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Implications
Practice: Systems that continually use aversive 
contingencies to present immediate feedback in 
response to individuals’ smoking behavior, both 
with and without the addition of reinforcing 
contingencies, can reduce in-home secondhand 
smoke outcomes.

Policy: Policy makers interested in protecting 
household members, particularly children, from 
secondhand smoke exposure should consider the 
use of real-time feedback systems.

Research: Future research can increase the preci-
sion of behavior science by leveraging real-time, 
streaming technology to investigate how aversive/
reinforcing contingencies and other operant con-
structs function in real-world settings.
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Abstract
Few studies have examined the relative effectiveness of 
reinforcing versus aversive consequences at changing behavior 
in real-world environments. Real-time sensing devices makes 
it easier to investigate such questions, offering the potential 
to improve both intervention outcomes and theory. This 
research aims to describe the development of a real-time, 
operant theory-based secondhand smoke (SHS) intervention 
and compare the efficacy of aversive versus aversive plus 
reinforcement contingency systems. Indoor air particle 
monitors were placed in the households of 253 smokers for 
approximately three months.  Participants were assigned 
to a measurement-only control group (N = 129) or one of 
the following groups: 1.) aversive only (AO, N = 71), with 
aversive audio/visual consequences triggered by the detection 
of elevated air particle measurements, or 2.) aversive plus 
reinforcement (AP, N = 53), with reinforcing consequences 
contingent on the absence of SHS added to the AO intervention. 
Residualized change ANCOVA analysis compared particle 
concentrations over time and across groups. Post-hoc pairwise 
comparisons were also performed. After controlling for Baseline, 
Post-Baseline daily particle counts (F = 6.42, p = 0.002), % of 
time >15,000 counts (F = 7.72, p < 0.001), and daily particle 
events (F = 4.04, p = 0.02) significantly differed by study 
group. Nearly all control versus AO/AP pair-wise comparisons 
were statistically significant. No significant differences were 
found for AO versus AP groups. The aversive feedback system 
reduced SHS, but adding reinforcing consequences did not 
further improve outcomes. The complexity of real-world 
environments requires the nuances of these two contingency 
systems continue to be explored, with this study demonstrating 
that real-time sensing technology can serve as a platform for 
such research.
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INTRODUCTION
Modifiable health behavior is a leading cause of 
morbidity and mortality in the USA [1, 2], which im-
plies that significant gains to public health can be 
achieved with effective behavior-altering systems. 
However, many interventions demonstrate small, 
short-lived effects [3], partially due to a focus on 
between-individual characteristics rather than on 
dynamic, within-person factors [4]. Interventions 
are often deployed at infrequent, pre-determined 

occasions and are not sensitive to participants’ idio-
syncratic changes over time. Furthermore, they are 
frequently assumed to produce relatively permanent 
outcomes, which is incompatible with the everyday 
experience of behavior that continually varies with 
time, context, and other factors. Real-time tools such 
as smartphones and internet-of-things devices have 
the potential to shift behavioral interventions toward 
a framework that is better equipped to affect, and 
possibly maintain, change by facilitating just-in-time, 
adaptive interventions (JITAIs) [5]. JITAIs pair in-
tensive data collection with analytic systems capable 
of real-time implementation and adaptation, al-
lowing interventions to react on an ongoing basis to 
participants’ behaviors, environmental setting, and 
unique recorded history.

An area poised to benefit from transitioning 
to JITAIs is secondhand smoke (SHS) exposure, 
which is responsible for over 41,000 deaths and 
$5.6 billion in costs each year in the USA [6], with 
a recent study showing that greater than 4 in 10 
children aged 3–11 years in the USA are exposed 
[7]. Interventions aimed at reducing SHS exposure 
have typically relied on infrequent and imprecise 
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measurements of indoor smoking, occasionally de-
ployed with delayed feedback, which has resulted 
in modest effect sizes [8, 9]. In an effort to im-
prove these outcomes, the Project Fresh Air (PFA) 
JITAI was conducted in homes where children 
plus an adult tobacco smoker(s) resided. Within 
PFA, in-home SHS exposure was continuously 
measured with air particle monitors and contin-
gent, aversive feedback (i.e., lights and tones) was 
delivered immediately after the detection of a sus-
pected exposure event. In select homes, reinfor-
cing feedback for attenuated air particle levels was 
also presented. PFA significantly reduced average 
air particle concentrations, time with elevated par-
ticle concentrations, the number of particle events, 
indoor air-nicotine levels, and self-reported indoor 
cigarette and cannabis smoking [10, 11].

The ongoing exposure to an aversive feedback 
contingency within PFA was developed to align with 
previous calls to optimize mobile technology inter-
ventions by rooting them in behavior models that 
are dynamic, regulatory, and adaptable based on 
an individual’s behavior and context [12]. The con-
tingency approach is emblematic of operant theory, 
which posits that the occurrence of a behavior in a 
given context is governed by the contingent conse-
quences of previous instances of the same behavior 
in similar contexts. Contingencies can be either re-
inforcing or aversive, depending on whether they lead, 
respectively, to a higher or lower probability of a 
behavior being emitted under similar conditions in 
the future. When implementing an operant JITAI, 
either type of contingency, or a combination of 
both, can be incorporated into the design; but the 
optimal balance between these two approaches re-
mains to be determined. Within non-JITAI settings, 
the effects of reinforcing versus aversive contingen-
cies have been widely studied in non-humans [13–
18], digital agents [19, 20], and humans [21–25]. For 
humans, aversive contingencies have generally been 
found to more effectively regulate behavior [21, 23, 
24], but in certain domains, particularly for compli-
cated tasks, the combination of reinforcement and 
punishment was optimal [21, 22, 25].

Until recently, it has been challenging to arrange 
contingencies in the free-living world, which has 
limited our ability to assess reinforcement versus 
punishment in a natural context. As demonstrated 
by the aversive lights/tones feedback implemented 
within PFA, innovations in mobile technology have 
made it easier to arrange real-world contingencies, 
which imbibe JITAIs with the potential to serve as 
critical platforms to conduct operant experiments. 
From this perspective, this paper describes the de-
velopment and deployment of a reinforcement plus 
aversive contingency within the PFA study and con-
trasts its performance relative to aversive-only and 
measurement-only contingencies. Understanding 
the comparative ability of these approaches to 

change behavior will aid practitioners in optimally 
designing future interventions.

METHODS

Overview of project fresh air
Full details of PFA have been published elsewhere [10, 
11]. Briefly, 298 homes with at least one adult smoker 
and at least one child under 14 were enrolled. Two 
Dylos DC1700 air particle monitors were installed, 
one in the room nearest to where most smoking oc-
curred and the other in the child’s bedroom; only 
the monitor in the main smoking room was used in 
this study. The monitors were calibrated to count par-
ticles ranging from 0.5 to 2.5 μm in diameter, which 
is consistent with SHS as well as non-tobacco aerosol 
sources [26]. The monitors measured air particle con-
centrations every 10 s and were installed in homes for 
an average of 3 months. The intervention was broken 
into three phases, delineated by four home visits from 
PFA coaches. While the study design specified that 
home visits should occur at 1-week intervals, sched-
uling conflicts and technological issues led to vari-
ance in the duration of the three phases.

Homes were block randomized using a block 
size of two into either an intervention condition or 
a measurement-only control condition. Intervention 
homes were stratified into two phases: (a) baseline—a 
period during which feedback was disabled and (b) 
post-baseline—a period during which feedback was ac-
tivated. The feedback consisted of mildly aversive 
visual and auditory stimuli programmed to be pro-
vided in response to elevated air particle measure-
ments. In its default state, the monitors displayed a 
green light emitting diode (LED). The LED turned 
yellow and an aversive tone was presented when air 
particle measures exceeded 15,000 counts; if the 
measurement exceeded 30,000 counts, the LED 
transitioned to red and a second, more aversive 
tone was presented. The aversive lights remained on 
until air particle measures returned to below 15,000 
counts. As described in the next section, for select 
homes the aversive feedback contingency was sup-
plemented with a reinforcement contingency.

Operationalizing feedback contingencies
Aversive only
The aversiveness of the two monitor tones was es-
tablished in a previous study [27]. The yellow/red 
LEDs were considered a conditioned stimuli since 
they were not aversive in their own right, but drew 
this characteristic from their common association 
with everyday items such as traffic lights. The homes 
that were exposed to only the aversive contingency 
were denoted as Aversive Only (AO). To aid with re-
tention and to offset participant burden, the AO 
homes were provided with a gift card (up to $20 or 
$40 in value, depending on enrollment period) for 
attempting to implement SHS reduction strategies.
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Aversive plus reinforcement (AP)
As outlined in the Introduction, previous studies 
indicated that the combination of aversive and re-
inforcement contingencies may be optimal for 
complex tasks (such as reducing SHS), so a second 
intervention component that added a reinforcement 
contingency to the aversive lights/sounds was intro-
duced. Aversive Plus (AP) homes were simultaneously 
exposed to the same auditory/visual contingencies 
as the AO homes, as well as reinforced for extended 
periods of attenuated air particle levels. This added 
process is known as the differential reinforcement of 
other behavior (DRO) because it reinforced any be-
havior that did not produce indoor air particles. The 
DRO contingency operated on functional units des-
ignated as valleys, which were defined as consecutive 
measurement instances with air particle concentra-
tions below 15,000 counts (see Fig. 1). This name 
was chosen to contrast peaks, observations above 
15,000 counts that activated the aversive feedback. 
Once a valley duration exceeded a pre-specified, 
home-specific valley duration threshold (e.g., 1 hr), par-
ticipants began accruing monetary compensation 
on a gift card, up to a $40 value. Monetary accrual 
continued until the valley ended, either due to the 
exceedance of the 15,000 counts threshold or the 
end of a trial phase. Reinforcement magnitude was 
calculated (see details below) independently during 
each of the three intervals that were delineated by 
the four coaching home visits and was provided at 
the next coaching visit.

Calculation of AP reinforcement threshold
Due to a large variance in the frequency of indoor 
smoking among enrolled participants, a one-size-fits-
all reinforcement approach was not feasible. Instead, 
the valley duration threshold was individualized for 
each home as follows: the unique household distri-
bution of valley durations over the baseline phase 

was calculated, after omitting valleys with a duration 
less than 3 min, since they were unlikely to be asso-
ciated with smoking. From the computed distribu-
tion, the 65th percentile was selected as the valley 
duration threshold. Figure 1 illustrates a schematic 
of the valley duration threshold determination and 
valley reinforcement procedures for a single home. 
Appendix 1 details the selection of the 65th per-
centile and 3-min exclusion as system parameters.

Conditioned reinforcer system
A key characteristic of the aversive contingency in 
PFA was a very small delay between the generation 
of air particles and the feedback presentation, with 
visual and auditory stimuli delivered immediately 
upon the detection of sufficiently elevated air par-
ticle concentrations. This feature is known to in-
crease the degree to which consequential stimuli 
affect future behavior [28], so we sought to extend 
it to the AP condition by minimizing the time be-
tween the generation of a sufficiently long valley 
and the presentation of a reinforcing stimulus. This 
was accomplished by immediately presenting a solid 
blue LED on the air particle monitor once the valley 
duration threshold was reached; this LED remained 
lit until the air particle level again breached 15,000 
counts. Participants were informed that the blue 
light indicated the accrual of gift card value and that 
the longer the blue light was present, the more mon-
etary compensation they would receive.

Determining reinforcement value
In the AO arm, households were provided with a 
monetary reward of up to either $20 or $40 on a 
gift card when they attempted to implement SHS-
reduction features that were developed with their 
coaches. Success/failure in this goal was based on 
self-reported measures that were evaluated during 
each coaching visit. Self-reported attempts were not 

Fig 1 | Schematic of reinforcement protocol. Panel (a) illustrates baseline data, where the boundaries between peaks (denoted by red rect-
angles) and valleys (denoted by green rectangles) are identified. A green, encircled number denotes each of the six distinct valleys. Panel 
(b) illustrates the distribution of valley lengths and the calculation of the 65th percentile (180 min), which serves as the valley duration 
threshold in the post-baseline phase. Panel (c) illustrates the post-baseline phase. Peaks and valleys are colored as in Panel (a), but now 
valleys that exceed the valley duration threshold for reinforcement are shown in blue, which mirrors the blue light conditioned reinforcer 
that was presented during these times to indicate that gift card value was being accrued. Encircled numbers denote each distinct valley 
and are colored by whether the valley duration threshold was reached.
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verified, as this reinforcement criterion was inten-
tionally designed to be easily achieved in order to 
combat attrition. For most participants, the entire 
$20/$40 was disbursed throughout the intervention 
period, although approximately 15% of households 
did not report making an attempt to institute SHS 
mitigation efforts and did not receive compensation.

Monetary compensation in the AP arm was based 
on the percentage of total time that homes spent 
within sufficiently long valleys, with an aim to have 
the rewards mirror the AO reinforcement as closely 
as possible. Participants in the AP condition could 
earn up to $13.33 in each of the three phases delin-
eated by coaching sessions, with the monetary com-
pensation in each coaching phase calculated via the 
following equation:

 13.33 · tV
tT
;

where tT  is the total time elapsed in the phase and 
tV  is the total time in valleys, including the time to 
reach the valley duration threshold. This value was 
rounded up to the nearest dollar.

Outcome measures
The following four outcome measures were used for 
analyses:

1. Mean daily particle counts
2. Mean daily percentage of time that particle concentra-

tions were ≥15,000 counts.
3. Mean number of daily “particle events” (PEs), defined 

as instances of a rapid increase in particle levels fol-
lowed by an exponential decay [11]. This measure was 
created to identify indoor cigarette smoking episodes, 
although non-tobacco sources could also lead to PEs.

4. Air nicotine, as objectively measured by dosimeters 
(i.e., passive devices containing an air filter designed 
to absorb nicotine). Dosimeters were installed at two 
different occasions—for 7 days at the beginning of the 
intervention and for 7 days at the end of the interven-
tion. Assays were conducted by liquid chromatography 
tandem mass spectrometry using electrospray ioniza-
tion (see Ref. [11] for full details), which provided a 
measure of the time-adjusted air nicotine exposure that 
occurred while the monitors were deployed.

Statistical analysis
To ensure equal sample sizes across conditions, 
homes were randomly assigned to the control/
intervention groups in pairs. Control homes did 
not receive an intervention, so the “baseline/post-
baseline” delineation for each control home was 
assigned to that of its corresponding intervention 
home. Thirty-six pilot homes were eliminated from 
all analyses as were nine homes that did not fully 
complete the study. Of the remaining 253 homes, 
71 were in the AO condition, 53 were in the AP 
condition, and 129 were in the control condition. 

A summary of demographic and outcome variables 
for the final sample are provided in Table 1.

To compare the monetary reward in the AO and 
AP conditions, a Mann–Whitney U test was per-
formed to compare the means in each group. This 
procedure was used rather than a t-test since the dis-
tributional assumptions of the t-test were severely 
violated by this variable.

Each of the four outcome variables were averaged 
separately during the baseline and post-baseline 
periods for each participating household. Averages 
were right-skewed for each outcome variable, so all 
values were log transformed. Three homes did not 
have any peak events or time above the 15,000 count 
threshold during the baseline period. To facilitate 
the log transform for these scenarios, the baseline 
average was set equal to minimum, nonzero baseline 
value observed over all other homes.

For each outcome, residualized change analysis 
was performed by fitting an analysis of covariance 
(ANCOVA) model with post-baseline measures 
as the dependent variable and study arm (i.e., AO 
vs. AP vs. control) as the grouping variable, after 
adjusting for baseline measures as a covariate. This 
approach accounts for postbaseline values regressing 
toward the mean. It is recommended when group dif-
ferences across the baseline period are not expected 
[29], which is the case for this study since randomiza-
tion had not yet occurred when baseline measures 
were collected; this assumption was assessed via ana-
lysis of variance (ANOVA). Subsequent to ANCOVA 
analyses, pairwise comparisons of study groups were 
performed via post hoc Holm-corrected t-tests of the 
estimated marginal means.

RESULTS
The mean valley duration threshold for homes 
in the AP condition was 1.47  days (standard de-
viation  =  1.42  days, median  =  0.97  days) with a 
minimum value of 54 minutes and a maximum 
value of 6  days. (Valley duration thresholds were 
not calculated for the AO/control conditions, since 
they were not required for intervention procedures.) 
Figure 2 illustrates a histogram of valley duration 
thresholds for all AP participants, which indicates 
that the distribution was skewed right with roughly 
half of the homes having reinforcement duration 
thresholds that were less than 1 day. The wide vari-
ance in valley duration thresholds demonstrates the 
necessity of the household individualization proced-
ures that were implemented.

The mean total monetary reward provided to par-
ticipants was $25.43 in the AO group and $30.66 in 
the AP group. A  Mann–Whitney U test indicated 
that this difference was not significant (W = 1,719.5, 
p = .48).

Figure 3 illustrates changes in mean outcome 
variables from baseline to post-baseline, stratified 
by study condition. ANOVA analysis indicated 
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that group differences at baseline for daily particle 
counts (F2,250  =  1.09, p  =  .034), % of time >15,000 
counts (F2,250 = 0.69, p =  .51), daily particle events 
(F2,250 = 0.66, p = .51), and air nicotine (F2,248 = 1.29, 
p = .28) were not significant, meaning the ANCOVA 
assumption was met. Table 2 illustrates the results of 
ANCOVA and post hoc pairwise analyses for each 
outcome variable. With the exception of air nicotine, 
ANCOVA indicated that, after controlling for base-
line measures, there was a statistically significant dif-
ference in postbaseline measures due to study group. 
Subsequent post hoc analyses indicated that the dif-
ferences between the control group and both the AO 

and AP groups were statistically significant in nearly 
every case; but the differences between the AO and 
AP groups were not statistically significant.

DISCUSSION
This study demonstrated the use of real-time tech-
nology to implement a precise contingency that re-
inforced the absence of air particles consistent with 
SHS. This contingency was deployed in conjunction 
with another that provided aversive consequences 
in response to the generation of SHS. Both contin-
gencies made use of near-immediate feedback and 
were present on a continual basis over the duration 
of participants’ enrollment in the study. Previous 
SHS interventions introduced behavioral contin-
gencies by, for example, encouraging household 
members to enforce home smoking bans [30] and/
or having coaches provide feedback to participants 
[9]. Partially due to limitations in technology, these 
interventions were implemented without real-time 
feedback and continuous measurement of the target 
behavior, both of which are expected to improve 
intervention efficacy. The current study represents 
a considerable increase in the precision of arran-
ging reinforcing/aversive contingencies and in the 
frequency with which these contingencies were en-
countered by families in the experimental condition.

To the best of our knowledge, this is the first 
study to examine the continual presentation of aver-
sive feedback versus aversive plus reinforcement 
feedback in a real-world environment. As a result, 
our findings help appraise the degree to which Fig 2 | Histogram of valley duration thresholds for AP homes.

Fig 3 | Changes in mean outcome variables from baseline (BL) to post-baseline (PBL), stratified by study condition. Error bars indicate 95% 
confidence interval.
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previous operant research, which has typically been 
conducted in clinical environments and/or used dis-
crete contingencies, generalizes to other settings. 
Our results also demonstrate that outcomes beyond 
those explicitly targeted by the intervention (e.g., 

air nicotine), can be affected by real-time feedback 
and monetary rewards.

Participants exposed to both an aversive contin-
gency and the combination of an aversive plus re-
inforcing contingency had improved air quality 

Table 2  | Results of ANCOVA and post hoc pairwise analyses for the four outcome variables

ANCOVA Post hoc contrast by estimate marginal means

F p Group t p

Mean daily counts 6.42 .002 CTL-AO 2.67 .02
CTL-AP 3.12 .006
AO-AP 0.62 .54

Mean daily % time > 15,000 counts 7.72 <.001 CTL-AO 2.85 .009
CTL-AP 3.48 .002
AO-AP 0.80 .424

Mean daily particle events 4.04 .02 CTL-AO 1.62 .21
CTL-AP 2.73 .02
AO-AP 1.13 .26

Air nicotine 1.53 .22 CTL-AO 1.11 .54
CTL-AP 1.63 .32
AO-AP 0.51 .61

Bold font indicates p < .05.
AO aversive only contingency; AP aversive plus punishment contingency.

Table 1  | Sample characteristics, stratified by incentive condition

All (n = 253) AO (n = 71) AP (n = 53) Control (n = 129)

TC age, years 4.3 (3.8) 4.6 (4.0) 3.7 (3.7) 4.11 (3.31)
TC gender, % female 123 (48.6) 31 (0.44) 28 (0.53) 64 (0.50)
TC race/ethnicity
 Black 31 (0.12) 9 (0.13) 8 (0.15) 14 (0.11)
 Hispanic 126 (0.50) 36 (0.51) 30 (0.57) 60 (0.47)
 White 48 (0.19) 17 (0.24) 8 (0.15) 23 (0.18)
 Other 48 (0.19) 9 (0.13) 7 (0.13) 32 (0.25)
TP age, years 33.1 (8.8) 32.6 (8.4) 32.9 (9.2) 33.4 (8.9)
TP gender, % female 241 (0.95) 70 (0.99) 48 (0.91) 123 (0.95)
TC race/ethnicity
 Black 38 (0.15) 9 (0.13) 11 (0.21) 18 (0.14)
 Hispanic 98 (0.39) 28 (0.39) 22 (0.42) 48 (0.37)
 White 67 (0.26) 20 (0.28) 12 (0.23) 35 (0.27)
 Other 50 (0.20) 14 (0.20) 8 (0.15) 28 (0.22)
Household income
 <$10,000 46 (0.18) 18 (0.25) 8 (0.15) 20 (0.16)
 $10,000–29,999 82 (0.32) 26 (0.37) 16 (0.30) 40 (0.31)
 $30,000–49,999 54 (0.21) 10 (0.14) 9 (0.17) 35 (0.27)
 $50,000–69,999 23 (0.09) 3 (0.04) 9 (0.17) 11 (0.09)
 >$70,000 22 (0.09) 6 (0.08) 7 (0.13) 9 (0.07)
 Not reported 26 (0.10) 8 (0.11) 4 (0.08) 14 (0.11)
Mean daily counts, n 2,924 (3247) 3,400 (3940) 2,648 (2594) 2,775 (3058)
Mean daily time > 15,000 counts, % 3.5 (8.1) 4.4 (9.7) 2.9 (6.5) 3.2 (7.8)
Mean daily  
Particle events, n

2.5 (4.4) 2.9 (4.6) 2.0 (3.2) 2.5 (4.8)

Air nicotine, μg/m3 0.4 (1.7) 0.6 (2.3) 0.2 (0.6) 0.3 (1.5)
Values are mean (standard deviation) for continuous variables and count (proportion) for categorical variables. All values were collected during the baseline phase.
AO aversive only contingency; AP aversive plus reinforcement contingency; TC target child; TP target parent.
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relative to a measurement-only control condition. 
However, in contrast with previous research on 
complex behaviors, the addition of the reinforcing 
contingency did not improve upon the effective-
ness of the aversive contingency. Since arranging 
continually active feedback systems in real-world 
environments is a novel and challenging field, the 
inability of reinforcement to improve outcomes 
may be reflective of imperfections in the study de-
sign, rather than a definitive behavioral phenom-
enon. For instance, we do not know if participants 
discriminated the activation of the reinforcement 
LED, so we are unsure of how powerful the LED 
was as a conditioned discriminative stimulus. This 
is especially true considering that no stimulus was 
provided when payment was actually presented to 
participants. Additionally, the reinforcement magni-
tude was modest, with a maximum value of $40 over 
3  months, which may not have been sufficient to 
produce behavioral changes beyond those that were 
prompted by the aversive feedback system. Over 
this time period, participants were likely exposed to 
a bevy of competing, and probably stronger, contin-
gencies that moderated intervention effects. These 
could include well-established chains of behavior 
that regularly produce tobacco smoking, an unwill-
ingness of all household members to collaborate on 
SHS reduction, and/or aversive consequences asso-
ciated with nicotine withdrawal. Previous research 
has demonstrated that increasing monetary rewards 
for addicted individuals can combat competing con-
tingencies [31], but we lacked the resources to ex-
plore this option. If future studies with a more robust 
reinforcement system also find that exclusively using 
aversive feedback is sufficient to affect behavior, it 
should also be noted that punishment/aversion is 
often not attractive to clinicians, since it can produce 
undesired side effects including counter-aggression 
[32].

Much work remains to tease apart the benefits 
and shortcomings of reinforcement versus aver-
sive contingencies, but this paper critically demon-
strates that technology-enabled JITAIs can serve 
as a platform to pursue such research. Both JITAIs 
and operant principles characteristically focus on 
objective, observable measures of behavior and 
context, which allows axiomatic principles to be 
faithfully incorporated into study designs. This in-
creases theoretical fidelity, defined as the degree to 
which a design adheres to established theory, which 
has been shown to improve intervention outcomes 
[33]. Other dimensions of operant behavior beyond 
reinforcement/aversive feedback can also be investi-
gated within JITAIs, as shown in [34]. For instance, 
contingency schedules could withhold feedback 
for a subset of triggering events or reinforcement 
magnitude could be varied. Furthermore, the in-
tensive data generated by JITAIs allows analyses to 
examine within-person responses to interventions at 

a much more precise level of detail than was previ-
ously achievable (e.g., see Refs. [35, 36]). This de-
velopment has the potential to significantly advance 
the science of behavior change and shift the para-
digms on which interventions are conducted toward 
a focus on ecological factors that can more easily be 
observed and manipulated.

This study also portends changes in the concep-
tualization of study designs. Our methodology 
explicitly attempted to control for the effect of re-
inforcement magnitude by providing similar mon-
etary rewards to each participant. However, as the 
science and technology of JITAIs matures, it may 
be beneficial to abandon this approach in favor of a 
single case design logic that attempts to implement 
optimal consequences for each participant. Mobile 
technology’s precision is well-suited to tailoring 
interventions in this way and one can imagine fu-
ture studies where reinforcement magnitudes 
are increased or decreased for participants who 
do not initially respond to an intervention. Such 
studies could make use of frameworks such as the 
Sequential Assignment Multiple Randomized Trial 
approach [37], to guide the systematic assessment 
and modification of participants’ intervention strat-
egies in response to performance.

Several limitations were present in this study. 
The magnitude of the reinforcing/aversive stimuli 
provided to participants was likely small relative 
to those that sustain in-home smoking; therefore, 
their ability to affect in-home smoking behavior 
may be limited. This point notwithstanding, prior 
research has demonstrated that a subset of homes 
had improvements in air quality associated with 
the activation of the feedback system [35, 36]. The 
reinforcement system sometimes failed, delaying 
or eliminating monitor feedback; also coaching 
sessions were often rescheduled or cancelled. The 
valley durations used to determine the onset and 
amount of reinforcement likely included time inter-
vals during which participants were sleeping or not 
home, resulting in rewards that were not exclusively 
contingent upon changing indoor smoking/particle 
generation behavior. Auditory feedback did not 
accompany the reinforcing visual stimulus (i.e., 
blue LED), as was done for the aversive stimuli; 
therefore, reinforcing feedback may have been 
more difficult to perceive. Elevated air particle 
measurements may have been due to sources that 
participants could not control, such as a neighbor 
smoking or vehicular traffic. Furthermore, the AP 
condition was developed midstream, once the trial 
had begun, so this study was not explicitly designed 
or powered for testing AO/AP contingencies and 
the AO/AP sample sizes were not equal. As a result 
of the small statistical power, moderating variables 
were not considered in our analyses.

To address the shortcomings outlined above, 
future studies should consider the following 
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enhancements: (a) alarm systems that exclusively 
react to tobacco/cannabis smoke, (b) a more salient 
stimulus when monetary rewards are being earned 
(e.g., mobile phone push notifications), (c) the im-
mediate presentation of a reward once the valley 
duration threshold has been met, (d) increased re-
inforcement magnitude, (e) increased sample sizes 
to properly power the study, and/or (f) a reinforce-
ment only arm.

In conclusion, this manuscript highlights the ways 
in which the  incorporation of real-time sensors 
into health interventions provides a platform for 
assessing principles of operant theory. Ideally, this 
will lead to synergistic systems where previously 
developed theoretical constructs inform health pro-
motion trials and the findings from these studies 
clarifies the generalizability of these constructs to 
real-world scenarios. The overall effect will be a 
more precise science of behavior change that will 
lead to a healthier society.

Acknowledgments

Funding: Research reported in this publication was supported by the 
National Heart, Lung, and Blood Institute of the National Institutes of Health 
(NIH) under award number R01HL103684. The content is solely the re-
sponsibility of the authors and does not necessarily represent the official 
views of the NIH. This work was also supported by a Tobacco-Related 
Disease Research Program award (31KT1501).

Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of 
interest.

Author Contributions: V.B., J.B., S.C.H., and M.H. conceptualized the study. 
N.E.K., and B.N. supervised the collection of the data and the maintenance 

of real-time feedback tools. V.B., B.N., and M.A.A. conducted statistical ana-
lyses. All authors assisted with the drafting of the paper.

Ethical Approval: All procedures performed were in accordance with the eth-
ical standards of the San Diego State University Institutional Review Board 
and with the 1964 Helsinki declaration and its later amendments or compar-
able ethical standards. This article does not contain any studies with animals 
performed by any of the authors.

Informed Consent: Informed consent was obtained from all individual parti-
cipants included in the study.

APPENDIX 1. SENSITIVITY ANALYSIS FOR 
REINFORCEMENT THRESHOLD PERCENTILE SELECTION
In order to determine a reasonable percentile value 
to be used in the calculation of the valley duration 
threshold, a sensitivity analysis was performed on a 
subset of 25 AO homes that had been enrolled in the 
trial prior to the establishment of the AP arm. For 
these trials, the reinforcement values were calculated 
using the above protocol with thresholds calculated 
using the 5th through 95th percentiles, in increments 
of 5. The calculation was performed separately for 
each intervention stage. Figure 4 illustrates the pro-
portion of reward values totaling $0–$3, $4–$9, and 
$10–$13 for each percentile under consideration. 
Because the effectiveness of the reinforcement was 
not yet known, one criterion for percentile selection 
was that there should be a relatively large number 
of high rewards ($10–$13) to ensure that reinforce-
ment values would be relatively close to the $40 
available in the AO arm. A second criterion, though, 
required the percentile to be stringent enough to 
allow for an appreciable amount of improvement via 
the AP conditions. The 65th percentile appeared to 
best satisfy these criteria. Approximately 2/3 of the 

Fig 4 | Results of sensitivity analysis for the selection of the reinforcement percentile parameter. Using 25 homes from the AO arm, the  
reinforcement value was calculated for the different reinforcement phases under the protocol outlined in the text. This figure illustrates the 
proportion of reinforcement value ranging from $0–$3, $4–$9, and $10–$13 for various percentiles.
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reinforcement values were in the $10–$13 range, 
leaving 1/3 of the reinforcement intervals eligible for 
large improvements. As a result, the 65th percentile 
was selected for the reinforcement protocol.
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