies suggesting that alveolar macrophages acquire
SARS-CoV-2 RNA through phagocytosis rather than receptor mediated entry37,38. Taken together, these
technological advances in RNA FISH HCR present a powerful toolset for visualizing SARS-CoV-2 in cell
culture and FFPE tissues.

The primary alternative methods for staining viruses in tissues rely on antibodies including
immunohistochemistry and immunofluorescence. In the setting of a pandemic with a new virus, the speed of
antibody development, which can take weeks to months, can present significant challenges. Furthermore,
antibody development can be costly, and even after production, antibodies still require extensive validation to
prove that they are correctly targeting the protein of interest. In contrast, with modern sequencing-based
epidemiologic surveillance, a novel agent’s genome may be available in days, and simple rules govern design
of suitable hybridization probes. Thus, it is cheaper, easier, and faster to develop RNA probes using
oligonucleotides. Since IHC/IF and RNA FISH target different molecules (protein vs. RNA, respectively), they
also provide different and complementary information about the virus. With SARS-CoV-2, a number of studies
have found viral protein staining by immunofluorescence or immunohistochemistry in different tissues, but have
not provided sufficient evidence to confirm that there is replicating virus present11–13. As RNAs are more labile
than proteins, one potential strength of RNA-based techniques is that they may be a more reliable readout of
ongoing viral infection.

Another relevant technology for viral detection is RT-PCR, which is commonly used for SARS-CoV-2
diagnostics. The primary strength of RT-PCR is sensitivity as it can detect down to the scale of tens to
hundreds of transcripts41,42. While sensitivity makes RT-PCR very useful for diagnostics, it requires that the
entire sample is combined into one tube. With RT-PCR, different cell types are mixed, subcellular localization
of RNA is lost, and the global tissue architecture is also lost. Furthermore, these techniques work better on
viable or fresh frozen samples, which are often limited, as most tissue banking resources largely contain FFPE
specimens. Thereby, while RNA FISH HCR is unlikely to have the same sensitivity as RT-PCR, it offers direct
visualization of RNA which allows for single-cell analysis to identify infected cell types, subcellular localization
of different RNA transcripts, and spatial analysis of viral and cellular RNA across infected tissues.

RNA FISH techniques have specific advantages over other tissue-based techniques for visualizing viruses. In
the setting of a new viral threat, custom probes can be quickly designed to target the virus, only requiring
knowledge of the viral sequence. Our probe design approach here ensures that the probes are specific only to
the desired virus by querying sequence databases of other viruses. After designing the probe sequences, the
synthesis of oligonucleotide probes is both inexpensive and fast such that the entire assay can easily be set up
for a new virus in a relatively short period of time (3-5 days). As we do in this paper, RNA FISH-based probes
can be designed to different RNA species generated by the virus and even used to discriminate between
closely related virus strains through both bioinformatic probe design strategies and different probe
conformations. Examples include this study in which we target both genomic RNAs and subgenomic mRNAs,
and other studies with probes to positive and negative RNA strands40, different segments of the influenza
genome21,22, and even probes that detect single-base pair variants within the virus22.

In addition to probes that target different components of the virus, we can also multiplex viral probes with
probes for cellular genes. Here we target cellular genes to identify cell types within the infected tissue, but this
approach could be applied to profile other genes involved in the host response to viral infection. Furthermore,
with recent advances in RNA in situ technologies it is now possible to probe hundreds to thousands of genes
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with techniques such as seqFISH+ and MERFISH41,42. These platforms could be easily adapted to include virus
probes as well. Such an approach could reveal the full picture of how a viral infection alters a tissue, including
the direct effects on the cells that are infected by the virus, as well as the effects on the neighboring cells and
immune response.

In summary, this paper outlines protocols and probe sets for using RNA FISH HCR in FFPE tissues for
visualizing SARS-CoV-2 RNA. We demonstrate the use of these methods for visualizing different viral RNA
species, identifying infected cells in FFPE tissues, and determining the cell types that are infected. Our work
establishes RNA FISH HCR as a powerful technique for virology and pathology to visualize SARS-CoV-2 RNA
in tissues that can be easily extended for new infectious diseases in the future.
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Figure 1: RNA FISH HCR v3.0 probe sets enable direct visualization of the SARS-CoV-2 virus. a. Schematic 
of the SARS-CoV-2 genomic RNA and subgenomic RNA species with HCR v3.0 probe designs highlighted. We 
developed probes tiled along the ORF1a and N regions of the SARS-CoV-2 (+) RNA strand. These probe sets 
consisted of 23 probe pairs for ORF1a and 7 probe pairs for N. To detect all of the sub-genomic RNAs, we 
positioned the HCR probes across the junction of the leader sequence and each unique sub-genomic transcript. In 
the schematic, the leader sequence is shown in orange, the transcript is shown in blue and the probe design is 
shown in green. b. Representative images of the A549ACE2 cells mock infected or infected with SARS-CoV-2 at an 
MOI=1, fixed 24 hours post infection, and then hybridized with probes for ORF1a, N, and sub-genome. DAPI labels 
cell nuclei. Scale bar applies to all images and shows 10 μm. c. Quantification of the fluorescence signal from the 
experiment in b. For each, the mock infected data set (shown in gray) and the SARS-CoV-2 infected data set 
(shown in green), we quantified fluorescence signal intensity from 50 cells per condition. Note that the 
SARS-CoV-2 infected sample contained both cells that were infected and cells that remained uninfected.  
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Figure 2: RNA FISH HCR in FFPE human autopsy tissues. a. Experiment design in which we performed RNA 
FISH HCR with ORF1a probe sets on FFPE tissues including lung, hilar lymph node, and placenta. b. Example 
images of each tissue with ORF1a RNA staining. Images are large area scans of image tiles acquired at 20X. Scale 
bar on the large images shows 100 μm. Inset images show a zoomed in example of ORF1a RNA staining in that 
tissue. Scale bars on these inset images are 10 μm. DAPI stain (blue) labels the cell nuclei in all images.   
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Figure 3: Multiplexed RNA FISH HCR identifies AT2 cells containing viral RNA in lung autopsy samples. a. 
We probed FFPE human lung tissue with SARS-CoV-2 probe sets as well as probe sets for cell-type specific 
marker genes, AGER for AT1 cells and SFTPC for AT2 cells. b. Representative images of cells classified as AT1 
cells or AT2 cells. Top row depicts an AT1 cell staining positive for AGER. Second row shows two SFTPC-positive 
AT2 cells staining with the ORF1a viral RNA probe set. DAPI stain (blue) labels the cell nuclei in all images. Scale 
bars show 10 μm. c. Here, we acquired large tiled image scans consisting of 252,820 cells total. We quantified the 
AGER and SFTPC mRNA in each cell and set a cutoff (see methods) for determining which cells are positive for 
each gene indicating that they are either AT1 or AT2 cells, respectively. Plot shows a scatterplot of mRNA levels 
with cutoffs for AT1 and AT2 cells. The color on the scatterplot indicates the number of cells at each point on the 
plot and the scale is shown by the legend with yellow being low cell numbers and blue high cell numbers. The blue 
rectangle shows the region on the plot for AGER-positive AT1 cells and the red rectangle shows the region on the 
plot for SFTPC-positive AT2 cells. d. Histograms of the log2 of the fluorescence intensity for the SARS-CoV-2 
ORF1a probe set in each cell. The data is split into three histograms for each cell identified (AT1 cells, AT2 cells, 
undetermined cells). The green dotted line shows the cutoff for calling a cell as postivie for ORF1a viral RNA.   
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Figure 4: Alveolar macrophages and AT2 cells show distinct viral RNA staining patterns in autopsy tissue. 
a. Schematic of experimental design in which we multiplexed cell-type specific marker genes with SARS-CoV-2 

ORF1a probes. We examined the subcellular distribution of viral RNA staining in alveolar macrophages and AT2 

cells. b. Examples of alveolar macrophages showing MARCO, ORF1a, and brightfield images for each cell. The 

border of each cell’s cytoplasm is shown by the red dotted line in each image. DAPI stain for cell nuclei shown in 

blue. Scale bars show 10 μm. c. Examples of AT2 cells showing SFTPC, ORF1a, and brightfield images for each 

cell. The borders, nuclei, and scale bars are labeled the same as in B.  
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Figure 1: RNA FISH HCR v3.0 probe sets enable direct visualization of the SARS-CoV-2 virus. A.
Schematic of the SARS-CoV-2 genomic RNA and subgenomic RNA species with HCR v3.0 probe designs
highlighted. We developed probes tiled along the ORF1a and N regions of the SARS-CoV-2 (+) RNA strand.
These probe sets consisted of 23 probe pairs for ORF1a and 7 probe pairs for N. To detect all of the
sub-genomic RNAs, we positioned the HCR probes across the junction of the leader sequence and each
unique sub-genomic transcript. In the schematic, the leader sequence is shown in orange, the transcript is
shown in blue and the probe design is shown in green. B. Representative images of the A549ACE2 cells mock
infected or infected with SARS-CoV-2 at an MOI=1, fixed 24 hours post infection, and then hybridized with
probes for ORF1a, N, and sub-genome. DAPI labels cell nuclei. Scale bar applies to all images and shows 10
μm. C. Quantification of the fluorescence signal from the experiment in B. For each, the mock infected data set
(shown in gray) and the SARS-CoV-2 infected data set (shown in green), we quantified fluorescence signal
intensity from 50 cells per condition. Note that the SARS-CoV-2 infected sample contained both cells that were
infected and cells that remained uninfected.

Figure 2: RNA FISH HCR in FFPE human autopsy tissues. A. Experiment design in which we performed
RNA FISH HCR with ORF1a probe sets on FFPE tissues including lung, hilar lymph node, and placenta. B.
Example images of each tissue with ORF1a RNA staining. Images are large area scans of image tiles acquired
at 20X. Scale bar on the large images shows 100 μm. Inset images show a zoomed in example of ORF1a RNA
staining in that tissue. Scale bars on these inset images are 10 μm. DAPI stain (blue) labels the cell nuclei in all
images.

Figure 3: Multiplexed RNA FISH HCR identifies AT2 cells containing viral RNA in lung autopsy samples.
A. We probed FFPE human lung tissue with SARS-CoV-2 probe sets as well as probe sets for cell-type specific
marker genes, AGER for AT1 cells and SFTPC for AT2 cells. b. Representative images of cells classified as
AT1 cells or AT2 cells. Top row depicts an AT1 cell staining positive for AGER. Second row shows two
SFTPC-positive AT2 cells staining with the ORF1a viral RNA probe set. DAPI stain (blue) labels the cell nuclei
in all images. Scale bars show 10 μm. C. Here, we acquired large tiled image scans consisting of 252,820 cells
total. We quantified the AGER and SFTPC mRNA in each cell and set a cutoff (see methods) for determining
which cells are positive for each gene indicating that they are either AT1 or AT2 cells, respectively. Plot shows
a scatterplot of mRNA levels with cutoffs for AT1 and AT2 cells. The color on the scatterplot indicates the
number of cells at each point on the plot and the scale is shown by the legend with yellow being low cell
numbers and blue high cell numbers. The blue rectangle shows the region on the plot for AGER-positive AT1
cells and the red rectangle shows the region on the plot for SFTPC-positive AT2 cells. D. Histograms of the
log2 of the fluorescence intensity for the SARS-CoV-2 ORF1a probe set in each cell. The data is split into three
histograms for each cell identified (AT1 cells, AT2 cells, undetermined cells). The green dotted line shows the
cutoff for calling a cell positive for viral RNA.

Figure 4: Alveolar macrophages and AT2 cells show distinct viral RNA staining patterns in autopsy
tissue. A. Schematic of experimental design in which we multiplexed cell-type specific marker genes with
SARS-CoV-2 ORF1a probes. We examined the subcellular distribution of RNA staining in infected alveolar
macrophages and AT2 cells. B. Examples of alveolar macrophages showing MARCO, ORF1a, and brightfield
images for each cell. The border of each cell’s cytoplasm is shown by the red dotted line in each image. DAPI
stain for cell nuclei shown in blue. Scale bars show 10 μm. C. Examples of AT2 cells showing SFTPC, ORF1a,
and brightfield images for each cell. The borders, nuclei, and scale bars are labeled the same as in B.

Supplementary Figure 1: Single-molecule RNA FISH with probes targeting ORF1a and N regions in
Huh7.5 cells infected with SARS-CoV-2. Representative images of Huh7.5 cells infected with SARS-CoV-2
and hybridized with RNA FISH probes targeting ORF1a and N. Similar to the RNA FISH HCR, we observed
higher fluorescence signal intensity in the perinuclear region of the ORF1a probe compared to the N probe.
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The bottom row of images is a composite of the ORF1a probe (green), N probe (red), and DAPI signal. In all
images, the DAPI stain for cell nuclei is shown in blue. Scale bars are 10 μm.

Supplementary Figure 2: Examples of regions in the lung tissue that show viral staining with ORF1a
probes, but do not have nuclei. A. Two example regions in which we observed extensive viral staining with
the ORF1a probe set, but did not observe DAPI signal. Right image is RNA FISH HCR for ORF1a and the left
is the brightfield image. Red dotted lines show areas of interest with ORF1a staining. B. Examples of small
discrete regions of ORF1a staining without DAPI staining. In all images, the DAPI stain for cell nuclei is shown
in blue. Scale bars are 10 μm.

Supplementary Figure 3: Computational analysis identifying suspected infected cells in each tissue.
Images overlayed with the results from our image processing pipeline. Blue dots label cells with fluorescence
signal below the cutoff for infected and red dots label cells above the cutoff for infected. Images are from a
subset of the data. Total number of cells displayed in each region and the total number of cells in each data set
is below each image.

Supplementary Figure 4: Comparison of infected tissue to control tissues samples in which the
patients did not have SARS-CoV-2 infection. We performed RNA FISH HCR in A. lung and B. placenta
samples from patients with SARS-CoV-2 infection (yellow) and control samples from patients that did not have
SARS-CoV-2 infection (purple and teal). Histograms display the Log2 transformation of median normalized
ORF1a fluorescence signal in each cell. Infected samples have a much higher median-normalized ORF1a
fluorescence signal than control tissue.

Supplementary Figure 5: Example region of placenta with RNA FISH HCR for ORF1a with an adjacent
tissue section stained with H&E. We performed RNA FISH HCR with probe sets for ORF1a and EGFR. On
the adjacent section, we stained the tissue with hematoxylin and eosin. We took tiled image scans of the
fluorescence slide and used a slide scanner for the H&E. We aligned the two images to identify the
corresponding H&E region for which we found cells staining with the ORF1a probe set. ORF1a fluorescence
signal is in pink, EGFR is in yellow, and DAPI is in blue.

Supplementary Figure 6: tSNE plots of the human lung cell atlas single-cell RNA-sequencing data
across 3 subjects. Each plot is a tSNE projection of all cells in the data set with the color of the points
depicting the expression of the gene. Each row of plots is from a different subject. The target cell-type with
each marker is labeled on the plots with a circle around the cluster (monocytes/macrophages, AT1 cells, AT2
cells). The three genes identified as cell-type specific markers are MARCO, AGER, and SFTPC.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.11.455959doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455959
http://creativecommons.org/licenses/by/4.0/


Methods

Human tissues
Material from autopsies of patients who died of COVID-19 were obtained from family consented research only
autopsies performed by the Department of Pathology and Laboratory Medicine at the Hospital of the University
of Pennsylvania. De-identified placenta samples were obtained through the Division of Anatomic Pathology at
The Children’s Hospital of Philadelphia. Tissues were collected and formalin fixed for 48-72 hours prior to
routine processing and paraffin embedding. Tissues were sectioned to 5 um thickness from FFPE blocks to be
used in the ISH assays.

Cell lines and infection
We cultured A549ACE2 cells at 37०C and 5% CO2 in RPMI 1640 supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin. We cultured Huh7.5 cells at 37०C and 5% CO2 in DMEM supplemented
with 10% fetal bovine serum, 1% penicillin/streptomycin, and 1% L-Glutamax. For RNA in situ experiments, we
seeded cells into 2-well chambers (LabTek) at a density of 3,000 cells per well and then infected with
SARS-CoV-2 (USA WA1/2020 strain) at an MOI of 1. SARS-CoV-2 was diluted in serum-free RPMI (for
A549ACE) or DMEM (for Huh7.5) and added to cells for absorption for 1 hour at 37°C. Inoculum was removed
and replaced with RPMI with 2% FBS and cells incubated at 37°C. We fixed the cells 24 hours after infection in
4% formaldehyde and PBS for 30 minutes at room temperature. We then washed with PBS two times and
permeabilized the samples in 70% ethanol for up to 2 weeks before RNA FISH and RNA FISH HCR. All work
with SARS-CoV-2 was performed in a biosafety level 3 laboratory using appropriate personal protective
equipment and protocols approved by the Institutional Biosafety Committee and Environmental Health and
Safety at the University of Pennsylvania.

Probe design
We designed RNA FISH HCR probes using RajLab ProbeDesignHD software (code freely available for
non-commercial use here: https://github.com/arjunrajlaboratory/ProbeDesign/). This pipeline is implemented in
MATLAB and uses a FASTA containing the RNA of interest. The software selects probe sequences according
to length and free energy constraints and then excludes probes with complementarity to repetitive elements,
human genome, and pseudogenes.

To target the SARS-CoV-2 genome, we referenced the sequence of the first US isolate of SARS-CoV-2
(USA-WA1/2020) from NCBI (Genbank MN985325.1) . We used the probe designer described above to design
non-overlapping 52-mer oligos with a target Gibbs free energy for binding of −60 (allowable Gibbs free energy
[−70, −50]) to the N and ORF1a regions of the SARS-CoV-2 genome, targeting only the 3000-8000 nt region of
the latter because it was the most conserved region among the strains circulating at the time as determined
using nextstrain43. We divided each 52-mer oligo into two non-overlapping 25-mer sequences (removing the
middle two nucleotides) and appended split-initiator HCR sequences using a custom matlab script (see Supp.
Table 2 for probe sequences). For each probe, we then performed a local blast against the human
transcriptome and Nucleic Acids of Coronavirus and other Human Oronasopharynx pathogens (NACHO), a
database we created of 562,446 sequences of other viruses that infect the human respiratory tract. All probes
in the top 5% of hits based on E-value and bit score were excluded, and the final probe sequences were
synthesized from Eurofins at nanomolar-scale. Finally, we resuspended HCR probes to 100 μM in
nuclease-free water and then combined these probes into pools each at a final concentration of 2 μM per
probe. In the final probe designs, the ORF1a region probe set consisted of 23 probe pairs and the N region
probe set consisted of 7 probe pairs.

To target SARS-CoV-2 subgenomic RNAs, we referenced the UCSC Genome Browser for SARS-CoV-2
genome datasets (https://genome.ucsc.edu/covid19.html) and RNA-sequencing datasets44 to identify the most
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frequent junction locations and peri-junction sequences based on the most abundant sgRNA junction spanning
reads. We then manually designed 52-mer oligos each spanning a unique leader-body junction for each of the
eight canonical subgenomic RNAs generated via discontinuous transcription. We split each 52-mer oligo into
two 25-mer sequences and appended split-initiator HCR sequences as outlined earlier (see Supp. Table 2 for
probe sequences). The final probes sequences were synthesized and resuspended the same as the
SARS-CoV-2 genome-targeting probes.

Selection of Cell Type Specific Genes
To identify individual cell types from human lung tissue, we reconciled RNA expression level data from multiple
single-cell RNA sequencing datasets and identified genes that were both highly expressed and specific to one
cell type36. Full computational analysis scripts are available here:
https://upenn.box.com/s/jtgl47gc869g8w2t0cwc2iov8c520wa0. We then designed probes for specific cell types
(see Supp. Table 2) similarly to our SARS-CoV-2 genomic probes and appended split-initiator HCR sequences
using our custom matlab script. Final probe sequences were synthesized, resuspended and then combined
into pools as outlined earlier.

HCR RNA FISH
We adapted the previously published HCR v3.0 protocol24 for HCR RNA FISH in cultured cells as follows. We
used 1.2 pmol each of our pooled HCR RNA FISH probe sets per 0.3 ml of hybridization buffer at 37℃. Our
primary hybridization buffer consisted of 30% formamide, 10% dextran sulfate, 9 mM citric acid pH 6.0, 50 μg
ml−1 of heparin, 1× Denhardt’s solution (Invitrogen) and 0.1% Tween-20. For primary hybridization, we used
300 μl of hybridization buffer containing the appropriate probes per well of a two-well plate (Thermo Fisher
Scientific), covered the well with a glass coverslip and incubated the samples in containers humidified with 2×
SSC at 37°C overnight (12-16 h). After the primary probe hybridization, we washed samples 4 × 5 min at 37°C
with wash buffer containing 30% formamide, 9 mM citric acid pH 6.0, 50 μg ml−1 of heparin and 0.1%
Tween-20. We then washed the samples 2 × 5 min with 5× SSCT (5× SSC + 0.1% Tween-20) at room
temperature and then incubated the samples at room temperature for 30 min in amplification buffer containing
10% dextran sulfate and 0.1% Tween-20. During this incubation, we snap-cooled 0.6 μl per well of individual 3
μM HCR hairpins (Molecular Instruments) conjugated to Alexa Fluor 647 (Alexa647), Alexa Fluor 594
(Alexa594), Alexa Fluor 546 (Alexa546) or Alexa Fluor 488 (Alexa488) in separate PCR tubes by heating at
95°C for 90 s and then either ramp-cooling the sample at a ramp rate of 0.08°C/sec to room temperature in 30
mins or immediately transferring to room temperature for 30 min concealed from light. Next, we pooled the
hairpins in 300 μl of amplification buffer to a final concentration of 6 nM each. We added the hairpin solution to
samples, placed a glass coverslip on top and then incubated samples at room temperature overnight (12–16 h)
concealed from light. After hairpin amplification, we washed samples 5 × 5 min with 5× SSCT, added 100 μl of
SlowFade antifade mounting solution containing 50 ng ml−1 of DAPI (Invitrogen) with a coverslip and proceeded
to imaging the samples.

For HCR RNA FISH on formalin-fixed paraffin-embedded (FFPE) tissues, we obtained tissues fixed via 10%
neutral buffered formalin. We deparaffinized tissue sections on slides by first immersing them 2 × 10 min in
xylene (Sigma-Aldrich) and then immersing them 2 × 5 min in 100% ethanol. We then transferred the tissues
slides to a 3:1 methanol:acetic acid solution at room temperature for 5 mins, washed the slides in
nuclease-free water for 3 mins, and then performed antigen retrieval by placing the slides in a solution of 10
mM sodium citrate, pH 6 + 0.1% diethyl pyrocarbonate (Sigma-Aldrich) heated with a 150°C water bath for 15
minutes. After antigen retrieval, we quickly rinsed the slides with 5× SSCT and immediately proceeded to HCR
RNA FISH, which we adapted from the previously published HCR v3.0 protocol24 for HCR RNA FISH in FFPE
tissues as follows. We first pre-hybridized our samples by adding 200 µl of hybridization buffer warmed to 37
°C and incubating at 37 °C for 10 min. While pre-hybridizing, we made our primary hybridization solution
containing 0.8 pmol each of our pooled HCR RNA FISH probes per 0.2 ml of hybridization buffer. Our primary
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hybridization buffer consisted of 30% formamide, 10% dextran sulfate, 9 mM citric acid pH 6.0, 50 μg ml−1 of
heparin, 1× Denhardt’s solution (Invitrogen) and 0.1% Tween-20. For primary hybridization, we used 50-100 μl
hybridization buffer containing the appropriate probes per slide, covered the section with a glass coverslip and
incubated the samples in humidified containers at 37 °C overnight (12-16 h). After the primary probe
hybridization, we washed samples sequentially in 75% wash buffer (containing 30% formamide, 9 mM citric
acid pH 6.0, 50 μg ml−1 of heparin and 0.1% Tween-20) + 25% 5× SSCT (5× SSC + 0.1% Tween-20) solution,
50% wash buffer + 50% 5× SSCT solution, 25% wash buffer + 75% 5× SSCT solution and 100% 5× SSCT for
15 min each at 37 °C. We then washed the samples in 5× SSCT at room temperature for  5 min and then
incubated the samples at room temperature for 30 min in an amplification buffer containing 10% dextran sulfate
and 0.1% Tween-20. During this incubation, we snap-cooled, by heating at 95 °C for 90 s in separate PCR
tubes, 0.2 μl per slide of individual 3 μM HCR hairpins (Molecular Instruments) conjugated to Alexa647,
Alexa594, Alexa546 or Alexa488 and then either ramp-cooled the sample at a ramp rate of 0.08°C/sec to room
temperature in 30 mins or immediately transferred them to room temperature to cool for 30 min concealed from
light. After these 30 min, we pooled the hairpins in 100 µl of amplification buffer per slide to a final
concentration of 6 nM each. We added the hairpin solution to samples, placed a glass coverslip on top and
then incubated samples at room temperature overnight (12–16 h) concealed from light. After hairpin
amplification, we washed samples 1 × 5 min in 5× SSCT, 2 × 15 min in 5× SSCT and then 1 × 5 min with 5×
SSCT again. We then stained nuclei by adding 200 µl of 5× SSCT containing 50 ng ml−1 of DAPI to the
samples for 5 mins at room temperature, quenched autofluorescence using the Vector TrueVIEW
Autofluorescence Quenching kit according to the manufacturer’s protocol, added a coverslip, and then
proceeded to image the samples. We note that the final hairpin concentrations used in these experiments are
ten-fold lower than the manufacturer’s protocol, which we optimized to reduce non-specific amplification while
still enabling sensitive RNA detection.

Imaging
We imaged HCR RNA FISH samples on an inverted Nikon Ti2-E microscope equipped with a SOLA SE U-nIR
light engine (Lumencor), an ORCA-Flash 4.0 V3 sCMOS camera (Hamamatsu), ×20 Plan-Apo λ (Nikon
MRD00205), ×60 Plan-Apo λ (MRD01605) and ×100 Plan-Apo λ (MRD01905) objectives and filter sets for
DAPI, Alexa Fluor 488, Alexa Fluor 594 and Atto647N. Our exposure times ranged from 100 ms–200 ms for
most of the dyes except for DAPI, for which we used ∼50 ms exposures. For experiments in Figs. 2-4, we first
acquired tiled images in a single z-plane (scan) at ×20 magnification, from which we identified positions
containing cells positive for SARS-CoV-2 and returned to those positions to acquire a z-stack at ×60 or ×100
magnification. For large area scans, we used Nikon Perfect Focus to maintain focus across the imaging area.

Image analysis
For quantifying fluorescence intensity in cell culture samples in Fig. 1, we used custom MATLAB scripts
available at https://github.com/arjunrajlaboratory/rajlabimagetools. Briefly, our image analysis consisted of
manual segmentation of the boundaries for each cell and then quantification of the total fluorescence intensity
within that boundary. For plotting in Fig. 1, we normalized the total fluorescence intensity across all pixels in the
cell to the total cell area.

For tissue image analysis, we first developed a custom MATLAB pipeline for cropping tiled, single z-plane
20×20 scan images taken at ×20 magnification into smaller images. We then used CellProfiler to segment cells
using 4’,6-diamidino-2-phenylindole (DAPI) to identify nuclei. We dilated the nuclear objects by a radius of 6
pixels, 7 pixels, and 6 pixels for lung tissue, hilar lymph node tissue and placenta tissue respectively to capture
approximately the diameter of one whole cell in the tissue. We measured the position and intensities of the
fluorescence signal for each of the SARS-CoV-2 probe sets in each cell. We excluded cells touching image
borders. For each cell, we determined the intensity of the SARS-CoV-2 ORF1a probe set by using the cutoff for
the upper quartile of pixel intensities across the area of the cell. This processing was necessary because many
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cells did not have staining throughout the entire cell area. Cellprofiler code is available on the Box for this
paper, here: https://upenn.box.com/s/jtgl47gc869g8w2t0cwc2iov8c520wa0.

To determine the fluorescence intensity threshold to label a cell as SARS-CoV-2 positive (in Fig. 2 and 3), we
normalized the upper quartile intensity measurements of SARS-CoV-2 ORF1a staining (Alexa647 channel) in
each cell to the median intensity across all cells. We then log-transformed the median-normalized data and
used the MClust function in R to fit a two-state lognormal mixture model with unequal variance. We evaluated
the model fit by an F test and selected an appropriate intensity gate that captured only the positive cells in the
leftmost distribution. In exposure-matched negative control samples, we found that our F test returned
insignificant p values (p > 0.05), indicating the presence of only one population of cells with the baseline of
background staining. Our intensity gates did not capture any cells in our negative control samples.

For analyses in which we used our SARS-CoV-2 ORF1a probe set with Alexa488 fluorescent hairpins (Fig. 3) ,
we needed a way to exclude autofluorescent background in that channel  from our analysis. To do this, we
acquired images with a different filter set for which we did not have any dye in the experiment (Alexa594). We
then analyzed these images to identify cells with high levels of non-specific signal in this wavelength using the
same approach as described for the SARS-CoV-2 ORF1a analysis above. We set a threshold intensity for
which cells above had high non-specific signals and removed these cells from our analysis. After removing
these cells from the data set, we proceeded with analyzing the ORF1a GFP signal using the analysis pipeline
as for Alexa647 described above.

For infected cell type identification analyses shown in Fig. 3, we cropped the large image scans down to
individual tiles consisting of roughly one field of view and then segmented the cells as described above using
Cell Profiler. We dilated the nuclear segments by a radius of 6 pixels to capture the entire area of each cell.
Within each cell, we used the “enhance features” module in CellProfiler to enhance the signal (Alexa647 and
Alexa546 channels) from the single-molecule HCR probes for cell type specific genes. We then set a threshold
for calling individual HCR spots and assigned the number of spots to each cell. We determined the cell type by
plotting the distribution of spot counts for each cell type marker and selecting a threshold that captured the tails
of the distributions and adjusted these thresholds manually by referencing HCR RNA FISH images to ensure
that our thresholds were reasonably accurate. The threshold for AGER was 7 spots (to identify a cell as AT1)
and the threshold for SFTPC was 6 (to identify a cell as an AT2 cell). Cells that did not meet thresholds or
could not be classified based on our parameters were assigned as undetermined.

Data and code availability
All data and remaining code for these analyses can be found at
https://upenn.box.com/s/jtgl47gc869g8w2t0cwc2iov8c520wa0 and upon reasonable request to the
corresponding author. All analyses were done in R, MATLAB, or CellProfiler.
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Supplementary Figure 1

Supplementary Figure 1: Single-molecule RNA FISH with probes targeting ORF1a and N regions in Huh7.5 
cells infected with SARS-CoV-2. Representative images of Huh7.5 cells infected with SARS-CoV-2 and hybrid-

ized with RNA FISH probes targeting ORF1a and N. Similar to the RNA FISH HCR, we observed higher fluores-

cence signal intensity in the perinuclear region of the ORF1a probe compared to the N probe. The bottom row of 

images is a composite of the ORF1a probe (green), N probe (red), and DAPI signal. In all images, the DAPI stain 

for cell nuclei is shown in blue. Scale bars are 10 μm. 
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Supplementary Figure 2: Examples of regions in the lung tissue that show viral staining with ORF1a 
probes, but do not have nuclei. A. Two example regions in which we observed extensive viral staining with the 
ORF1a probe set, but did not observe DAPI signal. Right image is RNA FISH HCR for ORF1a and the left is the 
brightfield image. Red dotted lines show areas of interest with ORF1a staining. B. Examples of small discrete 
regions of ORF1a staining without DAPI staining. In all images, the DAPI stain for cell nuclei is shown in blue. Scale 
bars are 10 μm. 
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Supplementary Figure 3: Computational analysis identifying suspected infected cells in each tissue. 
Images overlayed with the results from our image processing pipeline. Blue dots label cells with fluorescence signal 
below the cutoff for infected and red dots label cells above the cutoff for infected. Images are from a subset of the 
data. Total number of cells displayed in each region and the total number of cells in each data set is below each 
image.
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Supplementary Figure 4

Supplementary Figure 4: Comparison of infected tissue to control tissues samples in which the patients 
did not have SARS-CoV-2 infection. We performed RNA FISH HCR in A. lung and B. placenta samples from 
patients with SARS-CoV-2 infection (yellow) and control samples from patients that did not have SARS-CoV-2 
infection (purple and teal). Histograms display the Log2 transformation of median normalized ORF1a fluorescence 
signal in each cell. Infected samples have much higher median-normalized ORF1a fluorescence signal than control 
tissue. 

−1 0 1 2 3 4

0

5000

10000

15000

20000

25000

0

1000

2000

3000

4000

0

500

1000

1500

2000

Log2(median-normlized SARS−CoV−2 fluorescence intensity)/cell

C
ou

nt
SARS-CoV-2 positive

Control Tissue 1

Control Tissue 2

a Lung

n=22,260 cells

n=62,674 cells

n=252,820 cells

0.0 0.5 1.0 1.5

0

5000

10000

15000

20000

0

10000

20000

30000

40000

C
ou

nt

Log2(median-normlized SARS−CoV−2 fluorescence intensity)/cell

SARS-CoV-2 positive

Control Tissue

b Placenta
n=101,081 cells

n=186,937 cells

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.11.455959doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455959
http://creativecommons.org/licenses/by/4.0/


H&E adjacent slidePlacenta ORF1a RNA staining
ORF1aDAPI
EGFR

Supplementary Figure 5

Supplementary Figure 5: Example region of placenta with RNA FISH HCR for ORF1a with an adjacent 
tissue section stained with H&E. We performed RNA FISH HCR with probe sets for ORF1a and EGFR. On the 
adjacent section, we stained the tissue with hematoxylin and eosin (H&E). We took tiled image scans of the fluores-
cence slide and used a slide scanner for the H&E. We aligned the two images to identify the corresponding H&E 
region for which we found cells staining with the ORF1a probe set. ORF1a fluorescence signal is in pink, EGFR is 
in yellow, and DAPI is in blue.
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Subject 1 from Human Lung Cell Atlas
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Supplementary Figure 6

Supplementary Figure 6: tSNE plots of the human lung cell atlas single-cell RNA-sequencing data across 
3 subjects. Each plot is a tSNE projection of all cells in the data set with the color of the points depicting the expres-
sion of the gene. Each row of plots is from a different subject. The target cell-type with each marker is labeled on 
the plots with a circle around the cluster (monocytes/macrophages, AT1 cells, AT2 cells). The three genes identified 
as cell-type specific markers are MARCO, AGER, and SFTPC.
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