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Background:  Limitations in the sensitivity and accessibility of diagnostic tools for childhood tuberculosis contribute to the sub-
stantial gap between estimated cases and cases notified to national tuberculosis programs. Thus, tools to make accurate and rapid 
clinical diagnoses are necessary to initiate antituberculosis treatment in more children.

Methods:  We analyzed data from a prospective cohort of children <13 years old being routinely evaluated for pulmonary tubercu-
losis in Cape Town, South Africa, from March 2012 to November 2017. We developed a regression model to describe the contributions of 
baseline clinical evaluation to the diagnosis of tuberculosis using standardized, retrospective case definitions. We included baseline chest 
radiographic and Xpert MTB/RIF assay results to the model to develop an algorithm with ≥90% sensitivity in predicting tuberculosis.

Results:  Data from 478 children being evaluated for pulmonary tuberculosis were analyzed (median age, 16.2 months; interquartile 
range, 9.8–30.9 months); 242 (50.6%) were retrospectively classified with tuberculosis, bacteriologically confirmed in 104 (43.0%). The 
area under the receiver operating characteristic curve for the final model was 0.87. Clinical evidence identified 71.4% of all tuberculosis 
cases in this cohort, and inclusion of baseline chest radiographic results increased the proportion to 89.3%. The algorithm was 90.1% sen-
sitive and 52.1% specific, and maintained a sensitivity of >90% among children <2 years old or with low weight for age.

Conclusions:  Clinical evidence alone was sufficient to make most clinical antituberculosis treatment decisions. The use of evi-
dence-based algorithms may improve decentralized, rapid treatment initiation, reducing the global burden of childhood mortality.

Keywords.   Diagnostic algorithm; diagnostic system; pediatric; clinical evidence; Diagnosis; clinical decision-making.

Each year, 1.2 million children are estimated to develop tu-
berculosis, and about one-quarter of those children die [1]. 
This places tuberculosis in the top 10 causes of death among 
children <5 years old worldwide. Globally, >96% of deaths in 
children with tuberculosis occur among those not receiving 
treatment [2].

Childhood tuberculosis is generally paucibacillary, limiting 
the sensitivity of bacteriological tests, including rapid molec-
ular diagnostic tests, such as the Xpert MTB/RIF assay (Xpert) 
[3]. Findings on chest radiography (CR) are similarly less sen-
sitive among children [4]. In addition to diagnostic limitations, 
accessing these tests may be challenging—especially in low-
income and middle-income countries that bear the greatest 

burden of tuberculosis [5]. These limitations in sensitivity and 
accessibility contribute to the substantial gap between the esti-
mated 1.2 million annual incident cases of childhood tubercu-
losis and the approximate 500 000 annual cases notified to the 
World Health Organization (WHO) [1].

Decentralized diagnosis and treatment for childhood tu-
berculosis may reduce the risk of untreated tuberculosis 
and improve treatment outcomes by shortening the delay to 
treatment initiation [6–10]. To that end, the WHO and the 
International Union against Tuberculosis and Lung Disease 
suggest treating children for whom there is sufficient clinical 
evidence of tuberculosis, even in the absence of further di-
agnostic investigation [11, 12]; however, it is not clear what 
clinical evidence is sufficient to start treatment. Practical, 
data-driven treatment-decision algorithms could help support 
more effective and uniform treatment decision making at pe-
ripheral health facilities [13].

A recent study among children living with human immu-
nodeficiency virus (HIV) demonstrated that antituberculosis 
treatment decisions may be made using clinical evidence alone 
[14]. We present a complementary study, in which we analyze 
data from HIV-uninfected children from a well-characterized 
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prospective cohort of young children routinely evaluated for 
pulmonary tuberculosis in Cape Town, South Africa. We aimed 
to investigate the relative contributions of baseline clinical char-
acteristics, baseline CR findings, and baseline Xpert findings to 
the diagnosis of childhood pulmonary tuberculosis in a high-
tuberculosis burden setting. We used this evidence to develop a 
practical algorithm to assist in making sensitive and rapid deci-
sions to initiate antituberculosis treatment.

METHODS

Participants

Children <13 years old routinely evaluated for pulmonary tu-
berculosis were prospectively identified for participation in a 
diagnostic study [15–17]. Children were recruited from inpa-
tient wards and emergency rooms at Tygerberg Hospital and 
Karl Bremer Hospital, referral hospitals in Cape Town, South 
Africa, from March 2012 to November 2017. Eligibility cri-
teria reflected the WHO and national criteria for the evalua-
tion of childhood tuberculosis and were any of the following: 
cough  for ≥2  weeks, unexplained fever  for ≥1  week, poor 
growth or weight loss over the preceding 3 months, or cough 
for <1 week with known tuberculosis exposure in the previous 
12 months, positive tuberculin skin test (TST) results, or CR 
appearance suggestive of tuberculosis, as evaluated by study 
physicians. Children were not eligible if they had received 
antituberculosis treatment for >1 day or had extrapulmonary 
tuberculosis without also being evaluated for pulmonary 
tuberculosis.

Procedures and Definitions

At the time of enrollment each participant underwent a stand-
ardized clinical examination performed by study physicians; 
TST; bacteriological testing for Mycobacterium tuberculosis 
using acid-fast bacilli smear microscopy, Xpert, and mycobac-
teria growth indicator tube (MGIT) liquid culture from a min-
imum of 2 respiratory specimens (1 specimen of either gastric 
aspirate for children  <5  years old or spontaneously produced 
sputum for older children able to expectorate, and 1 specimen 
of induced sputum); and anteroposterior and lateral CR. CR 
studies were read by 2 independent pulmonology and/or pedi-
atric tuberculosis experts blinded to the clinical history using a 
standardized evaluation tool. 

Some children underwent additional sampling for other res-
piratory specimens for M. tuberculosis confirmation, including 
nasopharyngeal aspirate and stool, as part of investigational 
substudies. At 2 months, all study participants were evaluated 
irrespective of tuberculosis diagnosis at baseline. All children 
with an ongoing suspicion for tuberculosis, regardless of the de-
cision to treat for tuberculosis, had respiratory samples taken 
during follow-up at 1, 2, and/or 6 months or as clinically needed 
for smear microscopy, MGIT culture, and Xpert. Data were 

dual entered into standard case report forms. Managing clinical 
teams made the decision to treat.

Study participants were retrospectively classified by the study 
team as having confirmed, unconfirmed, or unlikely tubercu-
losis, using standardized clinical case definitions developed 
for the evaluation of diagnostics for childhood pulmonary 
tuberculosis (Supplementary Table 1) [18]. These definitions 
considered clinical history from baseline evaluations, immuno-
logical evidence of M. tuberculosis infection, consistency of CR 
appearance with tuberculosis as evaluated by experts blinded 
to the clinical history, confirmation of M. tuberculosis by Xpert 
or MGIT culture of respiratory specimens collected at baseline 
or in follow-up, and follow-up evaluation to assess for reso-
lution or persistence of symptoms. All available information 
was used to inform classification of tuberculosis using these 
definitions. Given the epidemiological difference in the risk of 
tuberculosis and severe forms of disease [19], we defined 2 risk 
groups in our population: higher-risk children <2 years of age 
or with a weight-for-age z score below −2, and lower-risk chil-
dren  ≥2  years of age and with a weight-for-age z score of at 
least −2.

Statistical Analysis

We used logistic regression to develop a model to predict con-
firmed and unconfirmed tuberculosis restricted to data from 
the baseline evaluation of children with complete predictor in-
formation. We identified candidate predictors from the baseline 
clinical evaluation (initial clinical history and physical exami-
nation) used in previous scoring systems to diagnose childhood 
pulmonary tuberculosis, as well as from a nested case-control 
analysis of our data, in which we defined cases as having any 
bacteriological confirmation of M. tuberculosis over the study 
period and controls as those retrospectively classified as un-
likely tuberculosis with the additional requirement that they 
completed the study without ever receiving antituberculosis 
treatment.

We carried out backward variable selection from the full 
model containing only predictors from the baseline clinical 
evaluation to develop the first model (clinical model). We 
used an inclusion P value cutoff informed by variable degree 
of freedom as per Akaike information criterion in model selec-
tion [20]. We added results from the baseline CR and Xpert per-
formed on all respiratory specimens collected at baseline only 
to obtain the second model (investigational model). Though 
MGIT culture is more sensitive for M. tuberculosis than Xpert, 
we include Xpert in our models, given improved accessibility in 
many settings and shorter time to result.

All predictors were binary variables to reflect their pres-
ence or absence in the child, except cough duration, which 
we categorized as no cough or cough  lasting <1, 1–2, 2–3, 
or >3 weeks. A  list of all relevant candidate predictors and 
their definitions as relevant to this study are provided in the 
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Supplementary Material. Analysis was performed using R soft-
ware, version 4.0.1.

Given that a positive Xpert result was sufficient to classify a 
child as having tuberculosis by the reference standard, coefficient 
and standard error estimates for the investigational model were 
obtained by means of Firth’s logistic regression analysis, using 
function brglm in R package brglm. We examined separation 
by plotting the receiver operating characteristic (ROC) curve 
for each model and assessing the area under the ROC curve 
(AUC), using the R package pROC. We used the function roc.
test to compare whether the models had statistically significant 
AUCs, using DeLong’s test for correlated ROC curves. We used 
leave-one-out cross-validation using the function cv.glm in the 
R package boot to assess out-of-sample predictive performance.

Treatment-Decision Algorithm Development

We scaled the coefficient estimates for the parameters in each 
model, such that a score of >100 constituted a sensitivity of 
≥90% to diagnose pulmonary tuberculosis, consistent with 
the WHO target product profile of a community-based triage 
test to identify tuberculosis (scaling methods described in the 
Supplementary Material) [21]. To develop a treatment-decision 
algorithm, we examined how study participants met criteria for 
diagnosis disaggregated by contribution from baseline clinical 
evidence, baseline CR findings consistent with tuberculosis, 
and baseline Xpert findings with respiratory specimens.

Ethical Considerations

Data collection and analysis was approved by the Stellenbosch 
University Health Research Ethics Committee (reference no. 
N11/09/282). Written informed consent for study participation 
was obtained from parents or legal caregivers, and written as-
sent was obtained from children ≥7 years old. This analysis was 
approved via expedited review by the Yale Institutional Review 
Board (reference no. 2000028046) and did not require specific 
consent because it was a secondary analysis of previously col-
lected data.

RESULTS

Population

Data were available for 608 children who completed evaluation 
for the prospective study, of whom 478 HIV-uninfected partici-
pants had sufficiently complete data for this analysis (Figure 1). 
A total of 242 children (50.6%) were retrospectively classified 
as having confirmed or unconfirmed pulmonary tuberculosis 
using the clinical case definitions, with bacteriological confir-
mation in 104 of them (43.0%). See Supplementary Table 2 for 
differences between populations included versus excluded from 
this analysis because of missing variables.

Table 1 displays the demographics and candidate predictors for 
children with sufficiently complete data for this analysis. Of 478 
children, 223 (46.7%) were female; their median age (interquartile 

range) was 16.2 (9.8–30.9) months, and their median weight-for 
age z score was −1.58 (−2.7 to −0.7). We classified 378 children 
(79.1%) as at higher-risk for tuberculosis and severe disease. 
Details concerning these higher- and lower-risk subpopulations 
are provided in the Supplementary Tables 3 and 4.

Prediction Modeling

The predictors selected from baseline clinical evidence for in-
clusion in the final model were cough duration, fever, failure 
to thrive/weight loss, lethargy, history of tuberculosis exposure, 
and hepatomegaly. We added baseline CR and Xpert results to 
create the investigational model. Odds ratios, 95% confidence 
intervals, and P values for the predictors included in the clinical 
and investigational models along with AUC and leave-one-out 
cross-validation for each model are provided in Table 2, and the 
ROC curves for the models are presented in Figure 2. The clin-
ical and investigational models had significantly different AUCs 
of 0.75 and 0.87, respectively (P < .001).

Treatment-Decision Algorithm

The probability threshold of the investigational model was set 
at 0.25 to classify tuberculosis with 90.1% sensitivity and 52.1% 
specificity. At this threshold, 173 (71.5%) of the 242 children 
with a diagnosis of tuberculosis could be identified using clin-
ical evidence (Figure 3). Among those children not identifiable 
by clinical evidence, an additional 43 were identified with CR. 

Figure 1.  Flow diagram demonstrating participant eligibility for this analysis 
[17]. Pulmonary tuberculosis was confirmed or unconfirmed using the retrospective, 
standardized clinical case definitions). Abbreviations: HIV, human immunodeficiency 
virus; PTB, pulmonary tuberculosis; TB, tuberculosis.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab018#supplementary-data
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Inclusion of CR results after clinical evidence increased the 
proportion of tuberculosis identified to 89.3%. Figure 4 shows 
the treatment-decision algorithm built from the investigational 
model. This algorithm failed to diagnose tuberculosis in 24 
children (details in Supplementary Table 5). The sensitivity and 
specificity, compared with the retrospective reference standard, 
were 0.54 and 0.91, respectively, for baseline CR alone, and 0.26 
and 1.0 for baseline Xpert alone.

Table 3 demonstrates the sensitivity, specificity, positive pre-
dictive value, and negative predictive value of the algorithm in the 
higher- and lower-risk subpopulations. The algorithm had a sen-
sitivity and specificity of 91.8% and 51.6%, respectively, among 

higher-risk children, and 83.3% and 53.8% among lower-risk 
children. The algorithm built from the clinical model including 
only clinical evidence is shown in Supplementary Figure 1, with 
a sensitivity of 90.5% and specificity of 33.9% (Supplementary 
Figure 2). The sensitivity, specificity, positive predictive value, 
and negative predictive value of the algorithm in the higher- and 
lower-risk subpopulations are given in Supplementary Table 6).

DISCUSSION

Our analysis of a well-characterized, prospective cohort 
of young children evaluated for pulmonary tuberculosis 

Table 1.  Demographics and Candidate Predictors From Clinical Evaluation and Diagnostic Imaging/Testing of Human Immunodeficiency Virus–Uninfected 
Participantsa

Variable

Children, No. (%)b

Tuberculosis (n = 242) Not Tuberculosis (n = 236)

Demographics   

  Sex   

    Male 127 (52) 128 (54)

    Female 115 (48) 108 (46)

  Age, median (IQR), mo 18.09 (10.14–32.1) 15.28 (9.36–27.52)

  Age group, y   

    0–1 15 (64) 161 (68)

    2–4 60 (25) 62 (26)

    ≥5 27 (11) 13 (6)

    Weight-for-age z score , median (IQR) −1.71 (−3.01 to −0.66) −1.46 (−2.47 to −0.69)

  Weight-for-age z score below −2 105 (43) 92 (39)

Clinical history at baseline   

  Cough duration, wk   

    No cough 46 (19) 55 (23)

    <1 74 (31) 97 (41)

    1–2 43 (18) 32 (14)

    2–3 23 (1) 16 (7)

    >3 56 (23) 36 (15)

  Fever 147 (61) 105 (44)

  Failure to thrive/weight loss 111 (46) 87 (37)

  Poor appetite 137 (57) 122 (52)

  Lethargy 104 (43) 74 (31)

  History of tuberculosis contact 128 (53) 55 (23)

Clinical examination at baseline   

  Lymphadenopathy 151 (62) 145 (61)

  Stridor 6 (2) 3 (1)

  Wheeze 55 (23) 58 (25)

  Hepatomegaly 42 (17) 19 (8)

  Splenomegaly 19 (8) 6 (3)

Diagnostic testing/imaging at baseline   

  CR findings consistent with pulmonary tuberculosis at baseline 131 (54) 22 (9)

  Xpert-confirmed Mycobacterium tuberculosis on respiratory specimens at baseline 62 (26) 0 (0)

Retrospective clinical case definitions   

  Confirmed tuberculosis 104 (43) 0 (0)

  Unconfirmed tuberculosis 138 (57) 0 (0)

  Unlikely tuberculosis 0 (0) 236 (0)

Abbreviations: CR, chest radiography; IQR, interquartile range; Xpert, Xpert MTB/RIF assay. 
aParticipants with sufficiently complete data for this analysis.
bData represent no. (%) of participants, unless otherwise identified as median (IQR).

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab018#supplementary-data
https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab018#supplementary-data
https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab018#supplementary-data
https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab018#supplementary-data
https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab018#supplementary-data
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demonstrates that a detailed clinical history and physical ex-
amination is sufficient to initiate treatment in most HIV-
uninfected children. In our setting, CR and Xpert findings 
affected the decision to treat only a minority of children with 
symptoms suggestive of pulmonary tuberculosis. This suggests 
that diagnostic testing/imaging may be reserved for those chil-
dren who do not meet criteria for treatment-initiation based 
on clinical evidence alone. We used these findings to con-
struct a data-driven algorithm to promote sensitive and rapid 
antituberculosis treatment-initiation.

While the WHO does not define the target sensitivity and 
specificity of diagnostic tools for childhood tuberculosis, as 
compared with a composite reference standard, we fixed the 
sensitivity of our algorithm at 90% to be consistent with both 
the WHO-defined target for a community-based triage and the 
algorithm-building approach adopted by Marcy and colleagues 
[14, 21]. Our specificity fell short of the WHO-proposed target; 

however, given the severe consequences of failing to diagnose 
and treat a case of childhood tuberculosis, we elected to priori-
tize sensitivity over specificity.

Our results highlight the importance of a detailed clinical 
history and physical examination in making treatment initia-
tion decisions for childhood tuberculosis. We identified clinical 
evidence suggestive of childhood pulmonary tuberculosis that 
is consistent with the literature [14, 22–25], and we quantita-
tively described their contribution to diagnosis. This analysis 
demonstrates that incorporating additional clinical characteris-
tics may improve the specificity of treatment decisions without 
a substantial sacrifice in sensitivity among children identified 
by the WHO symptom screen. In addition, this approach allows 
health workers to identify those children with sufficient clin-
ical evidence to begin antituberculosis treatment without the 
need for additional diagnostic imaging/testing. This supports 
rapid treatment initiation in settings where access to diagnostic 

Table 2.  Prediction Models Using Baseline Clinical History and Physical Evaluation Findings With or Without Diagnostic Imaging and Microbiological 
Investigation

Predictor

Clinical Model: Clinical  
Evidence Only

Investigational Model: Clinical  
Evidence + CR + Xpert

OR
95% CI  

(0.025–0.975) P Value OR
95% CI  

(0.025-0.975) P Value

Intercept 0.22 0.12-0.37 .00 0.10 0.04-0.18 <.01

Cough duration, wk         

  No cough Reference … … Reference … …

  <1 0.68 0.39-1.19 .18 0.62 0.31-1.18 .15

  1–2 1.51 0.78-2.97 .22 1.29 0.59-2.85 .52

  2–3 2.29 1.01-5.29 .05 1.35 0.48-3.76 .56

  >3 2.27 1.20-4.35 .01 2.48 1.19-5.49 .02

Fever present         

   No Reference … … Reference … …

  Yes 1.89 1.24-2.90 .01 1.69 1.03-2.88 .04

Failure to thrive/weight loss         

  No Reference … … Reference … …

  Yes 1.66 1.10-2.54 .02 1.80 1.10-3.04 .02

Lethargy         

  No Reference … … Reference … …

  Yes 1.40 0.90-2.18 .14 1.68 0.98-2.97 .06

History of tuberculosis exposure         

  No Reference … … Reference … …

  Yes 5.13 3.33-8.05 .01 6.99 4.20-13.00 <.01

Hepatomegaly         

  No Reference … … Reference … …

  Yes 2.62 1.38-5.13 .01 1.18 0.52-2.71 .69

Baseline CR findings consistent with pulmonary tuberculosis      … …

  No … … … Reference … …

  Yes … … … 9.38 5.22-19.45 <.01

Baseline respiratory specimens positive for Mycobacteriun tuberculosis 
with Xpert 

        

  No … … … Reference … …

  Yes … … … 90.41 10.69-Inf <.01

Leave-one-out cross-validation 0.21 … … 0.15 … …

Area under the ROC curve 0.75 … … 0.87 … …

Abbreviations: CR, chest radiography; OR, odds ratio, ROC, receiver operating characteristic; Xpert, Xpert MTB/RIF assay. 
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imaging or testing is limited, as well as where negative results 
from available tests may not change management.

Our analysis suggests pursuing CR before Xpert 
among those children who do not meet criteria to receive 
antituberculosis treatment based on clinical evidence alone. 

This is reasonable, given the accessibility of CR in many set-
tings and its utility in identifying other disease not related 
to tuberculosis. In addition, it does not require any invasive 
sampling procedures that may be needed to obtain samples 
from young children for microbiological confirmation. We 
note that the contribution to diagnosis that we present for 
CR in this analysis may be optimistic, given that high-quality 
images were obtained in a tertiary care setting with expert 
readings that may be unavailable in some high-burden, low-
resource settings [26]. Prospective investigation into the use 
of standardized digital CR and enhanced reader training will 
be important to understand the use of CR in childhood tu-
berculosis diagnosis in settings with limited resources [27]. 
Furthermore, inclusion of specific findings on CR may in-
crease the specificity of our algorithm [4].

Although we demonstrate that well-collected respiratory 
specimens for Xpert performed at baseline do not substantially 
improve our algorithm, we note that Xpert findings may pro-
vide important information on guiding treatment selection in 
settings where drug resistance is a concern. However, it is im-
portant to note that lack of access to microbiological testing 
and negative test results should not prevent children from ac-
cessing antituberculosis treatment when clinical criteria are 
met. Furthermore, while drug-resistant tuberculosis transmis-
sion is an important public health concern, the relative impor-
tance of microbiological tests in children should be informed by 
the local epidemiology of drug-resistant tuberculosis transmis-
sion [28]. Given limitations in the sensitivity of microbiological 
testing among children, obtaining a detailed exposure history 
that includes the drug susceptibility test profile of any potential 
source cases remains critical.

Good performance of this algorithm among younger or low 
weight-for-age children is encouraging, given a higher risk of 
severe tuberculosis in this group. The children missed by this 
algorithm were generally older, had a higher weight-for-age z 
score, and had a shorter cough duration. We believe that in-
creased sensitivity of treatment decisions, rather than precise 
diagnosis, is likely to have a greater impact on child mortality 
rates, given the high proportion of young children who with 
undiagnosed tuberculosis. It may be necessary to accept some 
overtreatment with relatively safe antituberculosis therapy to 
reduce the preventable disease and death due to untreated tu-
berculosis [29, 30]. Diagnostic vigilance and careful follow-up 
are critically important for all children, regardless of the initial 
treatment-initiation decision, to consider competing diagnoses 
and monitor for adverse drug events.

Although TSTs were used to establish the reference standard, 
we chose not to include it in our analysis because of the many 
participants with missing TST data (120 of 478) due to global 
tuberculin stockouts during the study. While immunological 
testing for M. tuberculosis infection may improve the specificity 
of the algorithms, limitations in sensitivity among young and 

Figure 3.  Venn diagram depicting how the 242 participants with tuberculosis in 
this cohort met criteria to be classified as having tuberculosis by the investigational 
model. Criteria were met by having sufficient evidence from baseline clinical eval-
uation, having baseline chest radiographic consistent with pulmonary tuberculosis, 
and/or having Mycobacterium tuberculosis confirmed by means of Xpert MTB/RIF 
assay of respiratory specimens collected at baseline. Note that 24 participants 
classified as having tuberculosis by the reference standard were missed by the 
investigational model.

Figure 2.  Receiver operating characteristic curves of the clinical model (solid), 
including the baseline clinical evidence (cough duration, fever, failure to thrive/
weight loss, lethargy, history of tuberculosis exposure, and hepatomegaly), and 
the investigational model (dashed), considering baseline clinical evidence, baseline 
chest radiographic findings, and Xpert MTB/RIF findings from respiratory specimens 
collected at baseline. Horizontal dashed line indicates a sensitivity of 90%.
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malnourished children and lack of accessibility at peripheral 
health centers may discourage their inclusion in treatment-
decision algorithms [31].

A source of potential bias in this analysis arises from the fact 
that the clinical evaluation, CR results, and Xpert results are 
included as predictors in the model and as components of the 
clinical reference standard. We believe that this may not be a 
major issue in the current study, given the high degree of micro-
biological confirmation. This is further supported by the similar 

operational characteristics of the algorithms in the nested case-
control subpopulation, as compared with the development co-
hort (Supplementary Tables 7 and 8). 

In addition, we must be careful not to overinterpret the gen-
eralizability of these algorithms, which were built from a cohort 
that was prescreened for tuberculosis and sourced from a ter-
tiary care center. While the entry criteria for this development 
cohort reflects the WHO criteria for investigation for tuber-
culosis and a low value for cross-validation suggests general-
izability and external validity, the positive predictive value of 
these algorithms may be lower where the baseline prevalence 
of tuberculosis is lower. Further evidence is required to deter-
mine the pretest probability of tuberculosis in children identi-
fied as having a positive WHO symptom screen across different 
settings, because this would have implications for the perfor-
mance of this treatment-decision algorithm. Furthermore, 
randomized, interventional investigation is necessary to eval-
uate the morbidity and mortality impact of using data-driven, 
treatment-decision algorithms to guide antituberculosis treat-
ment initiation in different settings.

This analysis outlines an approach to interpret clinical data 
to inform treatment initiation decisions for children being 

Figure 4.  Treatment-decision algorithm developed from the investigational model that includes baseline clinical evidence, baseline chest radiographic findings, and Xpert 
MTB/RIF assay findings from respiratory specimens collected at baseline. Abbreviations: M. tb, Mycobacterium tuberculosis; PTB, pulmonary tuberculosis; TB, tuberculosis.

Table 3.  Sensitivity, Specificity, and Positive and Negative Predictive 
Value of the Algorithm Developed From the Investigational Model, 
Including Baseline Clinical, Chest Radiographic, and Xpert MTB/RIF 
Assay Findings 

Risk for Tuberculosis and 
Severe Disease Sensitivity, % Specificity, % PPV, % NPV,%

High risk (age <2 y 
or weight-for-age z 
score below −2)

91.8 51.6 66.7 85.6

Low risk (age ≥2 y and 
weight-for-age z score 
of at least −2)

83.3 53.8 62.5 77.8

Abbreviations: NPV, negative predictive value; PPV, positive predictive value. 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab018#supplementary-data
https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab018#supplementary-data
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evaluated for pulmonary tuberculosis. It is important to rec-
ognize that this algorithm is context specific, and translation 
to other settings should be undertaken cautiously. Ideally, 
treatment-decision algorithms should be constructed locally 
to reflect the site-specific epidemiology, the quality and ac-
cessibility of diagnostic imaging and testing, and the relative 
consequence of overtreatment versus untreated child tuber-
culosis. Furthermore, these algorithms should be revised and 
recomputed as circumstance change—for example, as local ca-
pacity to incorporate additional tools changes or as improved 
diagnostic tools are discovered. Implementation of treatment-
decision algorithms must include programmatic support and 
mentorship for the healthcare providers to use them effectively, 
as well as additional resources to support the families of the 
children initiated onto treatment [7].

We demonstrate that algorithms that incorporate evidence 
from a detailed clinical history and physical examination could 
play an important role in guiding sensitive treatment-initiation 
decisions for most children being evaluated for pulmonary tu-
berculosis. Data-driven treatment algorithms provide an im-
portant framework to consider the contribution of additional 
investigation, after detailed clinical evaluation. Algorithms that 
support rapid, decentralized antituberculosis treatment deci-
sion making are important tools to reduce the burden of disease 
and death associated with childhood tuberculosis.
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