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Background.  The Global Enteric Multicenter Study (GEMS) determined the etiologic agents of moderate-to-severe diar-
rhea (MSD) in children under 5 years old in Africa and Asia. Here, we describe the prevalence and antimicrobial susceptibility of 
nontyphoidal Salmonella (NTS) serovars in GEMS and examine the phylogenetics of Salmonella Typhimurium ST313 isolates.

Methods.  Salmonella isolated from children with MSD or diarrhea-free controls were identified by classical clinical microbi-
ology and serotyped using antisera and/or whole-genome sequence data. We evaluated antimicrobial susceptibility using the Kirby-
Bauer disk-diffusion method. Salmonella Typhimurium sequence types were determined using multi-locus sequence typing, and 
whole-genome sequencing was performed to assess the phylogeny of ST313.

Results.  Of 370 Salmonella-positive individuals, 190 (51.4%) were MSD cases and 180 (48.6%) were diarrhea-free controls. 
The most frequent Salmonella serovars identified were Salmonella Typhimurium, serogroup O:8 (C2-C3), serogroup O:6,7 (C1), 
Salmonella Paratyphi B Java, and serogroup O:4 (B). The prevalence of NTS was low but similar across sites, regardless of age, and 
was similar among both cases and controls except in Kenya, where Salmonella Typhimurium was more commonly associated with 
cases than controls. Phylogenetic analysis showed that these Salmonella Typhimurium isolates, all ST313, were highly genetically 
related to isolates from controls. Generally, Salmonella isolates from Asia were resistant to ciprofloxacin and ceftriaxone, but African 
isolates were susceptible to these antibiotics.

Conclusions.  Our data confirm that NTS is prevalent, albeit at low levels, in Africa and South Asia. Our findings provide further 
evidence that multidrug-resistant Salmonella Typhimurium ST313 can be carried asymptomatically by humans in sub-Saharan Africa.

Keywords.   moderate-to-severe-diarrhea (MSD); Salmonella; antibiotic susceptibility; serovars; gastroenteritis.

Salmonella enterica subspecies enterica serovars Typhi 
(Typhi), Paratyphi A  (Paratyphi A), and Paratyphi B sensu 
stricto (Paratyphi B) cause enteric fever, while nontyphoidal 
Salmonella (NTS) generally causes self-limited gastroenteritis 
in healthy individuals. However, in young infants, the elderly, 
and immunocompromised hosts, NTS can lead to bacteremia 
resulting in hospitalization and death [1]. In some resource-
limited countries, NTS is a recognized etiologic agent of di-
arrhea [2–5] and an important risk factor for diarrhea-related 
morbidity and mortality in children [6]. In 2015, an estimated 
37 410 children died as a result of NTS gastroenteritis, with a 
large burden of disease in Southeast Asia and South Asia [7]. 
Serovars Typhimurium and Enteritidis are the most common 
NTS isolated from cases of gastroenteritis worldwide. Despite 
the capacity to isolate Salmonella by stool culture, little is known 
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about the prevalence of NTS serovars that cause gastroenteritis 
in Africa and South Asia.

Invasive NTS (iNTS) causes bacteremia in sub-Saharan 
Africa, occurring predominantly in infants, toddlers, as well as 
in malnourished or malaria-infected adults and/or those with 
human immunodeficiency virus (HIV) [8, 9]. Although the in-
cidence of iNTS has declined in many sites across Africa [10], 
it is still one of the most common causes of bloodstream in-
fections in African children [11]. Interestingly, unique clades 
of serovars Typhimurium and Enteritidis are associated with 
bacteremia in this region [8, 12, 13]. Most of the Typhimurium 
strains isolated from blood in sub-Saharan Africa belong to 
multi-locus sequence type (ST) 313 [14]. In contrast, the most 
common genotype isolated worldwide is ST19, which is gener-
ally associated with gastroenteritis [15] but has recently been 
reported as a primary cause of invasive infections in a study in 
Uganda [16]. Both ST19 and ST313 genotypes have been iso-
lated from patients with either gastroenteritis or bacteremia in 
Kenya, although the number of diarrhea cases was low [17].

The use of antibiotics to treat uncomplicated NTS gastroen-
teritis in children is not recommended, except where progres-
sion to invasive disease is a risk [18, 19]. However, information 
about the antimicrobial susceptibility of NTS is useful as this 
knowledge contributes to our overall understanding of resist-
ance markers that are circulating in specific geographic loca-
tions. In fact, NTS harboring antimicrobial resistance traits in 
the gastrointestinal tract could serve as a reservoir for iNTS 
[20]. Presently, countries with the highest burden of iNTS di-
sease report 48–75% multidrug resistance to commonly used 
antibiotics, a major concern given that more-effective third-
generation cephalosporins or fluoroquinolones may be less 
available or more costly in these settings [11, 21].

During 2007–2010, the Global Enteric Multicenter Study 
(GEMS) determined the etiologic agents of moderate-to-
severe diarrhea (MSD) in children 0–59 months old living in 
The Gambia, Mali, Mozambique, Kenya, India, Bangladesh, 
and Pakistan [22]. This large, prospective, case-control study 
determined that NTS was significantly associated with MSD 
in infants (0–11  months) from the Bangladesh site and tod-
dlers (12–23  months) and young children (24–59  months) 
from the Kenya site [22]. Here, we determined the prevalence 
of Salmonella serovars isolated in GEMS, evaluated antimicro-
bial susceptibility, identified Typhimurium sequence types, and 
examined the phylogenetic relatedness of Typhimurium ST313 
isolates.

METHODS

GEMS Study Participants

The methods and main findings from GEMS have previously 
been described [22–24]. Briefly, GEMS participants were re-
cruited from censused populations during 2007–2010 in 

The Gambia, Mali, Mozambique, Kenya, Bangladesh, India, 
and Pakistan. Study participants included children aged 
0–59  months of age with MSD who presented to a sentinel 
health facility (see Supplementary Methods for additional de-
tails). Children were recruited into 0–11-, 12–23-, and 24–59-
month age groups. For each child with MSD (case) enrolled, 
1–3 children without diarrhea during the previous week (con-
trols) were recruited. Scientific and ethics committees and in-
stitutional review boards of participating institutions in each 
country as well as the coordinating institution, University of 
Maryland, Baltimore, approved the study protocol prior to im-
plementation. Informed consent was obtained in the local dia-
lect from all participating caretakers before recruitment of their 
children into the study.

Detection of Salmonella spp.

A panel of enteropathogens was identified from stool speci-
mens, collected at the clinic from MSD cases or obtained at 
home by caregivers of children in the control group, as pre-
viously described [24]. Salmonella spp. were shipped to the 
Center for Vaccine Development and Global Health (CVD) at 
the University of Maryland School of Medicine for additional 
characterization.

Characterization of Salmonella Serovars From Stools

At CVD, Salmonella spp. were agglutinated using polyvalent O 
and O1 antisera followed by serogroups O:2 (A), O:4 (B), O:6,7 
and O:7 (C1), O:6,8 and O:8 (C2-C3), O:9 (D1), O:9,46 (D2), 
O:3,10 (E1), O:11 (F), and O:13 (G) antisera (Denka Seiken, 
Tokyo, Japan). Serovars Typhimurium, Typhi, Enteritidis, and 
Paratyphi B were fully serotyped (using O and H typing anti-
sera) and additionally confirmed by polymerase chain reaction 
(PCR) [25, 26].

Sequence Typing of Typhimurium Isolates

Sequence types were determined for all 87 Typhimurium iso-
lates using multi-locus sequence typing (MLST) by PCR and 
sequencing and/or by examining whole-genome sequences. 
Sequence typing by MLST followed methodology described 
previously [15].

Whole-Genome Sequencing and Phylogenetic Analysis

The majority of the Salmonella isolates (355 out of 370) were 
subjected to whole-genome sequencing. Following sequencing, 
120 isolates were excluded from subsequent analyses as they 
did not meet the quality-control criteria. Details of sequencing 
and phylogenetic analyses are described in the Supplementary 
Methods.

Antimicrobial Susceptibility Testing

The susceptibility of the 370 Salmonella isolates to chloramphen-
icol, ampicillin, ciprofloxacin, trimethoprim/sulfamethoxazole 
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(TMP/SMX), gentamicin, and ceftriaxone was determined 
using the Kirby-Bauer disk-diffusion method and interpreted 
according to Clinical and Laboratory Standards Institute guide-
lines. Multidrug resistance was defined as resistance to ampi-
cillin, chloramphenicol, and TMP/SMX. To assess whether the 
high resistance of NTS to antimicrobials was associated with 
antibiotic prescription rate, we determined the percentage of 
children with MSD (and Salmonella isolated in stools) who had 
been prescribed (but may or may not have been given) anti-
microbial agents after visiting any of the sentinel health facil-
ities that participated in GEMS.

Statistical Analysis

To determine which individual Salmonella serovars were 
driving the association between Salmonella and MSD that was 
found in the original GEMS analyses [22], we used the same 
conditional logistic regression model as previously described 
[27]. Instead of including Salmonella species in the model we 
included variables for each Salmonella serogroup/serovar. The 
association of each serovar with MSD was adjusted for other 
co-pathogens. The rationale for this approach, generally, and 
in the unique context of GEMS, has been discussed previ-
ously [27]. Analyses were conducted using R version 3.3.2 (R 
Foundation for Statistical Computing). P values less than .05 
were considered statistically significant.

RESULTS

Characteristics of Study Participants With Moderate-to-Severe Diarrhea

Of the cases with Salmonella identified, 86 (44%) were in the 0–11-
month age group, 55 (29%) were in the 12–23-month age group, 
and 49 (26%) were in the 24–59-month age group (Table 1). Cases 
experienced severe signs of MSD. Approximately 20% of infants 
with Salmonella spp. detected had bloody diarrhea, while 100% of 
children aged 12–59 months old with Salmonella spp. produced wa-
tery diarrhea. Of note, a lower proportion of children with MSD 
who had Salmonella isolated tended to be female in all age groups.

Geographical Distribution and Prevalence of Salmonella Serovars

The serovar distribution of the 370 Salmonella isolates (190 
from cases and 180 from controls) collected from stools of 
study participants is shown in Figure 1. Of these, 361 were NTS. 
Additionally, we recovered 8 Typhi from Asia and 1 Paratyphi 
A  isolate from Bangladesh. The most frequent NTS serovars 
identified were Typhimurium, serogroup O:8 (C2-C3), sero-
group O:6,7 (C1), Paratyphi B Java, and serogroup O:4 (other 
than Typhimurium or Paratyphi B). Serovar Typhimurium pre-
dominated in Africa, whereas serogroup O:6,7 (C1) and O:8 
(C2-C3) serovars were the most common in Asia.

Prevalence of Salmonella Serovars by Site and Age Stratum

The prevalence of the most abundant serovars isolated in GEMS, 
as well as serovar Enteritidis (due to its importance in iNTS 

disease in Africa), is shown in Table 2. The individual sero-
vars of isolates are listed in Supplementary Table 1. In general, 
we found that the rates of NTS isolation were low (≤5.3%) in 
both cases and controls regardless of age groups, although some 
site-to-site variation was apparent. At the Kenya site, serovar 
Typhimurium, the most prevalent serovar, was recovered in 
stools of MSD cases at a rate of 3.3% for infants, 3.7% for tod-
dlers, and 4.3% for young children. In Bangladesh, Paratyphi B 
Java, the most prevalent serovar there, was recovered from 2.0% 
of infants with MSD. Serogroup O:8 (C2-C3) organisms were 
most prevalent in stools at the Pakistan site. The prevalence of 
NTS in cases and controls in The Gambia, Mali, Mozambique, 
and India was less than 1.5%.

Salmonella Serovars Significantly Associated With Moderate-to-Severe 
Diarrhea

Previously, 3.2% and 3.7% of MSD episodes in toddlers 
(12–23  months) and children (24–59  months) at the Kenya 
site, respectively, and 4.6% of MSD episodes in infants at the 
Bangladesh site were shown to be attributable to Salmonella 
[22]. We determined the serovars driving the associations by 
using a conditional logistic regression model (Supplementary 
Table 2). In Bangladesh, serogroup O:6,7 (C1) (odds ratio 
[OR], 6.4; 95% confidence interval [CI]: 1.84–22.58), O:8 (C2-
C3) (OR,  6.0; 95% CI:  1.28–28.33), and serovar Paratyphi B 
Java (OR,  4.8; 95% CI:  1.87–12.29) were significantly associ-
ated with MSD. In Kenya, the association was driven by serovar 

Table 1.  Characteristics of Children With Moderate-to-Severe Diarrhea 
and From Whom Salmonella Were Isolated

Clinical Signs and Symptoms
0–11 Months 

(n = 86)
12–23 Months 

(n = 55)
24–59 Months 

(n = 49)

Stool consistency    

  Mucus 72.94 61.82 53.06

  Pus 3.49 9.09 12.24

  Bloody 24.42 12.73 0

  Watery 75.58 87.27 100

Medical history    

  Vomiting >3 times/day 40.70 40.0 48.98

  Drank much less than usual 19.77 21.82 14.29

  Very thirsty 59.3 67.27 83.33

  Decreased activity or lethargy 36.05 54.55 53.06

  Irritable or restless 45.35 61.82 55.10

  Fever >38°C or parent per-
ception

73.26 72.73 77.55

Physical examination    

  Admitted to the hospital 17.44 18.18 22.45

  Undernutrition 9.30 16.36 12.24

  Loss of skin turgor 26.74 25.45 36.73

  Dry mouth 54.65 74.55 81.63

  Sunken eyes 65.12 85.45 87.76

  Axillary temperature >38.3°C 18.60 21.82 26.53

Gender    

  Female gender 37.21 45.45 40.82

Data are presented as percentages.
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Typhimurium among children aged 12–23  months (OR,  4.3; 
95% CI: 1.86–9.93) and 24–59 months (OR, 4.9; 95% CI: 2.09–
11.64). All other serovars occurred in too few cases and controls 
to produce significant results.

Antimicrobial Susceptibility at GEMS Sites

Salmonella isolates from the African and Asian sites differed in 
terms of their antimicrobial susceptibility (Figure 2). Isolates 
from Africa were susceptible to ciprofloxacin and ceftriaxone, 
whereas resistance to these antibiotics was observed among 
Asian NTS isolates. We observed 65.4% of NTS from MSD 
cases in Kenya to be multidrug resistant (MDR) to ampi-
cillin, TMP/SMX, and chloramphenicol. However, isolation of 
nonsusceptible NTS was less frequent at the site in The Gambia; 
only 6.7% of NTS from cases showed an MDR phenotype 
(Figure 2A). In Asia, Indian isolates showed more resistance to 
the antibiotics tested than isolates from the other 2 Asian sites 
(Figure 2B). We observed antimicrobial susceptibility profiles 
among NTS from controls that were similar to cases at each site 
except for Kenya and India.

Serovars Typhimurium and Enteritidis from Africa and 
serogroup O:6,7 (C1) and serogroup O:13 (G) isolates from 
Asia showed the highest percentage of antimicrobial resist-
ance (Figure 3). All Enteritidis and Paratyphi B Java isolates re-
covered from GEMS stools from Asia were pan-susceptible to 
antimicrobial agents, while the 6 serogroup O:13 (G) isolates 
from Africa were pan-susceptible. Five of the 8 (62.5%) serovar 
Typhi from Asia (Pakistan and India) were MDR.

In general, most MSD cases with Salmonella had been pre-
scribed or given an antibiotic (except in Pakistan) (Table 3). 
Trimethoprim/sulfamethoxazole was the most commonly pre-
scribed antibiotic in Africa, whereas ciprofloxacin was the most 
common in Asia.

Phylogenetic Analysis of Salmonella Typhimurium

Since Typhimurium was the most important cause of iNTS di-
sease at several GEMS sites and was the most frequent serovar 
isolated from stools, a phylogenetic analysis was performed. 
Of 87 Typhimurium isolates, 74 (85.0%) were from Africa 
(Kenya), while 13 (14.9%) were from Asia (Pakistan, India, and 
Bangladesh). Table 4 shows the sequence types (ST) of these 
Typhimurium isolates listed by site of origin.

A phylogeny was constructed using whole-genome sequences 
to determine the relationship between the Typhimurium ST313 
isolates from MSD cases and controls (Figure 4). The African 
ST313 sequence type has been divided into the older lineage 1 
isolates and the more recent lineage 2 [13, 28]. Here, 50 of 55 
study isolates analyzed (90.9%) clustered with the ST313 lineage 
2 reference genome D23580, 49 of 55 (89%) of which showed 
the typical MDR phenotype associated with lineage 2, namely 

Figure 1.  Distribution of Salmonella serogroups and serovars isolated from MSD 
cases and diarrhea-free asymptomatic controls. Salmonella spp. isolated from 
stools at (A) all 7 GEMS sites, (B) Africa, and (C) Asia. Abbreviations: GEMS, Global 
Enteric Multicenter Study; MSD, moderate-to-severe diarrhea. 
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resistance to chloramphenicol, co-trimoxazole, and ampicillin. 
The lineage 2 isolates from the MSD cases and diarrhea-free 
controls were closely related and could not be distinguished 
phylogenetically. A  group of 5 isolates in stools of cases and 
controls, regardless of age, formed a small lineage 2 subcluster 
associated with susceptibility to chloramphenicol.

Four of the 55 isolates (7%) clustered with the ST313 lineage 
1 reference genome A130, all of which were isolated from MSD 
cases in Kenya and were sensitive to chloramphenicol. Of note, 
the 1 study isolate (specimen 700477) that failed to cluster with 
lineage 1 or lineage 2 and demonstrated pan-susceptibility to 
antibiotics was isolated from a case of MSD from Pakistan.

DISCUSSION

Salmonella isolates were detected in stools of children with 
MSD and from diarrhea-free community controls at each of the 

GEMS sites. A primary finding of our analysis was that, except 
for Typhimurium, the prevalence of most Salmonella serovars 
was similar in stools of cases and controls, regardless of age 
and across study sites. Because children enrolled as controls in 
GEMS only had to have been free of diarrhea for the previous 
7 days, we could not rule out asymptomatic carriage or shed-
ding of Salmonella among controls due to persistent excretion 
or convalescence [29]. Nontyphoidal Salmonella are reportedly 
excreted for longer periods in children than adults, lasting from 
several weeks to months [18, 30]. We found that NTS was as 
prevalent in cases as in controls, which suggests that NTS is en-
demic at the 7 GEMS sites [3, 31, 32].

In this study, we report the association of Typhimurium 
ST313 with acute diarrhea in Kenya using a conditional lo-
gistic regression model, showing that these bacteria cause di-
arrhea and are not just associated with invasive disease. This 

Figure 2.  Percentage of NTS nonsusceptible to any of 6 commonly used antimicrobial agents. NTS isolated from (A) Africa and (B) Asia. Abbreviations: AMP, ampi-
cillin; CHL, chloramphenicol; CIP, ciprofloxacin; CRO, ceftriaxone; GEN, gentamicin; MDR, multidrug resistant; NTS, nontyphoidal Salmonella; TMP/SMX, trimethoprim/
sulfamethoxazole.
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observation is supported by recent studies from Kenya, the 
Central African Republic, and Democratic Republic of Congo, 
which also detected Typhimurium ST313 in stool [17, 33, 34]. 
Typhimurium ST313 was identified in both MSD cases and 
controls, confirming that this important sequence type can be 
carried asymptomatically by humans. Phylogenetic analysis 
identified lineages 1 and 2, in accordance with previous find-
ings [28]. We found that the same ST313 lineage (lineage 2) was 
prevalent in the stools of both MSD cases and controls. The fact 
that isolates from cases and controls are found in every part 
of the phylogeny suggests that the Typhimurium isolates that 
cause MSD are closely related to those associated with asymp-
tomatic carriage; NTS carriage has been reported elsewhere in 
sub-Saharan Africa [34–36].

Several groups have attempted to identify the reservoir of 
iNTS isolates in Africa. Kariuki et al [20] were the first to sug-
gest that these bacteria are not acquired zoonotically but are ac-
quired by anthroponotic transmission. In this and other studies, 
NTS isolated from blood cultures of bacteremic index cases were 
highly similar to isolates from household contacts but different 

from NTS from animal or environmental sources taken from 
around the homes of index cases [20, 36]. Collectively, these 
prior studies suggest that the reservoir for Typhimurium ST313 
is indeed humans. It remains possible that the lack of detection 
of Salmonella spp. from animals and the environment reflects 
difficulties in culture from these specimen types. However, if the 
inference from the above-mentioned studies is correct, our data 
would support these findings by showing that Typhimurium 
strains isolated from stools of cases and controls in GEMS are 
highly genetically related to isolates from blood.

When we examined the antimicrobial susceptibility of 
GEMS NTS isolates, we detected marked regional differences 
in resistance. We observed similar antimicrobial suscepti-
bility patterns in stools of cases and asymptomatic controls at 
all GEMS sites except for Kenya and India. Our data suggest 
that antibiotic-resistant NTS are circulating in the GEMS com-
munities. Nonsusceptible NTS strains could serve as a reser-
voir from which antibiotic-resistance determinants can spread 
horizontally to other microorganisms [37]. In Africa, the ma-
jority of Typhimurium and Enteritidis isolates were MDR, 

Figure 3.  Percentage of NTS that were nonsusceptible to 6 antibiotics by serotype or serogroup. Only serotypes or serogroups that showed nonsusceptibility to anti-
biotics are shown. Abbreviations: AMP, ampicillin; CHL, chloramphenicol; CIP, ciprofloxacin; CRO, ceftriaxone; GEN, gentamicin; MDR, multidrug resistant; NTS, nontyphoidal 
Salmonella; TMP/SMX, trimethoprim/sulfamethoxazole.



638  •  cid  2021:73  (15 August)  •  Kasumba et al

which is consistent with previous findings [20, 38]. Importantly, 
none of the isolates from GEMS African sites were resistant to 
ciprofloxacin or ceftriaxone, in contrast to isolates from Asia, 
suggesting a difference in utilization of these antibiotics. Five 
(of 8) Typhi from India and Pakistan were MDR but none were 
extensively drug resistant, as seen in the recent typhoid fever 
outbreak in Hyderabad, Pakistan [39].

Antibiotics are not recommended for the treatment of NTS 
gastroenteritis in pediatric patients due to the predisposition 
for extended excretion of bacteria and relapse of infection [18, 
40, 41]. However, our data suggest that children with NTS di-
sease are being prescribed antibiotics, which may have selected 
for resistant bacteria. We observed high prescription rates for 
ciprofloxacin and other fluoroquinolones in Asia and, not sur-
prisingly, also high resistance of Salmonella to ciprofloxacin 
in Asia but not Africa (where ciprofloxacin was rarely pre-
scribed). In contrast, we recorded high antibiotic prescription 
rates of TMP/SMX in Africa, which possibly led to the high 
resistance observed in Africa. TMP/SMX in combination with 
highly active antiretroviral therapy has been used routinely as 
prophylaxis for opportunistic infections in patients with HIV 
in Africa [42].

The low frequency of Salmonella in MSD cases from Mali, 
The Gambia, and Mozambique was somewhat unexpected 
given that these countries report high iNTS disease burdens 
[3, 31, 32]. However, the incidence of iNTS disease during 
GEMS (2007–2010) in these 3 countries decreased relative 
to earlier estimates, concomitant with a reduction in clinical 
malaria [3, 31, 32, 43]. Indeed, there is growing evidence to 
suggest that iNTS disease is correlated with clinical malaria 
and that efforts to control malaria have resulted in reduced 
iNTS disease incidence [9, 44]. A re-analysis of GEMS using 
quantitative molecular diagnostic methods showed higher 
attributable fractions for Salmonella in all age groups at all 
sites [45].

Our findings have 3 main implications: (1) the prevalence 
data could be used to refine incidence estimates for indi-
vidual Salmonella serovars; (2) we report for the first time the Ta
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Table 4.  Sequence Types of Typhimurium Isolates Identified in GEMS 
Stools Determined Using Multi-Locus Sequence Typing Polymerase Chain 
Reaction and/or Whole-Genome Sequencing

Sequence Type

Site ST36 ST313 Total

Africa 0 74 74

  Kenya 0 74 74

Asia 9 4 13

  Bangladesh 4 0 4

  Pakistan 3 4 7

  India 2 0 2

All sites 9 78 87

Abbreviations: GEMS, Global Enteric Multicenter Study; ST, sequence type.
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association of Typhimurium ST313 with acute diarrhea, thereby 
showing that these bacteria are not just associated with invasive 
disease; and (3) our data demonstrate widespread asymptomatic 

carriage of ST313, a key cause of iNTS infections. Because we 
found that humans are carriers of MDR Salmonella strains that 
also cause iNTS [46], it is possible that these individuals serve as 

Figure 4.  Genetic relationship between Salmonella Typhimurium ST313 isolated from MSD cases and diarrhea-free controls. The core genome maximum likelihood tree is 
shown for Salmonella Typhimurium ST313 isolated from the stool of cases and controls of children aged under 5 years in Kenya and Pakistan (1 isolate), which were collected 
as part of the GEMS. Scale bars in SNPs are shown beneath the phylogeny. Patient group, age range, and AMR data for the isolates are displayed using color strips created 
using Interactive Tree of Life (iTOL; Biobyte Solutions, Heidelberg, Germany) and are labeled and colored according to the in-laid key. Isolates that cluster with the lineage 1 
or lineage 2 reference genomes are indicated. The tree is rooted using ST19. Abbreviations: AMR, antimicrobial resistance; GEMS, Global Enteric Multicenter Study; MSD, 
moderate-to-severe diarrhea; SNP, single nucleotide polymorphism; ST, sequence type.
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intermediaries in transmission and maintenance of these bac-
teria in the community.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corresponding author.
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