Table 2.
Comparison of the model’s performance metrics with different machine learning classifiers.
|
|
Logistic regression | Support vector classifier | Decision tree | Random forest | Gaussian naïve Bayes | Best score |
| Accuracy | 0.91 | 0.90 | 0.84 | 0.90 | 0.82 | Logistic regression |
| Precision | 0.81 | 0.81 | 0.55 | 0.80 | 0.50 | Logistic regression |
| Recall (sensitivity) | 0.64 | 0.59 | 0.58 | 0.59 | 0.68 | Gaussian naïve Bayes |
| F1 score | 0.71 | 0.68 | 0.56 | 0.67 | 0.58 | Logistic regression |
| AUROC | 0.76 | 0.72 | 0.65 | 0.70 | 0.67 | Logistic regression |