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Assessing reinforcing versus aversive consequences in a
real-time secondhand smoke intervention
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Marc A. Adams,” Melbourne Hovell®

Abstract

Few studies have examined the relative effectiveness of
reinforcing versus aversive consequences at changing behavior
in real-world environments. Real-time sensing devices makes

it easier to investigate such questions, offering the potential

to improve both intervention outcomes and theory. This
research aims to describe the development of a real-time,
operant theory-based secondhand smoke (SHS) intervention
and compare the efficacy of aversive versus aversive plus
reinforcement contingency systems. Indoor air particle
monitors were placed in the households of 253 smokers for
approximately three months. Participants were assigned

to a measurement-only control group (N = 129) or one of

the following groups: 1.) aversive only (AO, N=71), with
aversive audio/visual consequences triggered by the detection
of elevated air particle measurements, or 2.) aversive plus
reinforcement (AP, N = 53), with reinforcing consequences
contingent on the absence of SHS added to the AO intervention.
Residualized change ANCOVA analysis compared particle
concentrations over time and across groups. Post-hoc pairwise
comparisons were also performed. After controlling for Baseline,
Post-Baseline daily particle counts (F=6.42, p=0.002), % of
time 15,000 counts (F=7.72, p< 0.001), and daily particle
events (F= 4.04, p= 0.02) significantly differed by study
group. Nearly all control versus AQ/AP pair-wise comparisons
were statistically significant. No significant differences were
found for AO versus AP groups. The aversive feedback system
reduced SHS, but adding reinforcing consequences did not
further improve outcomes. The complexity of real-world
environments requires the nuances of these two contingency
systems continue to be explored, with this study demonstrating
that real-time sensing technology can serve as a platform for
such research.
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INTRODUCTION

Modifiable health behavior is a leading cause of
morbidity and mortality in the USA [1, 2], which im-
plies that significant gains to public health can be
achieved with effective behavior-altering systems.
However, many interventions demonstrate small,
shortlived effects [3], partially due to a focus on
between-individual characteristics rather than on
dynamic, within-person factors [4]. Interventions
are often deployed at infrequent, pre-determined

Implications

Practice: Systems that continually use aversive
contingencies to present immediate feedback in
response to individuals’ smoking behavior, both
with and without the addition of reinforcing
contingencies, can reduce in-home secondhand
smoke outcomes.

Policy: Policy makers interested in protecting
household members, particularly children, from
secondhand smoke exposure should consider the
use of real-time feedback systems.

Research: Future research can increase the preci-
sion of behavior science by leveraging real-time,
streaming technology to investigate how aversive/
reinforcing contingencies and other operant con-
structs function in real-world settings.

occasions and are not sensitive to participants’ idio-
syncratic changes over time. Furthermore, they are
frequently assumed to produce relatively permanent
outcomes, which is incompatible with the everyday
experience of behavior that continually varies with
time, context, and other factors. Real-time tools such
as smartphones and internet-of-things devices have
the potential to shift behavioral interventions toward
a framework that is better equipped to affect, and
possibly maintain, change by facilitating justin-time,
adaptive interventions (JITAIs) [5]. JITAIs pair in-
tensive data collection with analytic systems capable
of realtime implementation and adaptation, al-
lowing interventions to react on an ongoing basis to
participants’ behaviors, environmental setting, and
unique recorded history.

An area poised to benefit from transitioning
to JITAIs is secondhand smoke (SHS) exposure,
which is responsible for over 41,000 deaths and
$5.6 billion in costs each year in the USA [6], with
a recent study showing that greater than 4 in 10
children aged 3-11 years in the USA are exposed
[7]. Interventions aimed at reducing SHS exposure
have typically relied on infrequent and imprecise
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measurements of indoor smoking, occasionally de-
ployed with delayed feedback, which has resulted
in modest effect sizes [8, 9]. In an effort to im-
prove these outcomes, the Project Fresh Air (PFA)
JITAI was conducted in homes where children
plus an adult tobacco smoker(s) resided. Within
PFA, in-home SHS exposure was continuously
measured with air particle monitors and contin-
gent, aversive feedback (i.e., lights and tones) was
delivered immediately after the detection of a sus-
pected exposure event. In select homes, reinfor-
cing feedback for attenuated air particle levels was
also presented. PFA significantly reduced average
air particle concentrations, time with elevated par-
ticle concentrations, the number of particle events,
indoor air-nicotine levels, and self-reported indoor
cigarette and cannabis smoking [10, 11].

The ongoing exposure to an aversive feedback
contingency within PFA was developed to align with
previous calls to optimize mobile technology inter-
ventions by rooting them in behavior models that
are dynamic, regulatory, and adaptable based on
an individual’s behavior and context [12]. The con-
tingency approach is emblematic of operant theory,
which posits that the occurrence of a behavior in a
given context is governed by the contingent conse-
quences of previous instances of the same behavior
in similar contexts. Contingencies can be either re-
inforcing or aversive, depending on whether they lead,
respectively, to a higher or lower probability of a
behavior being emitted under similar conditions in
the future. When implementing an operant JITAI,
either type of contingency, or a combination of
both, can be incorporated into the design; but the
optimal balance between these two approaches re-
mains to be determined. Within non-JITAI settings,
the effects of reinforcing versus aversive contingen-
cies have been widely studied in non-humans [13-
18], digital agents [19, 20], and humans [21-25]. For
humans, aversive contingencies have generally been
found to more effectively regulate behavior [21, 23,
24], but in certain domains, particularly for compli-
cated tasks, the combination of reinforcement and
punishment was optimal [21, 22, 25].

Until recently, it has been challenging to arrange
contingencies in the freeliving world, which has
limited our ability to assess reinforcement versus
punishment in a natural context. As demonstrated
by the aversive lights/tones feedback implemented
within PFA, innovations in mobile technology have
made it easier to arrange real-world contingencies,
which imbibe JITAIs with the potential to serve as
critical platforms to conduct operant experiments.
From this perspective, this paper describes the de-
velopment and deployment of a reinforcement plus
aversive contingency within the PFA study and con-
trasts its performance relative to aversive-only and
measurement-only contingencies. Understanding
the comparative ability of these approaches to

change behavior will aid practitioners in optimally
designing future interventions.

METHODS

Overview of project fresh air

Full details of PFA have been published elsewhere 10,
11]. Briefly, 298 homes with at least one adult smoker
and at least one child under 14 were enrolled. Two
Dylos DC1700 air particle monitors were installed,
one in the room nearest to where most smoking oc-
curred and the other in the child’s bedroom; only
the monitor in the main smoking room was used in
this study. The monitors were calibrated to count par-
ticles ranging from 0.5 to 2.5 ym in diameter, which
is consistent with SHS as well as non-tobacco aerosol
sources [26]. The monitors measured air particle con-
centrations every 10 s and were installed in homes for
an average of 3 months. The intervention was broken
into three phases, delineated by four home visits from
PFA coaches. While the study design specified that
home visits should occur at 1-week intervals, sched-
uling conflicts and technological issues led to vari-
ance in the duration of the three phases.

Homes were block randomized using a block
size of two into either an infervention condition or
a measurement-only control condition. Intervention
homes were stratified into two phases: (a) baseline—a
period during which feedback was disabled and (b)
post-baseline—a period during which feedback was ac-
tivated. The feedback consisted of mildly aversive
visual and auditory stimuli programmed to be pro-
vided in response to elevated air particle measure-
ments. In its default state, the monitors displayed a
green light emitting diode (LED). The LED turned
yellow and an aversive tone was presented when air
particle measures exceeded 15,000 counts; if the
measurement exceeded 30,000 counts, the LED
transitioned to red and a second, more aversive
tone was presented. The aversive lights remained on
until air particle measures returned to below 15,000
counts. As described in the next section, for select
homes the aversive feedback contingency was sup-
plemented with a reinforcement contingency.

Operationalizing feedback contingencies

Aversive only

The aversiveness of the two monitor tones was es-
tablished in a previous study [27]. The yellow/red
LEDs were considered a conditioned stimuli since
they were not aversive in their own right, but drew
this characteristic from their common association
with everyday items such as traffic lights. The homes
that were exposed to only the aversive contingency
were denoted as Aversive Only (AO). To aid with re-
tention and to offset participant burden, the AO
homes were provided with a gift card (up to $20 or
$40 in value, depending on enrollment period) for
attempting to implement SHS reduction strategies.
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Aversive plus reinforcement (AP)

As outlined in the Introduction, previous studies
indicated that the combination of aversive and re-
inforcement contingencies may be optimal for
complex tasks (such as reducing SHS), so a second
intervention component that added a reinforcement
contingency to the aversive lights/sounds was intro-
duced. Aversive Plus (AP) homes were simultaneously
exposed to the same auditory/visual contingencies
as the AO homes, as well as reinforced for extended
periods of attenuated air particle levels. This added
process is known as the differential reinforcement of
other behavior (DRO) because it reinforced any be-
havior that did not produce indoor air particles. The
DRO contingency operated on functional units des-
ignated as valleys, which were defined as consecutive
measurement instances with air particle concentra-
tions below 15,000 counts (see Fig. 1). This name
was chosen to contrast peaks, observations above
15,000 counts that activated the aversive feedback.
Once a valley duration exceeded a pre-specified,
home-specific valley duration threshold (e.g., 1 hr), par-
ticipants began accruing monetary compensation
on a gift card, up to a $40 value. Monetary accrual
continued until the valley ended, either due to the
exceedance of the 15,000 counts threshold or the
end of a trial phase. Reinforcement magnitude was
calculated (see details below) independently during
each of the three intervals that were delineated by
the four coaching home visits and was provided at
the next coaching visit.

Calculation of AP reinforcement threshold

Due to a large variance in the frequency of indoor
smoking among enrolled participants, a one-size-fits-
all reinforcement approach was not feasible. Instead,
the valley duration threshold was individualized for
each home as follows: the unique household distri-
bution of valley durations over the baseline phase

Classification a)

N Peak
H Valley

Counts (x 1000)
Frequency

Jan 08 00:00  Jan 08 12:00  Jan 09 00:00

I 65th % b) Classification
|

was calculated, after omitting valleys with a duration
less than 3 min, since they were unlikely to be asso-
ciated with smoking. From the computed distribu-
tion, the 65th percentile was selected as the valley
duration threshold. Figure 1 illustrates a schematic
of the valley duration threshold determination and
valley reinforcement procedures for a single home.
Appendix 1 details the selection of the 65th per-
centile and 3-min exclusion as system parameters.

Conditioned reinforcer system

A key characteristic of the aversive contingency in
PFA was a very small delay between the generation
of air particles and the feedback presentation, with
visual and auditory stimuli delivered immediately
upon the detection of sufficiently elevated air par-
ticle concentrations. This feature is known to in-
crease the degree to which consequential stimuli
affect future behavior [28], so we sought to extend
it to the AP condition by minimizing the time be-
tween the generation of a sufficiently long valley
and the presentation of a reinforcing stimulus. This
was accomplished by immediately presenting a solid
blue LED on the air particle monitor once the valley
duration threshold was reached; this LED remained
lit until the air particle level again breached 15,000
counts. Participants were informed that the blue
light indicated the accrual of gift card value and that
the longer the blue light was present, the more mon-
etary compensation they would receive.

Determining reinforcement value

In the AO arm, households were provided with a
monetary reward of up to either $20 or $40 on a
gift card when they attempted to implement SHS-
reduction features that were developed with their
coaches. Success/failure in this goal was based on
selfreported measures that were evaluated during
each coaching visit. Self-reported attempts were not

c)

250 Jan1700:00 Jan1712:00 Jan1800:00  Jan 18 1

150 200
Date Valley Duration (Mins) Date

Fig 1 | Schematic of reinforcement protocol. Panel (a) illustrates baseline data, where the boundaries between peaks (denoted by red rect-
angles) and valleys (denoted by green rectangles) are identified. A green, encircled number denotes each of the six distinct valleys. Panel
(b) illustrates the distribution of valley lengths and the calculation of the 65th percentile (180 min), which serves as the valley duration
threshold in the post-baseline phase. Panel (c) illustrates the post-baseline phase. Peaks and valleys are colored as in Panel (a), but now
valleys that exceed the valley duration threshold for reinforcement are shown in blue, which mirrors the blue light conditioned reinforcer
that was presented during these times to indicate that gift card value was being accrued. Encircled numbers denote each distinct valley
and are colored by whether the valley duration threshold was reached.
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verified, as this reinforcement criterion was inten-
tionally designed to be easily achieved in order to
combat attrition. For most participants, the entire
$20/$40 was disbursed throughout the intervention
period, although approximately 15% of households
did not report making an attempt to institute SHS
mitigation efforts and did not receive compensation.

Monetary compensation in the AP arm was based
on the percentage of total time that homes spent
within sufficiently long valleys, with an aim to have
the rewards mirror the AO reinforcement as closely
as possible. Participants in the AP condition could
earn up to $13.33 in each of the three phases delin-
eated by coaching sessions, with the monetary com-
pensation in each coaching phase calculated via the
following equation:

13.33 - ti,
tr
where {7 is the total time elapsed in the phase and
ty is the total time in valleys, including the time to
reach the valley duration threshold. This value was

rounded up to the nearest dollar.

Outcome measures
The following four outcome measures were used for
analyses:

1. Mean daily particle counts

2. Mean daily percentage of time that particle concentra-
tions were 215,000 counts.

3. Mean number of daily “particle events” (PEs), defined
as instances of a rapid increase in particle levels fol-
lowed by an exponential decay [11]. This measure was
created to identify indoor cigarette smoking episodes,
although non-tobacco sources could also lead to PEs.

4. Air nicotine, as objectively measured by dosimeters
(i.e., passive devices containing an air filter designed
to absorb nicotine). Dosimeters were installed at two
different occasions—for 7 days at the beginning of the
intervention and for 7 days at the end of the interven-
tion. Assays were conducted by liquid chromatography
tandem mass spectrometry using electrospray ioniza-
tion (see Ref. [11] for full details), which provided a
measure of the time-adjusted air nicotine exposure that
occurred while the monitors were deployed.

Statistical analysis

To ensure equal sample sizes across conditions,
homes were randomly assigned to the control/
intervention groups in pairs. Control homes did
not receive an intervention, so the “baseline/post-
baseline” delineation for each control home was
assigned to that of its corresponding intervention
home. Thirty-six pilot homes were eliminated from
all analyses as were nine homes that did not fully
complete the study. Of the remaining 253 homes,
71 were in the AO condition, 53 were in the AP
condition, and 129 were in the control condition.

A summary of demographic and outcome variables
for the final sample are provided in Table 1.

To compare the monetary reward in the AO and
AP conditions, a Mann-Whitney U test was per-
formed to compare the means in each group. This
procedure was used rather than a t-test since the dis-
tributional assumptions of the #test were severely
violated by this variable.

Each of the four outcome variables were averaged
separately during the baseline and post-baseline
periods for each participating household. Averages
were right-skewed for each outcome variable, so all
values were log transformed. Three homes did not
have any peak events or time above the 15,000 count
threshold during the baseline period. To facilitate
the log transform for these scenarios, the baseline
average was set equal to minimum, nonzero baseline
value observed over all other homes.

For each outcome, residualized change analysis
was performed by fitting an analysis of covariance
(ANCOVA) model with post-baseline measures
as the dependent variable and study arm (i.e., AO
vs. AP vs. control) as the grouping variable, after
adjusting for baseline measures as a covariate. This
approach accounts for postbaseline values regressing
toward the mean. It is recommended when group dif-
ferences across the baseline period are not expected
[29], which is the case for this study since randomiza-
tion had not yet occurred when baseline measures
were collected; this assumption was assessed via ana-
lysis of variance (ANOVA). Subsequent to ANCOVA
analyses, pairwise comparisons of study groups were
performed via post hoc Holm-corrected ttests of the
estimated marginal means.

RESULTS

The mean valley duration threshold for homes
in the AP condition was 1.47 days (standard de-
viation = 1.42 days, median = 0.97 days) with a
minimum value of 54 minutes and a maximum
value of 6 days. (Valley duration thresholds were
not calculated for the AO/control conditions, since
they were not required for intervention procedures.)
Figure 2 illustrates a histogram of valley duration
thresholds for all AP participants, which indicates
that the distribution was skewed right with roughly
half of the homes having reinforcement duration
thresholds that were less than 1 day. The wide vari-
ance in valley duration thresholds demonstrates the
necessity of the household individualization proced-
ures that were implemented.

The mean total monetary reward provided to par-
ticipants was $25.43 in the AO group and $30.66 in
the AP group. A Mann-Whitney U test indicated
that this difference was not significant (W = 1,719.5,
p = .48).

Figure 3 illustrates changes in mean outcome
variables from baseline to postbaseline, stratified
by study condition. ANOVA analysis indicated
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that group differences at baseline for daily particle
counts (Fo9050 = 1.09, p = .034), % of time >15,000
counts (Fp950 = 0.69, p = .51), daily particle events
(F9,950 = 0.66, p = .51), and air nicotine (£ 045 = 1.29,
p = .28) were not significant, meaning the ANCOVA
assumption was met. Table 2 illustrates the results of
ANCOVA and post hoc pairwise analyses for each
outcome variable. With the exception of air nicotine,
ANCOVA indicated that, after controlling for base-
line measures, there was a statistically significant dif-
ference in postbaseline measures due to study group.
Subsequent post hoc analyses indicated that the dif-
ferences between the control group and both the AO

15

Count

0 1 2 3 4 5 6
Reinforcement Threshold (Days)

Fig 2 | Histogram of valley duration thresholds for AP homes.

Mean Daily Counts

4000

3000

2000

1000
0

Control

. Mean Daily Partlcle Events 12
3 0.9
9 0.6
1 0.3
0 0.0

Control

and AP groups were statistically significant in nearly
every case; but the differences between the AO and
AP groups were not statistically significant.

DISCUSSION
This study demonstrated the use of realtime tech-
nology to implement a precise contingency that re-
inforced the absence of air particles consistent with
SHS. This contingency was deployed in conjunction
with another that provided aversive consequences
in response to the generation of SHS. Both contin-
gencies made use of nearimmediate feedback and
were present on a continual basis over the duration
of participants’ enrollment in the study. Previous
SHS interventions introduced behavioral contin-
gencies by, for example, encouraging household
members to enforce home smoking bans [30] and/
or having coaches provide feedback to participants
[9]. Partially due to limitations in technology, these
interventions were implemented without real-time
feedback and continuous measurement of the target
behavior, both of which are expected to improve
intervention efficacy. The current study represents
a considerable increase in the precision of arran-
ging reinforcing/aversive contingencies and in the
frequency with which these contingencies were en-
countered by families in the experimental condition.
To the best of our knowledge, this is the first
study to examine the continual presentation of aver-
sive feedback versus aversive plus reinforcement
feedback in a real-world environment. As a result,
our findings help appraise the degree to which

Mean Daily % Time > 15,000

B

Control TX Status
BL
Air Nlcotme PEL
Control

Fig 3 | Changes in mean outcome variables from baseline (BL) to post-baseline (PBL), stratified by study condition. Error bars indicate 95%

confidence interval.
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Table 1 | Sample characteristics, stratified by incentive condition

All (n=253) AO (n=71) AP (n=53) Control (n=129)
TC age, years 4.3 (3.8) 4.6 (4.0) 3.7 (3.7) 411 (3.31)
TC gender, % female 123 (48.6) 31 (0.44) 28 (0.53) 64 (0.50)
TC race/ethnicity
Black 31(0.12) 9(0.13) 8(0.15) 14(0.11)
Hispanic 126 (0.50) 36 (0.51) 30(0.57) 60 (0.47)
White 48 (0.19) 17 (0.24) 8(0.15) 23(0.18)
Other 48 (0.19) 9(0.13) 7(0.13) 32(0.25)
TP age, years 33.1(8.8) 32.6 (8.4) 329 (9.2 33.4(8.9)
TP gender, % female 241 (0.95) 70 (0.99) 48 (0.91) 123 (0.95)
TC race/ethnicity
Black 38(0.15) 9(0.13) 11(0.21) 18 (0.14)
Hispanic 98 (0.39) 28(0.39) 22 (0.42) 48 (0.37)
White 67 (0.26) 20(0.28) 12 (0.23) 35 (0.27)
Other 50 (0.20) 14 (0.20) 8(0.15) 28(0.22)
Household income
<$10,000 46 (0.18) 18 (0.25) 8(0.15) 20(0.16)
$10,000-29,999 82(0.32) 26 (0.37) 16 (0.30) 40(0.31)
$30,000-49,999 54(0.21) 10 (0.14) 9(0.17) 35 (0.27)
$50,000-69,999 23(0.09) 3 (0.04) 9(0.17) 11 (0.09)
»$70,000 22 (0.09) 6 (0.08) 7(0.13) 9 (0.07)
Not reported 26 (0.10) 8(0.11) 4 (0.08) 14(0.11)
Mean daily counts, n 2,924 (3247) 3,400 (3940) 2,648 (2594) 2,775 (3058)
Mean daily time > 15,000 counts, % 3.5(8.1) 4.4 (9.7) 2.9 (6.5) 3.2(7.8)
Mean daily 2.5 (4.4) 2.9 (4.6) 2.0(3.2) 2.5 (4.8)
Particle events, n
Air nicotine, pg/m’ 0.4(1.7) 0.6 (2.3) 0.2 (0.6) 0.3(1.5)

Values are mean (standard deviation) for continuous variables and count (proportiol

n) for categorical variables. All values were collected during the baseline phase.

AO aversive only contingency; AP aversive plus reinforcement contingency; TC target child; TP target parent.

Table 2 | Results of ANCOVA and post hoc pairwise analyses for the four outcome variables

ANCOVA Post hoc contrast by estimate marginal means
F b Group ¢ b
Mean daily counts 6.42 .002 CTL-AO 2.67 .02
CTL-AP 3.12 .006
AO-AP 0.62 .54
Mean daily % time > 15,000 counts 7.72 <.001 CTL-AO 2.85 .009
CTL-AP 3.48 .002
AO-AP 0.80 424
Mean daily particle events 4.04 .02 CTL-AO 1.62 21
CTL-AP 2.73 .02
AO-AP 1.13 .26
Air nicotine 1.53 22 CTL-AO 1.11 .54
CTL-AP 1.63 .32
AO-AP 051 .61

Bold font indicates p <.05.
AO aversive only contingency; AP aversive plus punishment contingency.

previous operant research, which has typically been
conducted in clinical environments and/or used dis-
crete contingencies, generalizes to other settings.
Our results also demonstrate that outcomes beyond
those explicitly targeted by the intervention (e.g.,

air nicotine), can be affected by real-time feedback
and monetary rewards.

Participants exposed to both an aversive contin-
gency and the combination of an aversive plus re-
inforcing contingency had improved air quality
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relative to a measurement-only control condition.
However, in contrast with previous research on
complex behaviors, the addition of the reinforcing
contingency did not improve upon the effective-
ness of the aversive contingency. Since arranging
continually active feedback systems in real-world
environments is a novel and challenging field, the
inability of reinforcement to improve outcomes
may be reflective of imperfections in the study de-
sign, rather than a definitive behavioral phenom-
enon. For instance, we do not know if participants
discriminated the activation of the reinforcement
LED, so we are unsure of how powerful the LED
was as a conditioned discriminative stimulus. This
is especially true considering that no stimulus was
provided when payment was actually presented to
participants. Additionally, the reinforcement magni-
tude was modest, with a maximum value of $40 over
3 months, which may not have been sufficient to
produce behavioral changes beyond those that were
prompted by the aversive feedback system. Over
this time period, participants were likely exposed to
a bevy of competing, and probably stronger, contin-
gencies that moderated intervention effects. These
could include well-established chains of behavior
that regularly produce tobacco smoking, an unwill-
ingness of all household members to collaborate on
SHS reduction, and/or aversive consequences asso-
ciated with nicotine withdrawal. Previous research
has demonstrated that increasing monetary rewards
for addicted individuals can combat competing con-
tingencies [31], but we lacked the resources to ex-
plore this option. If future studies with a more robust
reinforcement system also find that exclusively using
aversive feedback is sufficient to affect behavior, it
should also be noted that punishment/aversion is
often not attractive to clinicians, since it can produce
undesired side effects including counter-aggression
[32].

Much work remains to tease apart the benefits
and shortcomings of reinforcement versus aver-
sive contingencies, but this paper critically demon-
strates that technology-enabled JITAIs can serve
as a platform to pursue such research. Both JITAIs
and operant principles characteristically focus on
objective, observable measures of behavior and
context, which allows axiomatic principles to be
faithfully incorporated into study designs. This in-
creases theoretical fidelity, defined as the degree to
which a design adheres to established theory, which
has been shown to improve intervention outcomes
[33]. Other dimensions of operant behavior beyond
reinforcement/aversive feedback can also be investi-
gated within JITAIs, as shown in [34]. For instance,
contingency schedules could withhold feedback
for a subset of triggering events or reinforcement
magnitude could be varied. Furthermore, the in-
tensive data generated by JITAIs allows analyses to
examine within-person responses to interventions at

a much more precise level of detail than was previ-
ously achievable (e.g., see Refs. [35, 36]). This de-
velopment has the potential to significantly advance
the science of behavior change and shift the para-
digms on which interventions are conducted toward
a focus on ecological factors that can more easily be
observed and manipulated.

This study also portends changes in the concep-
tualization of study designs. Our methodology
explicitly attempted to control for the effect of re-
inforcement magnitude by providing similar mon-
etary rewards to each participant. However, as the
science and technology of JITAIs matures, it may
be beneficial to abandon this approach in favor of a
single case design logic that attempts to implement
optimal consequences for each participant. Mobile
technology’s precision is well-suited to tailoring
interventions in this way and one can imagine fu-
ture studies where reinforcement magnitudes
are increased or decreased for participants who
do not initially respond to an intervention. Such
studies could make use of frameworks such as the
Sequential Assignment Multiple Randomized Trial
approach [37], to guide the systematic assessment
and modification of participants’ intervention strat-
egies in response to performance.

Several limitations were present in this study.
The magnitude of the reinforcing/aversive stimuli
provided to participants was likely small relative
to those that sustain in-home smoking; therefore,
their ability to affect in-home smoking behavior
may be limited. This point notwithstanding, prior
research has demonstrated that a subset of homes
had improvements in air quality associated with
the activation of the feedback system [35, 36]. The
reinforcement system sometimes failed, delaying
or eliminating monitor feedback; also coaching
sessions were often rescheduled or cancelled. The
valley durations used to determine the onset and
amount of reinforcement likely included time inter-
vals during which participants were sleeping or not
home, resulting in rewards that were not exclusively
contingent upon changing indoor smoking/particle
generation behavior. Auditory feedback did not
accompany the reinforcing visual stimulus (i.e.,
blue LED), as was done for the aversive stimuli;
therefore, reinforcing feedback may have been
more difficult to perceive. Elevated air particle
measurements may have been due to sources that
participants could not control, such as a neighbor
smoking or vehicular traffic. Furthermore, the AP
condition was developed midstream, once the trial
had begun, so this study was not explicitly designed
or powered for testing AO/AP contingencies and
the AO/AP sample sizes were not equal. As a result
of the small statistical power, moderating variables
were not considered in our analyses.

To address the shortcomings outlined above,
future studies should consider the following
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enhancements: (a) alarm systems that exclusively
react to tobacco/cannabis smoke, (b) a more salient
stimulus when monetary rewards are being earned
(e.g., mobile phone push notifications), (c) the im-
mediate presentation of a reward once the valley
duration threshold has been met, (d) increased re-
inforcement magnitude, (e) increased sample sizes
to properly power the study, and/or (f) a reinforce-
ment only arm.

In conclusion, this manuscript highlights the ways
in which the incorporation of realtime sensors
into health interventions provides a platform for
assessing principles of operant theory. Ideally, this
will lead to synergistic systems where previously
developed theoretical constructs inform health pro-
motion trials and the findings from these studies
clarifies the generalizability of these constructs to
real-world scenarios. The overall effect will be a
more precise science of behavior change that will
lead to a healthier society.

Acknowledgments

Funding: Research reported in this publication was supported by the
National Heart, Lung, and Blood Institute of the National Institutes of Health
(NIH) under award number ROIHL103684. The content is solely the re-
sponsibility of the authors and does not necessarily represent the official
views of the NIH. This work was also supported by a Tobacco-Related
Disease Research Program award (31KT1501).

Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of
interest.

Author Contributions: VB., .B., S.CH.,, and M.H. conceptualized the study.
N.EK., and B.N. supervised the collection of the data and the maintenance

0.75-

Proportion
[=]
w
b

0.25-

of real-time feedback tools. V.B., B.N., and M.A.A. conducted statistical ana-
lyses. All authors assisted with the drafting of the paper.

Ethical Approval: All procedures performed were in accordance with the eth-
ical standards of the San Diego State University Institutional Review Board
and with the 1964 Helsinki declaration and its later amendments or compar-
able ethical standards. This article does not contain any studies with animals
performed by any of the authors.

Informed Consent: Informed consent was obtained from all individual parti-
cipants included in the study.

APPENDIX 1. SENSITIVITY ANALYSIS FOR
REINFORCEMENT THRESHOLD PERCENTILE SELECTION
In order to determine a reasonable percentile value
to be used in the calculation of the valley duration
threshold, a sensitivity analysis was performed on a
subset of 25 AO homes that had been enrolled in the
trial prior to the establishment of the AP arm. For
these trials, the reinforcement values were calculated
using the above protocol with thresholds calculated
using the 5th through 95th percentiles, in increments
of 5. The calculation was performed separately for
each intervention stage. Figure 4 illustrates the pro-
portion of reward values totaling $0-$3, $4-$9, and
$10-$13 for each percentile under consideration.
Because the effectiveness of the reinforcement was
not yet known, one criterion for percentile selection
was that there should be a relatively large number
of high rewards ($10—$13) to ensure that reinforce-
ment values would be relatively close to the $40
available in the AO arm. A second criterion, though,
required the percentile to be stringent enough to
allow for an appreciable amount of improvement via
the AP conditions. The 65th percentile appeared to
best satisfy these criteria. Approximately 2/3 of the

Rwd($)
0.3
40
= 10-13

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Percentile

Fig 4 | Results of sensitivity analysis for the selection of the reinforcement percentile parameter. Using 25 homes from the AO arm, the
reinforcement value was calculated for the different reinforcement phases under the protocol outlined in the text. This figure illustrates the
proportion of reinforcement value ranging from $0-$3, $4-59, and $10-513 for various percentiles.
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reinforcement values were in the $10-$13 range,
leaving 1/3 of the reinforcement intervals eligible for
large improvements. As a result, the 65th percentile
was selected for the reinforcement protocol.
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