Table 2.
Classifiers used for automatic feature selection.
Classifier and text class | Accuracy | Macro average F1a | Precision | Recall | F1 | ||||||
Ridge classifier | 0.925 | 0.89 |
|
|
|
||||||
|
Adult-oriented readings |
|
|
0.99 | 0.91 | 0.95 | |||||
|
Children-oriented readings |
|
|
0.74 | 0.97 | 0.84 | |||||
SVMb | 0.93 | 0.89 |
|
|
|
||||||
|
Adult-oriented readings |
|
|
0.95 | 0.96 | 0.96 | |||||
|
Children-oriented readings |
|
|
0.84 | 0.8 | 0.82 | |||||
XGBc | 0.94 | 0.90 |
|
|
|
||||||
|
Adult-oriented readings |
|
|
0.95 | 0.98 | 0.96 | |||||
|
Children-oriented readings |
|
|
0.91 | 0.78 | 0.84 |
aF1 = 2 × [(precision × recall) / (precision + recall)].
bSVM: support vector machine.
cXGB: extreme gradient boosting.