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Background. Host gene expression has emerged as a complementary strategy to pathogen detection tests for the discrimination 
of bacterial and viral infection. The impact of immunocompromise on host-response tests remains unknown. We evaluated a host-
response test discriminating bacterial, viral, and noninfectious conditions in immunocompromised subjects.

Methods. An 81-gene signature was measured using real-time–polymerase chain reaction in subjects with immunocompromise 
(chemotherapy, solid-organ transplant, immunomodulatory agents, AIDS) with bacterial infection, viral infection, or noninfectious 
illness. A regularized logistic regression model trained in immunocompetent subjects was used to estimate the likelihood of each 
class in immunocompromised subjects.

Results. Accuracy in the 136-subject immunocompetent training cohort was 84.6% for bacterial versus nonbacterial discrimination 
and 80.8% for viral versus nonviral discrimination. Model validation in 134 immunocompromised subjects showed overall accuracy of 
73.9% for bacterial infection (P = .04 relative to immunocompetent subjects) and 75.4% for viral infection (P = .30). A scheme reporting 
results by quartile improved test utility. The highest probability quartile ruled-in bacterial and viral infection with 91.4% and 84.0% spec-
ificity, respectively. The lowest probability quartile ruled-out infection with 90.1% and 96.4% sensitivity for bacterial and viral infection, 
respectively. Performance was independent of the type or number of immunocompromising conditions.

Conclusions. A host gene expression test discriminated bacterial, viral, and noninfectious etiologies at a lower overall accu-
racy in immunocompromised patients compared with immunocompetent patients, although this difference was only significant for 
bacterial infection classification. With modified interpretive criteria, a host-response strategy may offer clinically useful diagnostic 
information for patients with immunocompromise.

Keywords.  host-pathogen interactions; gene expression profiling; immunocompromised host; molecular diagnostic techniques.

Difficulty distinguishing bacterial, viral, and noninfectious eti-
ologies contributes to the excessive use of antibacterials, which 
drives antimicrobial resistance. Traditional pathogen-based di-
agnostic tests have low sensitivity, long time-to-result, require 
a priori suspicion of a pathogen, or fail to differentiate infec-
tion from colonization. The host response offers an alternative, 
unbiased diagnostic strategy that overcomes the limitations of 
pathogen-based strategies. Advances in transcriptomic tech-
nologies and machine learning enabled the identification of a 
number of host-based gene expression signatures that differ-
entiate bacterial from viral infection [1–10]. However, the co-
horts included insufficient numbers of immunocompromised 
subjects to confidently draw conclusions about utility in this 

patient population. Only 1 study reported sufficient numbers 
of immunocompromised patients, children with febrile neutro-
penia, but failed to identify a discriminating host gene expres-
sion signature [11]. How these findings relate to adults and to 
different types of immunocompromise remains unknown.

Identifying the presence and cause of infection is more chal-
lenging in immunocompromised patients. They are susceptible 
to a wider array of potential pathogens, progress rapidly clini-
cally, often require invasive procedures for early and accurate 
diagnosis, and are frequently colonized with potentially patho-
genic organisms, making diagnosis even more difficult [12–14].

Given these considerations, it is important to understand 
what role host-based infectious disease diagnostics can have 
in immunocompromised patients. Host gene expression signa-
tures rely on the host’s ability to mount an immune response, 
which may be muted or altered in immunocompromised pa-
tients in ways that affect signature performance. However, host 
gene expression diagnostic tests have been used successfully 
in immunocompromised subjects for noninfectious diseases 
such as allograft rejection [15] and in an immunocompromised 
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murine model for the diagnosis of fungal infection [16], sug-
gesting this strategy could complement traditional infectious 
disease diagnostics.

We previously published a microarray-derived transcriptomic 
signature for discriminating bacterial, viral, and noninfectious 
causes of illness with an overall accuracy of 87% [5]. These sig-
natures were translated into a real-time polymerase chain reac-
tion (PCR) test [17]. In this study, we validated the test’s ability 
to distinguish bacterial, viral, and noninfectious causes of illness 
in immunocompromised patients. We aimed to understand the 
effect of an immunocompromised state on the performance of a 
host-response test for infection and the possible role such a test 
might play in this patient population.

METHODS

Subject Enrollment

Subjects were enrolled prospectively for sample collection in 
the emergency departments (EDs) of 4 hospitals from 2006 
through 2016. Additional details regarding subject enrollment 
can be found in the Supplementary Methods.

Clinical Adjudication and Subject Selection

Clinical adjudication served as the reference standard, which 
was performed after enrollment but prior to gene expression 
measurements. Adjudications were conducted by a team of 
multidisciplinary physicians who had full access to the medical 
record, as previously described [5, 17–19].

Immunocompromised subjects included those with human 
immunodeficiency virus (HIV) with a CD4 count less than 
200 cells/µL, solid-organ transplant recipients, those ac-
tively receiving cancer chemotherapy, and those receiving 
immunomodulatory drugs (disease-modifying antirheumatic 
drugs, chronic steroids [10 mg of prednisone equivalent daily 
for >30 days], or acute high dose steroids [60 mg of prednisone 
equivalent for ≥3 days]). Only subjects adjudicated as having 
a microbiologically confirmed bacterial infection, microbio-
logically confirmed viral infection, or confirmed noninfectious 
illness (NI) were included in this study. More information re-
garding subject selection can be found in the Supplementary 
Methods.

Host Gene Expression Measurement

Host gene expression was measured as previously described [17, 
20]. In brief, peripheral whole blood was collected in PAXgene 
Blood RNA tubes (Qiagen) at the time of enrollment. Total 
RNA was extracted followed by generation of a complemen-
tary DNA library. Semiquantitative, real-time PCR (RT-PCR) 
was performed on custom TaqMan low-density arrays (TLDAs) 
(Applied Biosystems). The TLDA cards were customized to 
quantify 81 gene targets (Supplementary Table 1) that were 
originally selected via microarray technologies to maximize 
performance accuracy as previously described [17].

Gene Expression–Based Classification Model

Normalized data from a training cohort of 136 immunocompe-
tent subjects with confirmed bacterial infection, viral infection, 
or NI and no known immunocompromising condition were 
used to fit a regularized logistic regression model (lasso). This 
fixed-weight logistic regression model was then validated in a 
cohort of 134 subjects with at least 1 immunocompromising 
condition. More information regarding the gene expression–
based classification model can be found in the Supplementary 
Methods.

Test Characteristics

Test sensitivity and specificity were assessed using a winner-
take-all approach, where the highest independent probability 
determined the subject’s diagnosis. In this scenario, 3 prob-
abilities were generated: probability of bacterial infection, 
probability of viral infection, and probability of NI. We also re-
ported performance using thresholds defined by quartiles. The 
sensitivity and specificity for each quartile were calculated by 
omitting the number of subjects in that quartile from the nu-
merator and dividing by all subjects. Higher quartiles have high 
specificities to rule in disease while lower quartiles have high 
sensitivities to rule out disease.

Statistical Analysis

The test was evaluated for its ability to distinguish between 
bacterial versus nonbacterial, viral versus nonviral, and non-
infectious versus infectious illnesses. Test performance was 
evaluated by comparing area under the receiver operating 
characteristic (ROC) curve (AUC). The DeLong test was 
used to compare AUCs between the training (immunocom-
petent) and validation (immunocompromised) cohorts [21]. 
Kruskal-Wallis test was used to compare predicted probabil-
ities based on type of immunocompromising condition. Mann-
Whitney U test was used to compare test probabilities based 
on the number of immunocompromising conditions (1 vs >1). 
A Fisher’s exact test was used to compare overall test accuracy 
and test accuracy based on type and number (1 vs >1) across 
immunocompromising condition. P values < .05 were con-
sidered statistically significant. All analyses were performed in 
the R Environment for Statistical Computing version 3.5.0.

RESULTS

Clinical Cohorts

The training (immunocompetent) cohort included 136 subjects: 
43 bacterial (32%), 52 viral (30%), and 41 NI (38%) (Table 1). 
The independent validation cohort included 134 immunocom-
promised subjects: 64 bacterial (48%), 28 viral (21%), and 42 
NI (31%) (Supplementary Table 2). Both the immunocompe-
tent and immunocompromised cohorts were demographically 
heterogenous, encompassing a wide age range and racial diver-
sity (Table 2). The mean white blood cell (WBC) count in the 
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immunocompromised cohort was 11.2 × 109 cells/L (SD, 7.4) 
compared with 10.8 × 109 cells/L (SD, 7.4) in the immunocom-
petent cohort (P = .62). Four subjects had absolute neutrophil 
counts <1.5 × 109 cells/L.

Assessing Technical Variation

Data for the immunocompetent and immunocompromised co-
horts were generated in 2 separate batches, potentially leading 
to batch effect. We therefore included 15 technical replicates 
from the training batch in the validation batch. Correlation was 
high for the 81 gene targets as measured in these 15 replicates 
(median Pearson correlation coefficient of 0.96). Normalized 
expression for each gene was similar in the immunocompetent 
and immunocompromised groups (Supplementary Figure 1).

Differentially Expressed Genes

In the bacterial versus nonbacterial model, the immunocompe-
tent and immunocompromised cohorts demonstrated 57 and 
19 differentially expressed genes (DEGs), respectively (Figure 
1). Three genes (TNFAIP6, CCDC19, CHI3L1) were differen-
tially expressed in the immunocompromised cohort but not in 
the immunocompetent cohort. In the viral model, there were 
65 DEGs in the immunocompetent training data, which in-
cluded all 26 DEGs in the immunocompromised cohort (Figure 
1). Although there were fewer DEGs in the immunocompro-
mised cohort relative to the immunocompetent cohort, the 
specific DEGs were conserved. Differential expression of each 
target gene stratified by adjudicated phenotype demonstrated 
phenotype-specific differences for many genes (Figure 2), 

particularly interferon-stimulated genes among subjects with 
viral infection.

Training in Immunocompetent Subjects

We first trained and evaluated performance of a logistic re-
gression model in the immunocompetent training cohort. 
Performance in this training cohort was previously reported 
[17]. However, 15 subjects in this previously published training 
cohort had immunocompromising conditions and were there-
fore removed from model training. They were instead included 
in the immunocompromised validation cohort. Due to this 
change in the training cohort composition, we trained a new 
model and assessed performance using nested leave-one-out 
cross-validation (LOOCV). Each of the 3 models distinguished 
the specified group from the 2 alternative etiologies (Figure 3). 
The AUCs, sensitivities, and specificities using a winner-takes-
all approach were .82 (95% confidence interval [CI], .73–.90), 
65.1% (95% CI, 50.9–79.4%), and 93.5% (95% CI, 88.6–98.5%) 
for bacterial infection; .89 (95% CI, .83–.95), 84.6% (95% CI, 
74.8–94.4%), and 78.6% (95% CI, 69.8–87.3%) for viral infec-
tion; and .87 (95% CI, .79–.95), 73.1% (95% CI, 59.6–86.7%), 
and 89.5% (95% CI, 83.3–95.6) for NI, respectively (Table 3).

Validation in Immunocompromised Subjects

This model, trained on the immunocompetent subjects, was 
then applied to the 134-subject immunocompromised vali-
dation cohort. The AUCs, sensitivities, and specificities were 
.78 (95% CI, .71–.86), 62.5% (95% CI, 50.6–74.4%), and 84.3% 
(95% CI, 75.8–92.8%) for bacterial infection; .82 (95% CI, 

Table 1.  Subject Demographic Characteristics

No. of Subjects Gender (M/F), n/n Mean (Range) Age, Years Race (B/W/O), n/n/n

Immunocompetent cohort 136 66/68 50 (14–94) 69/58/9

 Bacterial 43 23/20 50 (16–94) 22/19/2

 Viral 41 17/34 49 (14–88) 28/19/5

 Noninfectious illness 52 26/14 50 (21–87) 19/20/2

Immunocompromised cohort 134 68/66 53 (19–80) 50/81/3

 Bacterial 64 31/33 53 (19–79) 28/34/2

 Viral 28 12/16 53 (25–80) 9/18/1

 Noninfectious illness 42 25/17 53 (26–74) 13/29/0

Abbreviations: B, Black/African American; F, female; M, male; O, other or unknown; W, White/Caucasian.

Table 2.  Number of Subjects per Immunocompromising Condition

Bacterial, n Viral, n NI, n Total, n (%)

Immunomodulatory agent 21 16 22 59 (44.0)

Solid-organ transplant 25 5 8 38 (28.4)

Chemotherapy 14 5 9 28 (20.9)

HIV/AIDS 4 2 3 9 (6.7)

Total 64 28 42 134

Proportion, % 47.8 20.8 31.3 …

All patients with HIV/AIDS had a CD4 count <200 cells/mm3. Immunomodulatory agents included disease modifying antirheumatic drugs, chronic steroids (>10 mg of prednisone equivalent 
daily for >30 days), and acute high-dose steroids (60 mg prednisone equivalent for ≥3 days). 

Abbreviations: HIV, human immunodeficiency virus; NI, noninfectious illness.
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.72–.90), 78.6% (95% CI, 63.4–93.8%), and 74.5% (95% CI, 
66.2–82.8%) for viral infection; and .79 (95% CI, .71–.88), 
57.1% (95% CI, 42.2–72.1%), and 89.1% (95% CI, 82.3–95.5%) 
for NI, respectively (Table 3, Figure 3). Although the immu-
nocompromised cohort demonstrated lower AUCs compared 
with the immunocompetent cohort, AUCs were not signifi-
cantly different (P = .49 for bacterial infection, P = .24 for viral 
infection, P = .18 for NI). However, the lower overall accuracy 
for bacterial infection in immunocompromised versus im-
munocompetent subjects was statistically significant (73.9% 
vs 84.5%, P = .04). Differences in accuracy between the im-
munocompetent and immunocompromised groups were not 

significant for viral infection (80.9% vs 75.4%, P = .30) and NI 
(84.5% vs 79.1%, P = .27) (Table 3).

This lower performance in subjects with immunocom-
promising conditions could have been due to technical 
variability between batches. To assess this possibility, we 
combined the immunocompetent and immunocompro-
mised subjects into a single cohort and classified subjects 
using LOOCV, which was then stratified by immune status. 
As shown in Figure 4, the host gene expression test discrim-
inated bacterial, viral, and NI etiologies with AUC values of 
.82 (95% CI, .77–.87), .85 (95% CI, .80–.90), and .84 (95% CI, 
.78–.90), respectively (Table 3). Performance was lower in the 

Figure 2.  Differential expression stratified by adjudicated phenotype. Post-normalization differential expression of each gene target in the signature stratified by adju-
dicated phenotype shows phenotype-specific differences for some genes. Gene targets were split across 2 graphs ordered by mean normalized expression values across all 
3 phenotypes to facilitate visualization of phenotype-specific differences.

Figure 1.  Differentially expressed genes in bacterial (A) and viral (B) models. A, Of the 81 gene targets measured, there were 57 and 19 differentially expressed genes 
in the bacterial model for the immunocompetent and immunocompromised cohorts, respectively. B, There were 63 and 26 differentially expressed genes in the viral model 
for the immunocompetent and immunocompromised cohorts, respectively.



Host Biomarkers in the Immunocompromised • cid 2021:73 (15 August) • 609

immunocompromised cohort and neared statistical signifi-
cance for bacterial infection (84.6% vs 76.1%, P = .09) and for 
the NI group (86.0% vs 77.6%, P = .08).

Impact of Immunocompromising Condition

To assess if test performance varied by the type or number 
of immunocompromising conditions, we stratified predic-
tions by these parameters. As shown in Figure 5, there was 

a large spread of predicted probabilities within each category 
of immunocompromising condition, such that no statistically 
significant differences were observed. Samples were unavail-
able to functionally measure immune response. We, there-
fore, used the number of immunocompromising conditions 
as a proxy for the severity of immunocompromise. However, 
there were no differences in bacterial or viral diagnostic ac-
curacy based on the number of immunocompromising 

Figure 3.  Illness etiology probabilities. These boxplots report predicted probabilities based on a fixed-weight model trained on the immunocompetent cohort. The 
distribution of probabilities for 3 models is shown: bacterial vs nonbacterial (left), noninfectious vs others (center), and viral vs nonviral (right). For each model, subjects 
adjudicated as having bacterial infection (red), noninfectious illness (blue), or viral infection (black) are displayed. All subjects (136 in the immunocompetent cohort, 134 in 
the immunocompromised cohort) are represented in each of the 3 models. P values are reported for the comparison of overall accuracy between immunocompetent and im-
munocompromised subjects. Abbreviation: AUC, area under the curve.

Table 3.  Performance Characteristics in the Training (Immunocompetent) and Validation (Immunocompromised) Cohorts

Test Group AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Overall Accuracy, % LR+ (95% CI) LR− (95% CI)

Immunocompetent cohort  

 Bacterial infection .82 (.73–.90) 65.1 (50.9–79.4) 93.5 (88.6–98.5) 84.5 10.09 (4.52–22.56) .37 (.25–.56)

 Viral infection .89 (.83–.95) 84.6 (74.8–94.4) 78.6 (69.8–87.3) 80.9 3.95 (2.58–6.04) .20 (.10–.37)

Immunocompromised cohort  

 Bacterial infection .78 (.71–.86) 62.5 (50.6–74.4) 84.3 (75.8–92.8) 73.9 3.98 (2.24–7.07) .44 (.32–.62)

 Viral infection .82 (.72–.90) 78.6 (63.4–93.8) 74.5 (66.2–82.8) 75.4 3.08 (2.11–4.51) .29 (.14–.59)

Combined cohort

 Bacterial infection .82 (.77–0.87) 80.4 (72.3–87.9) 80.4 (74.3–86.4) 80.4 4.10 (2.96–5.66) .24 (.17–.36)

 Viral infection .85 (.80–.90) 66.3 (55.9–76.6) 91.1 (87.0–95.1) 83.4 7.45 (4.58–11.96) .37 (.27–.51)

 Immunocompetent subgroup

 Bacterial infection … 86.0 (75.7–96.4) 83.9 (76.4–91.3) 84.6 5.34 (3.31–8.61) .17 (.08–.35)

 Viral infection … 69.2 (56.7–81.8) 95.2 (90.7–99.8) 85.3 14.42 (5.49–38.48) .32 (.21–.49)

 Immunocompromised subgroup

 Bacterial infection … 76.6 (66.2–86.9) 75.7 (65.7–85.8) 76.1 3.2 (2.04–4.87) .31 (.19–.49)

 Viral infection … 60.7 (42.6–78.8) 87.8 (81.5–94.0) 81.3 4.95 (2.74–8.93) .44 (.28–.71)

Performance metrics for the immunocompetent cohort and combined cohort were obtained using LOOCV. Values for the immunocompromised cohort were based on parameters and 
thresholds set in the immunocompetent cohort. 
Abbreviations: AUC, area under the curve; CI, confidence interval; LOOCV, leave-one-out cross-validation; LR+, likelihood ratio positive; LR−, likelihood ratio negative.



610 • cid 2021:73 (15 August) • Mahle et al

conditions (bacterial: 75.2% for 1 condition vs 69.0% for mul-
tiple immunocompromising conditions, P = .48; viral: 74.3% 
for 1 condition vs 79.3% for multiple immunocompromising 
conditions, P = .64).

Performance by Quartile

A winner-take-all scheme uses the highest predicted proba-
bility to assign class. Since we report results for 3 models, the 
opportunities for errors increase, especially in comparison to 
schemes that only have 2 classes. Therefore, we re-calculated 
performance characteristics using test quartiles. Specifically, 

this scheme provided greater ability to rule in or rule out bac-
terial and viral infection for subjects in the highest and lowest 
quartiles, respectively. The lowest quartile for bacterial infec-
tion had sensitivities of 95.3% and 90.1% in the immuno-
competent and immunocompromised cohorts, respectively 
(Table 4). The highest quartile for bacterial infection had 
specificities of 91.4% (positive likelihood ratio [+LR], 4.87) 
and 91.4% (+LR, 6.51) in the immunocompetent and im-
munocompromised cohorts, respectively. Performance was 
similarly high in cases of viral infection. Quartile 1 for viral 
infection had sensitivities of 98.1% (negative LR [−LR], 0.03) 

Figure 5.  Bacterial (A) and viral (B) probabilities by type of immunocompromising condition. Predicted probabilities for clinical subgroups in the immunocompromised 
validation cohort. The boxplots indicate median (horizontal line), interquartile ranges (top–bottom box borders), and the whiskers extend to the highest and lowest predictions. 
In panel A, all bacterial subjects are plotted by type of immunocompromising condition while all subjects adjudicated as viral or noninfectious are listed in the respective 
columns on the right side of the graph. In panel B, all viral subjects are plotted by type of immunocompromising condition while all subjects adjudicated as bacterial or non-
infectious are listed in the respective columns on the right side of the graph. Abbreviations: HIV, human immunodeficiency virus; SOT, solid-organ transplant.

Figure 4.  LOOCV on combined immunocompromised and immunocompetent cohort. These boxplots report predicted probabilities from LOOCV on a single cohort of 136 
immunocompetent and 134 immunocompromised subjects. The distribution of probabilities for 3 models is shown: bacterial vs nonbacterial (left), noninfectious vs others 
(center), and viral vs nonviral (right). For each model, subjects adjudicated as having bacterial infection (red), noninfectious illness (blue), or viral infection (black) are dis-
played. Abbreviation: LOOCV, leave-one-out cross-validation.
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and 96.4% (−LR, 0.05) in the immunocompetent and immu-
nocompromised cohorts, respectively. Quartile 4 for viral 
infection had specificities of 95.2% (+LR, 8.81) and 84.0% 
(+LR, 2.45) in the immunocompetent and immunocompro-
mised cohorts, respectively.

DISCUSSION

Difficulty differentiating bacterial, viral, and noninfectious di-
sease leads to diagnostic uncertainty and antibiotic overuse. 
Beyond pathogen-focused diagnostics, the host response offers 
a complementary strategy to identify the presence of infec-
tion and its underlying cause. Numerous host transcriptomic 
signatures for bacterial, viral, fungal, mycobacterial, and para-
sitic infections have been defined [1–10, 22], but none of these 
studies included significant numbers of immunocompromised 
subjects. In our prior research, we developed a host-response 
signature that discriminates bacterial and viral infection with 
an overall accuracy of 87%. In this study, we applied our 

previously developed host-response test to a heterogenous co-
hort of immunocompromised subjects and classified them by 
their underlying bacterial, viral, or noninfectious gene expres-
sion patterns. We compared these results with clinically adjudi-
cated phenotypes. The results showed that host gene expression 
accurately discriminated bacterial, viral, and noninfectious 
etiologies of illness in the immunocompromised host, but at a 
lower accuracy than in immunocompetent patients. These dif-
ferences could be overcome by alternative reporting schemes 
such as the use of quartiles. These results suggest that a host-
response strategy may offer clinically useful and complemen-
tary diagnostic information for immunocompromised patients.

Prior studies showed that host-based diagnostics are applicable 
to immunocompromised populations and can guide antimicrobial 
stewardship in this patient population [23]. Procalcitonin, a widely 
used biomarker to differentiate bacterial and nonbacterial etiologies 
of illness, can be useful for infectious disease diagnosis in immuno-
compromised patients [24]. Pro-adrenomedullin (pro-ADM) and 

Table 4.  Test Statistics per Quartile

A: Immunocompetent cohort, bacterial vs nonbacterial

Quartile Bacterial
Non-

bacterial
Likelihood 

Ratio
Test 
Purpose

Sensitivity 
in Quartile

Specificity 
in Quartile

Quartile 1 (lowest) 2 32 0.07 Rule out 95.3  

Quartile 2 4 30 0.15 Rule out 90.1  

Quartile 3 12 23 2.92 Rule in  75.3

Quartile 4 (highest) 25 8 4.87 Rule in  91.4

B: Immunocompromised cohort, bacterial vs nonbacterial

Quartile Bacterial
Non-

bacterial
Likelihood 

Ratio
Test 
Purpose

Sensitivity 
in Quartile

Specificity 
in Quartile

Quartile 1 (lowest) 6 28 0.17 Rule out 90.1  

Quartile 2 12 21 0.27 Rule out 81.3  

Quartile 3 18 15 3.33 Rule in  78.6

Quartile 4 (highest) 28 6 6.51 Rule in  91.4

C: Immunocompetent cohort, viral vs nonviral 

Quartile Viral Nonviral
Likelihood 

Ratio
Test 
Purpose

Sensitivity 
in Quartile

Specificity 
in Quartile

Quartile 1 (lowest) 1 33 0.03 Rule out 98.1  

Quartile 2 4 30 0.12 Rule out 92.3  

Quartile 3 17 17 3.32 Rule in  79.7

Quartile 4 (highest) 30 4 8.81 Rule in  95.2

D: Immunocompromised cohort, viral vs nonviral

Quartile Bacterial
Non-

bacterial
Likelihood 

Ratio
Test 
Purpose

Sensitivity 
in Quartile

Specificity 
in Quartile

Quartile 1 (lowest) 1 33 0.05 Rule out 96.4  

Quartile 2 1 33 0.05 Rule out 96.4  

Quartile 3 9 23 3.08 Rule in  78.3

Quartile 4 (highest) 17 17 2.45 Rule in  84.0

Results are presented for the bacterial vs nonbacterial model in the immunocompetent cohort (A) and immunocompromised cohort (B). Results for the viral vs nonviral model are presented 
for the immunocompetent (C) and immunocompromised (D) cohorts. Since the purpose of the lower quartiles (1 and 2) is to “rule out” the specified condition, only sensitivity is reported. 
The sensitivity and specificity for each quartile were calculated by omitting the number of subjects in that quartile from the numerator and dividing by all subjects. Higher bands have high 
specificities to rule in disease while lower bands have high sensitivities to rule out disease. For example, the sensitivity in quartile 2 of Table 8a is calculated by (2 + 12 + 25)/(2 + 4 + 12 + 25) 
and the specificity in quartile 3 of Table 8a is calculated by (32 + 30 + 8)/(32 + 30 + 23 + 8).
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urinary chemokines may also be useful diagnostic biomarkers [24, 
25]. A recent bacterial versus viral mRNA signature was evaluated 
in a cohort that included a small number of immunocompromised 
subjects (n = 31), but observed no difference compared with immu-
nocompetent subjects [26]. Other host gene expression tests—for 
example, Allomap—have been successfully developed and imple-
mented for noninfectious conditions such as acute cellular rejection 
in cardiac transplant patients [27]. We could only identify 1 prior 
study focused specifically on host gene expression in immunocom-
promised patients with infections. Wahlund et  al [11] studied 63 
children with febrile neutropenia but was unable to identify a dis-
criminating signature. Several reasons could explain this, including 
their focus on neutropenia, which may have resulted in too severe a 
derangement to support a host gene expression approach; a compar-
atively small sample size; or sample collection after a diagnosis was 
made (after treatment had already begun).

In this study, the only statistically significant difference 
due to immune status that we observed in this test was in 
the diagnosis of bacterial infection. However, performance 
was generally lower in the immunocompromised cohort and 
likely failed to reach statistical significance due to sample size. 
Reasons for this difference may be technical in nature. For 
example, test performance is typically lower in independent 
validation than in the training cohort. Training a model on 
all subjects together should overcome this issue, yet it did not 
resolve the lower performance seen in immunocompromised 
subjects, although the difference was not statistically signif-
icant. It is therefore more likely that biological differences 
between the immunocompromised and immunocompetent 
groups explain this lower performance. Since the source of 
the host response measured in this test is circulating WBCs, 
it is plausible that this response may be different in those with 
immunocompromise. Several genes, including some evalu-
ated here, have been shown to be altered in immunocom-
promised patients [28–32]. For example, expression of MX1 
was decreased in patients with systemic lupus erythematous 
after initiation of immunosuppressant therapy. Bergallo et al 
[32] identified a 6-gene host signature (all of which were 
represented in this study) that remained useful in immuno-
compromised subjects but only if the weight assigned to 3 
particular genes (IFI27, IFTI1, ISG15) was limited. We also 
investigated whether there were any common features among 
subjects who tended to have incorrect or low predicted prob-
abilities, although no pattern could be identified.

The lower overall performance in the immunocompromised 
population can be largely mitigated through alternative re-
porting schemes. Rather than reporting results as positive or 
negative for every subject, indeterminate zones could be devel-
oped such that results in the lowest and highest quartiles offer 
the greatest diagnostic confidence. Results in the middle quar-
tiles might still be useful but would be associated with greater 

uncertainty. There is precedent for this type of stratified re-
porting for other host-response signatures [26, 33–36].

One limitation of this study is that it did not assess host 
gene expression response to fungal infections, which is an im-
portant pathogen class in immunocompromised patients [37]. 
Additionally, the gene expression measurements were limited 
to the 81 genes included on a custom TLDA assay. This limits 
our ability to identify additional DEGs that might be unique to 
this population and would subsequently offer a better test. Even 
if an optimized signature could be found in this population, it 
becomes impractical to develop and use different host-response 
tests for different populations. Ideally, a single signature would 
be broadly applicable to both immunocompromised and im-
munocompetent patients. Given this desired application, we 
originally identified this signature in a biologically heteroge-
neous discovery cohort that included immunocompromised 
subjects [5, 17]. In so doing, the effects of immunocompromise 
were accounted for by the model at the time of discovery. 
Another limitation is that we were unable to functionally assess 
immune status and relied on a compatible medical diagnosis 
or treatment to define immunocompromise. Despite this lim-
itation, this mirrors actual clinical practice where a diagnosis 
of immunocompromise is based on underlying conditions or 
their treatments. Additionally, while a large cohort of immuno-
compromised subjects was studied here, subgroups were small, 
limiting the power to detect differences due to the specific types 
of immunocompromise, which are expected to have a highly 
variable impact on the immune system. Last, clinical adjudica-
tion is an imperfect reference standard, which explains at least 
some discrepancies with the host-response test.

The results of this study indicate that host gene expression offers a 
valuable, complementary diagnostic strategy for the immunocom-
promised population. Although the host-response test is far better 
than routinely ordered tests like WBC count or procalcitonin, it is 
not sufficiently accurate to stand independently of other diagnostic 
information. Used in conjunction with other clinical assessments, 
this host gene expression strategy could be a highly valuable diag-
nostic test. Further research with a larger sample size is required to 
understand what role host-based gene expression tests can play in 
various types of immunocompromise. Ideally, such studies would 
include functional immunological assessments and also evaluate 
the impact of fungal infection on the host response. Real-time de-
terminations of clinical utility will be needed, which will be made 
more feasible with the development of point-of-need, host gene ex-
pression testing [38, 39].
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