Skip to main content
. 2021 Jul 26;9(7):e24651. doi: 10.2196/24651

Table 3.

Model performances by algorithm and variable group.

Algorithm and variable group AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Positive predictive value (95% CI) Negative predictive value (95% CI) F1 score (95% CI)
Logistic regression

1 0.802 (0.802-0.802) 0.907 (0.907-0.907) 0.451 (0.451-0.451) 0.293 (0.293-0.293) 0.951 (0.951-0.951) 0.443 (0.443-0.443)

2 0.8 (0.8-0.8) 0.901 (0.901-0.901) 0.479 (0.479-0.479) 0.303 (0.303-0.303) 0.95 (0.95-0.95) 0.453 (0.453-0.453)

3 0.788 (0.788-0.788) 0.901 (0.901-0.901) 0.521 (0.521-0.521) 0.321 (0.321-0.321) 0.954 (0.954-0.954) 0.473 (0.473-0.473)

4 0.771 (0.771-0.771) 0.901 (0.901-0.901) 0.473 (0.473-0.473) 0.3 (0.3-0.3) 0.95 (0.95-0.95) 0.45 (0.45-0.45)
Random forest

1a 0.889 (0.888-0.889) 0.901 (0.901-0.902) 0.722 (0.719-0.724) 0.449 (0.447-0.451) 0.967 (0.967-0.967) 0.599 (0.597-0.601)

2 0.872 (0.872-0.873) 0.901 (0.901-0.902) 0.669 (0.667-0.672) 0.407 (0.405-0.409) 0.964 (0.964-0.964) 0.56 (0.559-0.562)

3 0.869 (0.869-0.87) 0.902 (0.901-0.902) 0.642 (0.639-0.645) 0.388 (0.386-0.39) 0.963 (0.963-0.963) 0.542 (0.54-0.544)

4 0.87 (0.87-0.871) 0.901 (0.901-0.901) 0.669 (0.666-0.672) 0.407 (0.404-0.409) 0.964 (0.964-0.964) 0.56 (0.558-0.562)
Extra treeb

1 0.881 (0.88-0.881) 0.901 (0.901-0.902) 0.67 (0.665-0.675) 0.408 (0.404-0.412) 0.964 (0.964-0.965) 0.561 (0.558-0.565)

2 0.882 (0.881-0.882) 0.902 (0.901-0.902) 0.715 (0.711-0.719) 0.443 (0.44-0.447) 0.967 (0.966-0.967) 0.594 (0.591-0.597)

3 0.879 (0.879-0.88) 0.901 (0.901-0.901) 0.708 (0.703-0.713) 0.438 (0.434-0.442) 0.966 (0.966-0.966) 0.589 (0.585-0.592)

4 0.879 (0.878-0.879) 0.902 (0.901-0.903) 0.717 (0.713-0.721) 0.445 (0.442-0.448) 0.967 (0.967-0.967) 0.596 (0.593-0.599)
Gradient boosting

1 0.861 (0.861-0.862) 0.901 (0.901-0.901) 0.621 (0.621-0.621) 0.374 (0.374-0.374) 0.961 (0.961-0.961) 0.528 (0.528-0.528)

2 0.847 (0.847-0.847) 0.901 (0.901-0.901) 0.593 (0.592-0.593) 0.357 (0.357-0.357) 0.96 (0.96-0.96) 0.511 (0.511-0.512)

3 0.846 (0.846-0.846) 0.901 (0.901-0.901) 0.573 (0.573-0.573) 0.346 (0.346-0.346) 0.958 (0.958-0.958) 0.5 (0.5-0.5)

4 0.839 (0.839-0.839) 0.901 (0.901-0.901) 0.562 (0.562-0.563) 0.341 (0.341-0.341) 0.958 (0.957-0.958) 0.495 (0.494-0.495)
Deep neural network

1 0.82 (0.818-0.821) 0.901 (0.901-0.902) 0.499 (0.494-0.504) 0.312 (0.309-0.314) 0.953 (0.952-0.953) 0.463 (0.461-0.466)

2 0.799 (0.797-0.801) 0.902 (0.901-0.902) 0.505 (0.5-0.51) 0.314 (0.312-0.317) 0.953 (0.953-0.954) 0.466 (0.464-0.469)

3 0.809 (0.807-0.811) 0.902 (0.901-0.902) 0.525 (0.516-0.534) 0.324 (0.32-0.327) 0.954 (0.953-0.956) 0.476 (0.472-0.48)

4 0.807 (0.804-0.81) 0.901 (0.901-0.902) 0.508 (0.499-0.517) 0.316 (0.313-0.32) 0.953 (0.952-0.954) 0.468 (0.464-0.472)

aCanDETEC model.

bAutomated machine learning.