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Digital twins (DT) are emerging as an extremely
promising paradigm for run-time modelling and
performability prediction of cyber-physical systems
(CPS) in various domains. Although several different
definitions and industrial applications of DT exist,
ranging from purely visual three-dimensional models
to predictive maintenance tools, in this paper, we
focus on data-driven evaluation and prediction of
critical dependability attributes such as safety. To that
end, we introduce a conceptual framework based
on autonomic systems to host DT run-time models
based on a structured and systematic approach. We
argue that the convergence between DT and self-
adaptation is the key to building smarter, resilient
and trustworthy CPS that can self-monitor, self-
diagnose and—ultimately—self-heal. The conceptual
framework eases dependability assessment, which
is essential for the certification of autonomous CPS
operating with artificial intelligence and machine
learning in critical applications.

This article is part of the theme issue ‘Towards
symbiotic autonomous systems’.

1. Introduction
Critical computer-based systems, including cyber-
physical systems (CPS) and the Internet of Things
(IoT), combining both tangible and virtual entities,
permeate our everyday lives in modern society and are
therefore becoming increasingly symbiotic with humans
[1]. Criticality refers to the effects of malfunctions
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and failures, which can have consequences ranging from the loss of money (e.g. financial frauds
through cyber-threats) to the loss of human lives (e.g. accidents in intelligent transportation
systems). Therefore, those systems need to be accurately designed and monitored in order to
reduce the risk of malfunctions [2], possibly using agent-based approaches [3,4]. A class of those
systems also needs to be certified against international well-established reliability, safety and
security standards [5,6].

While predictability was the key for the assessment of legacy systems such as trains or
airplanes, nowadays there is a paradigm shift toward smarter systems based on artificial
intelligence (AI), which have the advantage of learning and adapting to new situations; however,
those characteristics also introduce a high level of uncertainty that complicates their analysis
and certification [7]. Therefore, we are witnessing an apparent paradox where systems have
the potential of becoming more dependable due to their higher intelligence, but that can also
reduce the level of trust we hold in those systems. Complexity itself, as a result of growing size,
distribution and heterogeneity, is another obstacle to full predictability.

In such a scenario, run-time models represent a viable option to manage dependability aspects
in the operational stage through perpetual assurances. In other words, parts of the assessment
models remain alive from design-time to run-time, and that allows us to deal with certain classes
of uncertainties and changes, both in the system and in the environment in which it operates [8].
This is where the paradigms of digital twin (DT) and autonomic computing can help by providing
an effective conceptual model to frame the theoretical and practical aspects related to how to
manage run-time models in terms of data collection, model execution, explainability, planning of
reconfigurations and implementation of response actions.

In this paper, we provide a conceptual, high-level framework that summarizes recent research
and future opportunities in using DT as run-time predictive models for resilience, self-healing
and trustworthy autonomy of CPS. While some ideas are being investigated for using DT in
infrastructure resilience applications (see, e.g. reference [9]), to the best of our knowledge, the
concept of integrating DT and autonomic computing into a single conceptual framework has
not been addressed yet by the scientific community. The only work that recently discussed
some opportunities in this field is reported in reference [10]; however, in that work, the authors
mainly addressed a case study of model-driven engineering connected to reflective architectural
patterns, without generalizing the DT approach to CPS architectures at multiple abstraction
levels. Further to such generalization, based on the theory of autonomic computing for self-
healing, in this paper, we also provide some hints about anomaly detection with process mining
through holistic approaches that are suitable to the assessment of cooperative IoT systems-of-
systems [11].

The rest of this paper is structured as follows. Section 2 provides a brief summary of basic
concepts and current research areas in the field of CPS resilience, self-healing and trustworthy
autonomy. Section 3 introduces our conceptual framework and reference architecture where a
convergence is sought between the concepts of DT and autonomic computing, with a focus
on CPS resilience. Section 4 provides an overview of the challenges of detecting behavioural
anomalies in distributed CPS in order to inspire further research directions. Finally, §5 will draw
conclusions and provide some hints about future developments.

2. From cyber-physical system resilience to trustworthy autonomy
Resilience in CPS refers to the capability of complex systems, integrating connected cyber and
physical components to deliver services that can justifiably be trusted when facing changes [12].

The concept of resilience originates in diverse disciplines, including psychology, in which it
is defined ‘as the process of adapting well in the face of adversity, trauma, tragedy, threats or
significant sources of stress—such as family and relationship problems, serious health problems,
or workplace and financial stressors’ [13]. The word resilience is also used in physics and
mechanical engineering, representing ‘the capability of a strained body to recovering its size and
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shape after deformation caused especially by compressive stress’ [14]. More recently, the concept
has been associated with CPS, the latter defined as complex entities integrating connected cyber
and physical components, which are used in several domains, including intelligent transportation
and Industry 4.0 [15].

In the field of computer-based systems, the most accredited definition of resilience builds
on the definition of dependability, the latter being defined as ‘the capability to deliver services
that can justifiably be trusted’ [16]. Trust refers to dependability attributes that are reliability,
availability, maintainability, safety, integrity and confidentiality, whereas the subset of attributes
represented by availability, integrity and confidentiality is also collectively known as ‘security’.
Threats can be faults (i.e. causes of errors), errors (i.e. wrong system state due to faults) and
failures (i.e. incorrect service originating from errors). Several other classifications of faults are
possible depending on their domain (i.e. hardware versus software), persistence (i.e. transient
versus permanent), etc. The most common technique to protect from faults is known as ‘fault-
tolerance’. Compared to ‘dependable CPS’, ‘resilient CPS’ can deliver services that can justifiably
be trusted even in the presence of changes such as system upgrades and evolution. It is worth
mentioning that CPS are often associated with the concepts of distributed embedded systems
and smart systems, with which they share aspects of complexity, autonomy and criticality [17].
The interest in resilient CPS has grown in the last years as witnessed by the numerous projects
and publications on related topics [7].

Addressing resilience in CPS is extremely challenging due to size, heterogeneity, distribution
and criticality, implying more complex analyses. Generally, engineers adopt model-based
approaches for risk assessment together with a combination of hardware and software
technologies to ensure both resilience-by-design and run-time monitoring for threat detection
and management. When system complexity is high, modular and compositional approaches
are needed based on multi-paradigm modelling, including abstraction, multi-formalism and
meta-modelling [18]. Ensuring holistic resilience requires considering both intentional and
unintentional threats, which are normally managed by different teams of cybersecurity and fault-
tolerance experts. Therefore, the convergence between reliability, safety and security evaluation is
one of the main issues to be faced when assessing resilience. Furthermore, there is no universally
accepted indicator to measure resilience in CPS, as several metrics have been proposed in recent
projects and papers [3], also addressing semantic models and ontologies [19]. Informal and
diverse definitions can lead to ambiguities and misunderstandings with regard to threat coverage,
system boundaries and involved dependability attributes. Since CPS can involve aspects of
decision support and autonomy requiring AI, their resilience needs to be evaluated considering
the issues of the so-called ‘trustworthy AI’ (i.e. ethical and robust AI) and ‘safe autonomy’,
including topics such as explainable AI (XAI) and adversarial attacks to AI, which represent
extremely current and open research fields [20]. Finally, since the definition of resilience stresses
the importance of continuous change, in the system itself as well as in its environment, self-
adaptation techniques are being investigated by researchers in order to achieve self-healing,
according to the so-called MAPE-K (monitor–analyse–plan–execute over a shared knowledge)
feedback loop [21]. That provides a structured approach to intelligent threat detection and
management through optimal CPS reaction and reconfiguration [22]. In particular, how to
perform response and recovery in CPS is a complex aspect to be considered in critical and
constrained environments because guaranteeing a trusted response can be challenging in real
environments [8].

3. Description of the conceptual framework
Due to the complexity of CPS, it is essential to depict a conceptual framework through a modular
and multi-level stratified architecture enabling the paradigm of DT to incorporate run-time
models supporting self-healing and trustworthy autonomy.

First of all, let us introduce the flow chart in figure 1, which summarizes the macroscopic
phases required to build DT models and use them in order to monitor system dependability at
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Figure 1. Flow chart describing the process of continuous monitoring and planning/reconfiguration through DT run-time
models.

run-time. Please consider that due to the high level of abstraction, the same approach can be
applied to both single-autonomous components and complex systems-of-systems. The critical
phase (labelled as number 3 in the flow chart) is dependability evaluation at run-time, which
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Figure 2. State chart describing the transitions among nominal, degraded and compromised states in self-healing CPS. (Online
version in colour.)

is followed—if the dependability target is achieved—by a continuous monitoring loop aimed
at detecting faults (i.e. known causes of errors) or anomalies (i.e. any deviations from nominal
behaviour, possibly indicating unknown faults and errors) before they can lead to system failures.
Faults, errors and failures, as well as behavioural anomalies, can be collectively referred to
as ‘threats’ to system dependability, according to most common taxonomies [16]. When those
threats are detected, self-healing aims at finding the optimal reconfiguration or plan for reaction,
depending on the nature of the threat: simple faults can be managed using legacy fault-tolerance
mechanisms based on redundancy, fault-isolation and error correction within a single device;
more complex, possibly intentional and strategic, cyber-physical threats may require adopting
multi-step and multi-entity coordinated plans. ‘What-if’ analyses and predictions performed in
real-time thanks to the run-time models inside DT will allow systems to autonomously take
decisions on whether solutions are available to counteract threats and restore system operation,
possibly with reduced capacity/performance, or rather a shutdown or switchover to another
external—most likely human-controlled—system is required.

Figure 2 shows another view of the same process by focusing on macroscopic states. Note
that the diagram is not an exact representation of an abstract state-machine for any CPS, rather
it represents an easy-to-understand example of system behaviour. It only features four states
that summarize the most important situations for an autonomous CPS: in state 1, the system
operates in nominal conditions with no faults or anomalies detected; state 2 represents a minor
degradation in system operation with minimum or no impact on its capacity, in terms of both
performance and tolerance to additional minor threats; state 3 represents a major degradation
in system performance and/or capacity to counteract additional threats, but still guaranteeing
vital functions such as safety-related ones; finally, in state 4a system is compromised due to
a high number of minor faults or anomalies, or even due to a single critical fault. State 4 is
necessarily transient because the system cannot safely continue its operation if no solution is
promptly applied. From all degraded states, it is possibly to recover by applying appropriate fixes
such as reconfigurations and response plans. Repairs can involve both hardware (e.g. switching
to a backup physical component) and software (e.g. restarting processes, also known as ‘software
rejuvenation’) [23]. Depending on safety-criticality, certain fixes such as SOTA (Software Over
The Air) upgrades could not be possible, unless the whole process is fully validated according to
reference international standards. Those standards often do not yet consider the new landscape
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of dependable intelligent systems operating in dynamic and evolving environments with many
uncertainties to be faced; in such scenarios, missing prompt updates could be more harmful than
not achieving full predictability. Nevertheless, run-time model checking approaches are possible
for online validation of reconfiguration plans and recovery responses for adaptive CPS needing
to comply with specific Safety Integrity Levels (e.g. see [23]).

Based on the principles explained above, figure 3 depicts an overall conceptual architecture
showing the possible location of DT hosting run-time models according to the MAPE-K control
loop. The figure includes the three main levels that nowadays constitute a common abstraction
on CPS modelling:

— Edge, i.e. field device level (e.g. smart sensor/actuator).
— Fog, i.e. local area network / metropolitan area network (e.g. gateway or local server).
— Cloud, i.e. wide area network (e.g. datacentre in a remote geographical location).

Depending on where the DT is located, a trade-off is achieved among:

— Knowledge, i.e. available information, which is likely to increase as the level moves to
the cloud, due to the collection of bigger amounts of usable data coming from multiple
devices as well as from similar systems installed worldwide; all that information can be
used in data-driven approaches such as deep learning for predictive maintenance, which
work better when DT are located at the cloud level.

— Power, i.e. computing and storage capacity, which is much higher in the cloud due to
the scalability of datacentres, compared to the possibly very limited power of cheap and
constrained edge devices.

— Cost-effectiveness, i.e. reduction of implementation costs, which is normally possible
when adopting external cloud services allowing for resource optimization.

— Confidentiality, i.e. protecting data from unauthorized access (and possible corruption),
which is easier at edge and fog levels where less transmission means is used in controlled
environments with limited usage of open networks and remote storage.

— Timeliness, i.e. ensuring quick (e.g. real-time and predictable) local response, which is
expected to be better at lower levels due to reduced transmission latency, compared
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to possible delays and retransmissions due to packet losses over external wide area
networks.

— Autonomy, i.e. capacity to react to threats and other unknown situations locally with
the (limited) information available even when Internet connection is unavailable, which
is clearly a requirement that can be fulfilled only if DT are implemented at the edge
computing level.

As depicted in figure 3, knowledge about the physical assets is typically collected using IoT
sensing devices. Therefore, an abstract digital representation of the real world would be available
depending on the nature, number and position of those devices. The same holds for any
physical countermeasures that would be orchestrated by the DT in response to threats. In semi-
autonomous systems, humans can also be considered part of the system as information sources,
through structured interfaces and feedbacks, as well as actuators, through step-by-step guided
responses. Whether humans or other devices are acting as sensors, it is essential to account for
faults and uncertainties through appropriate trust models.

Figure 3 provides a hierarchical representation with highly redundant DT that are
implemented at each level. Clearly, in real-world implementations, a trade-off should be achieved
among all the factors mentioned above, considering the criticality and specific requirements of
each application, as well as cost considerations.

Considering the MAPE-K loop included in each DT, run-time models are essentially fed by
the available knowledge and used in the analysis and planning phases, e.g. to evaluate what-if
options in building the optimal response plan. Knowledge includes all relevant information about
the system, environment, threats and countermeasures, such as Bayesian representations [22]
and troubleshooting information retrieved from open-data repositories (e.g., machine-readable
product manuals [23]). In real-world implementations, DT could be added-on or rather built-in
the CPS; all the specific implementation aspects such as using standard communication protocols
rather than ad-hoc ones, service-oriented architectures (SOA) middleware [24], etc. are not in
the scope of this overview, although some hints for future research will be provided in the next
section.

It is important to observe that a hierarchical approach allows for better management of
complexity and optimization of resources, with a distributed computing approach using available
knowledge and power at each level. In such a way, local autonomy would be possible even though
the connection is lost to the higher levels, or hard real-time constraints would not allow a response
from the cloud. In turn, this could lead to a suboptimal reaction due to limited knowledge and
power. In addition to higher fault-tolerance due to redundancy, a full hierarchical approach also
supports separation of concerns, with local models elaborating a different subset of information
and providing the results of those elaborations to more abstract—but possibly much bigger in
terms of input data—models at higher levels. An example of this could be the software monitoring
of a connected self-driving car, in which a prompt action might be required at a local (i.e. edge
computing) level to recover from the crash of a software process requiring the switchover to a
backup module or even to manual operation, depending on the achievable dependability target;
at cloud level, specific details to support fault recovery such as full log file data might be omitted
to save resources, while it would be important to understand whether the same type of failure
has happened to similar vehicles in similar conditions, in order to plan for software patching or
return to the workshop. Also, information about the successful adoption of response actions at
the edge level should be propagated through the cloud in order to be used in similar devices
in analogous situations. In such a view, DT hierarchy is associated with model abstraction and
modularity rather than pure redundancy and enables federated multi-simulation among DT for
predictive analytics [25].

Another aspect worth mentioning is that although the main scope of the concept is to support
self-healing, which could be interpreted as an extremization of fault-tolerance in complex CPS, the
approach also allows for fault-avoidance [16], due to the autonomic controller implementing the
MAPE-K look in the DT possibly being able to predict the future evolution of CPS behaviour and
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react accordingly in order to prevent threats. In fact, in this application the autonomic controller
can be thought of as a resilience controller over the managed system also ensuring safe autonomy
whenever appropriate and feasible.

4. Challenges in anomaly detection with digital twins
The framework presented in the previous section is based on the capability of DT to detect
anomalies by analysing CPS events and diagnostic data generated at the edge level. Anomaly
detection is a broad topic which can be defined in several ways. According to the definition given
in one pioneering work on the subject [26]:

(a) Anomaly detection refers to the problems of finding patterns in data that
do not conform to expected behaviour

For instance, collective anomalies can be found in inputs that consist of datasets where multiple
instances of the dataset considered together convey information regarding an anomaly. Vice-
versa, point anomalies are anomalies found in datasets where single instances may turn out to
be anomalies.

Since anomaly detection works with datasets, data mining techniques are used together with
other techniques, which consider multiple instances at a time, such as

— Classification-based anomaly detection techniques, which can be applied whenever
enough labelled data is available.

— Clustering-based anomaly detection techniques, which identify ‘normal’ regions where
data must reside in order to not consider the system as misbehaving.

— Statistical anomaly detection techniques, where a statistical model is fit to ‘normal’ data:
when run-time system data does not fit with reasonable confidence the statistical model,
the system is misbehaving.

A more specific and recent survey on IoT anomaly detection has been provided in reference
[27]. Each IoT device can be abstracted as a process communicating with other processes in
the network, thus configuring a highly heterogeneous distributed system, which requires ad-
hoc middleware solutions to enable communication. The survey highlights that IoT devices
are constrained in terms of resources, which make them more prone to being corrupted and
cause security problems and behavioural anomalies. The survey also explores the possibility of
adopting techniques for IoT intrusion detection, namely the class of anomaly detection methods,
where the nominal behaviour is modelled, and anomalies are detected through identifying
deviations from normal behaviour using run-time data.

More generally, the massive use of digital technologies has brought to the definition of the
Internet of events, where an enormous amount of data is collected [28]. Data science is a broad
field that covers all the disciplines which deal with or contribute to the extraction of value from
data collected from digital applications. Applying data science when inspecting data is key to
recovering new information, data patterns, models and solutions to recurrent problems. Data
science also couples with another science, which is concerned with the analysis of behavioural
processes of applications: process science. Process science has, as its main goal, the design,
development, validation, maintenance and enhancement of process models, i.e. models that
describe the behaviour of all kinds of applications (for example, business applications). The
discipline known as process mining is the result of coupling data science with process science.
Process mining has been shown to be a valuable alternative to detect and predict faults or
anomalies in IoT applications. In particular, it has three intended uses:

— Process discovery, where, starting from event data, new process models can be
discovered (play-in).
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— Conformance check, where, starting from event data and one or more existing process
models, data can be replayed on the model(s) to verify the conformance of the behaviour
of the application with the considered process models.

— Enhancement, where, starting from event data and one or more existing process models,
data can be replayed on the model(s) to carry out performance and dependability
analyses.

Process mining is also a broad discipline: when discovering a process model, and hence using
a certain notation, different perspectives may be captured. One of these is the control-flow
perspective, where the ordering of activities is found and recurrent patterns are captured by a
model; one notation suitable for this perspective is the Petri net modelling notation. A broad class
of algorithms, with the only input being the (pre-processed) event log obtained by the events
collected, can extract Petri nets; one example of such algorithms is the α-algorithm.

In the field of process mining applied to CPS resilience, reference [29] proposes a framework
to detect anomalies from event data coming from the edge, based on process discovery from
available data. After a model is retrieved, additional data are collected and each trace, i.e. each
sequence of related activities in data, is replayed on the model. If differences are detected when
replaying the event log on the model, then a fitness parameter is determined in order to compare
it with a specified threshold. When a single trace in the event log has too many differences when
replayed on the model and thus a low fitness parameter is extracted, then the system is classified
as misbehaving.

In addition to formal models needed to recognize threats, anomaly detection also requires
specific architectures to collect and vehiculate relevant data. In the field of IoT, a layered approach
can be used to decompose functional aspects. In particular, a layer known as middleware can be
used as an application enablement platform, i.e. to integrate external applications and ensure
requirements such as interoperability, persistence and analytics, context awareness, resource and
event handling, etc. In fact, IoT devices are normally unable to perform resource-intensive tasks.
To that end, some researchers have introduced the concept of the cloud of things, extending
the IoT with cloud computing services [30]. As already mentioned in the previous section and
highlighted in reference [30], using cloud services to enhance CPS resilience via DT requires
taking into account issues related to bandwidth, connection unavailability, latency, data validity,
security, etc. The authors of [30] propose a set of requirements that a service-oriented middleware
must satisfy to provide self-management mechanisms such as self-configuration, self-healing and
self-optimization of service providers, which also support IoT anomaly detection. Additional
edge-fog-cloud computing architectural paradigms for anomaly detection can be found in [31,32],
where a detailed explanation of specific functionalities of each platform and a description of the
specifications that each device should have to be employed in a certain layer are explored and
properly motivated.

5. Conclusion
When Jean-Claude Laprie associated the concept of resilience to computer systems for the first
time in a publication dated 2008 [12], he probably could not imagine the huge importance that
the term would have gained in the following decades. That pioneering work, together with the
previous dependability taxonomies and fault-tolerant architectures, served to settle the main
pillars for all modern concepts of self-healing CPS and trustworthy autonomy.

In this paper, we have associated the concepts of resilience, self-healing and trustworthy
autonomy to the paradigm of DT through run-time models embedded in the MAPE-K loop of
autonomic computing.

We have provided an overview of the main concepts and their interrelations as well as
some reference abstract models and architectures for continuous CPS monitoring for faults and
anomalies using DT and self-healing mechanisms. We believe that current approaches to self-
healing and trustworthy autonomy should conform as much as possible to widely accepted
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taxonomies and reference architectures in order to ensure systematicity and verifiability. That
is a way to manage complexity and criticality, which otherwise would diverge due to the
growing challenges of resilience assessment of large, distributed and heterogeneous CPS in the
presence of changes, evolutions and uncertainties, both in the environment and the systems
themselves. Those aspects are nowadays crucial, and it is therefore essential to develop new
approaches to improve CPS resilience that are modular, compositional and scalable. We have
shown that the combination of the DT paradigm with autonomic computing through the MAPE-
K loop and related run-time models could be an effective route towards the achievement of that
paramount objective. Regarding the current implementation challenges of such a paradigm, we
have highlighted recent related research based on service-orientation and multi-layered edge-
fog-cloud computing platforms. Although the main objective is to achieve full autonomy in
future CPS, it is worth mentioning that partial or incremental autonomy in a ‘human-in-the-loop’
fashion would also be an option, with DT acting as decision support systems, whenever legal
requirements still oblige to human supervision. Given the current state of the art, one promising
future research direction should aim at data-driven anomaly detection through process mining, in
order to enhance prediction capabilities by leveraging the huge potential of big data analytics [33].
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