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Abstract: Mechanical ventilation (MV) is used to assist spontaneous breathing in critically ill
patients in the intensive care unit (ICU). MV is a cornerstone of critical care medicine but it
is now known that inspiratory muscle dysfunction due to injury, disuse, and/or atrophy during
MV plays a major role in outcomes for these patients. For example, prolonged MV is strongly
correlated with dysfunction of the sternocleidomastoid (SCM), an accessory inspiratory muscle
that has been linked to weaning failure from MV. Hemodynamic monitoring of the SCM may
provide an important non-invasive and real-time means to monitor MV. In this work, we first
conducted multi-layer Monte Carlo simulations to confirm the ability of near infrared light to
detect changes in the oxygenation of the SCM over wide ranges of skin tones and adipose layer
thicknesses. We then optimized a custom digital frequency domain near-infrared spectroscopy
(FD-NIRS) system for continuous 10 Hz measurements of the SCM at 730 nm and 850 nm.
A healthy volunteer study was conducted (N=10); subjects performed sets of isometric neck
flexions of the SCM. Substantial changes in oxyhemoglobin+ oxymyoglobin (oxy[Hb+Mb]),
deoxyhemoglobin+ deoxymyoglobin (deoxy[Hb+Mb]), and total hemoglobin+myoglobin
(total[Hb+Mb]) were observed during sustained and intermittent isometric flexions. There were
notable sex differences observed in the magnitude of hemodynamic changes (∼2x larger changes
in males for oxy[Hb+Mb] and deoxy[Hb+Mb]). The magnitude of hemodynamic changes when
taking into account µs

′ changes during flexions was ∼ 2-2.5x larger as compared to assuming
constant scattering (CS), which is a common assumption used for continuous wave (CW) NIRS
methods. This study suggests that FD-NIRS provides improved accuracy for hemodynamic
monitoring of the SCM compared to CW-NIRS, and that FD-NIRS may provide value for SCM
monitoring during MV.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Critically ill patients requiring mechanical ventilation (MV), which is used to assist breathing,
incurred an estimated $27 billion in expenditures in the US in 2010, accounting for 12% of
all hospital costs [1]. In that same year there were 2.7 episodes of MV per 1000 population,
highlighting the enormous importance of this procedure [1]. The COVID-19 pandemic has
substantially increased these numbers, although precise rates are not yet available [2]. MV
is a cornerstone of critical care medicine [3], but intensive care unit (ICU) stays greater than
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7 days and older age are currently the best predictors of profound long-term cognitive and
physical disability related to MV [4]. A key part of this problem stems from the fact that
approximately 30-40% of critically ill patients in the ICU have difficulties being weaned from
MV, accounting for ∼40% of total ICU costs, and increased morbidity and mortality [4–6]. It
is now known that inspiratory muscle dysfunction due to injury, disuse, and/or atrophy during
MV plays a major role in outcomes for these patients. For example, prolonged MV is strongly
correlated with dysfunction of primary (e.g. diaphragm) and accessory inspiratory muscles
(e.g. sternocleidomastoid (SCM)); both have been linked to weaning failure [7–9]. Weaning
failure can be defined as the inability to breathe spontaneously when removed from mechanical
ventilation within 48 hours to seven days after assisted ventilation was instituted [10]. More
generally, longer ICU length of stay is in part attributable to respiratory muscle dysfunction
[7,11] and inspiratory muscle dysfunction are associated with ICU readmission [5].

MV is used, in part, to “unload”, or reduce the metabolic effort of respiratory muscles in
order to redirect oxygen delivery to vital organs. As the patients’ conditions improve, key
inspiratory muscles (e.g. diaphragm, scalenes, SCM, etc.) need to take over spontaneous
breathing independent of the ventilator. This “reloading” is precarious due to muscle disuse
atrophy, induced by unloading, compounded by oxidative stress and inflammation that accentuates
their dysfunction [9,12]. This is further complicated by other common conditions in the ICU, such
as septic or cardiogenic shock, which can severely limit oxygen delivery independent of muscle
status [13,14]. Currently, there are no reliable means of establishing whether the inspiratory
muscles are adequately or excessively unloaded when setting MV parameters.

Hemodynamic monitoring of the SCM may provide an important non-invasive and real-time
means to monitor MV. The SCM is a muscle located in the neck connecting the mastoid process
to the clavicle and manubrium, and its contraction can turn and/or flex the head forward. It
is also an accessory muscle of inspiration that is recruited during higher levels of ventilation
that occurs during exertion. Moreover, the SCM is recruited more often during spontaneous
breathing trials when patients fail to wean [15]. Previous studies have shown that significant
changes in oxygenation occur in the SCM during inspiratory threshold loading tests, which
simulate distressed breathing [16]. Several prior works have used continuous wave near-infrared
spectroscopy (CW-NIRS) techniques to measure relative changes in oxygenation of various
inspiratory muscles including the SCM [16–21]. While CW systems are able to detect changes in
oxygenation, they cannot extract absolute tissue optical properties or chromophore concentrations
without the use of explicit assumptions such as an assumed differential pathlength factor (DPF,
the ratio between the mean optical pathlength and the source detector separation [22,23]). This
potentially leads to errors in estimates of muscle metabolic changes due to incorrect assumptions
about tissue scattering [24,25].

Frequency domain near-infrared spectroscopy (FD-NIRS), also called frequency domain
diffuse optical spectroscopy (FD-DOS), uses temporally modulated light at MHz frequencies to
illuminate a tissue volume. The measured changes in amplitude and phase of the remitted light are
used to calculate the tissue optical absorption coefficient (µa) and the reduced scattering coefficient
(µs

′) [26]. When performed at multiple carefully chosen wavelengths, this method allows for the
extraction of absolute concentrations of chromophores such as oxy and deoxyhemoglobin. FD-
NIRS/FD-DOS has been previously used for breast cancer chemotherapy treatment monitoring
[27–29] and monitoring the hemodynamics of the brain [30]. There has also been prior work
using FD-NIRS to measure the oxygenation of various muscles in the limbs and chest [31,32],
but to the best of our knowledge, FD-NIRS has not been used to monitor the SCM.

In this work, we first describe results from Monte Carlo simulations demonstrating that
NIR light is sensitive to anticipated hemodynamic changes in the SCM. We then describe how
our custom digital FD-NIRS measurement platform was adapted to provide two-wavelength
high-SNR measurements of the SCM with a rapid data processing pipeline. We then describe the
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results of a healthy volunteer study in which subjects performed two different quasi-isometric
neck flexions while monitored with FD-NIRS. Finally, we describe how FD and CS analyses of
the same data set lead to different hemodynamic results, and describe the implications of this
study for future work.

2. Methods

2.1. Monte Carlo simulations

A multilayer model of the neck was created using Monte Carlo eXtreme (MCX), a Monte Carlo
based photon transport simulator, in order to confirm that light from our FD-NIRS system can
adequately probe the SCM [33]. For these simulations, a pencil beam source pointing in the +z
direction was used, and 6 different detectors, each with a 2 mm diameter, were placed 10-35 mm
away from the source. Internal reflections of photons between the layers were included, but not
external reflections (photons can escape). The simplified multi-layer model is shown in Fig. 1.
The optical properties used for each layer in the simulation were estimated by using average
properties found in the literature and are shown in Table 1 [34–43]. The SCM lies below two
superficial layers: the skin containing the epidermis and the dermis which is typically 1-2 mm
thick [44]; and the subcutaneous fat layer with a thickness that varies from person to person. The
SCM itself is approximately 5 mm thick on average [45]. The tissue below the SCM contains
connective tissue and other tissue types, which we simply refer to as “deep tissue”. Finally, the
internal jugular vein (IJV) and the common carotid artery (CA) are deep to some parts of the SCM.
Using prior work as well as our own ultrasound images, the IJV was modeled as a 5 mm radius
cylinder directly below the SCM and the CA was modeled as a 3.5 mm radius cylinder 3.5 mm
below the SCM [46].These vessels contain a high concentration of blood, which is extremely
absorbing relative to the surrounding tissue. The main absorbers of light in the near infrared
wavelengths are water, lipids, hemoglobin in blood vessels, and myoglobin found in muscle cells.
Since hemoglobin and myoglobin have very similar optical spectra in this wavelength range,
they are difficult to separate optically and their combined concentrations will be presented as
[Hb+Mb] [47].

Table 1. The optical properties used for the Monte Carlo simulations at baseline. Three different
optical properties were used for skin labeled skin 1 (lightest, white) to skin 3 (darkest, black). For

the simulations that did not involve varying skin absorption, skin 2 optical properties were used. g
is the anisotropy factor and n is the index of refraction. SubQ refers to subcutaneous.

Layer
µa (mm−1) µs′ (mm−1) g

n References
730 nm 850 nm 730 nm 850 nm 730 nm 850 nm

Skin 1 0.018 0.015 2.69 2.16 0.83 0.87 1.40 [34–37,39]

Skin 2 0.046 0.038 2.69 2.16 0.83 0.87 1.40 [34,35,37,39,40]

Skin 3 0.125 0.060 2.69 2.16 0.83 0.87 1.40 [34–37,39]

Fat (SubQ) 0.010 0.010 1.43 1.29 0.75 0.75 1.44 [35,36,41,42]

SCM 0.024 0.031 0.56 0.42 0.90 0.90 1.37 [35,36,38,42]

Deep Tissue 0.010 0.010 1.17 0.97 0.90 0.90 1.40 [35]

IJV 0.387 0.543 1.55 1.24 0.98 0.98 1.39 [43]

CA 0.258 0.607 1.61 1.29 0.98 0.98 1.39 [43]

The oxygen saturation (StO2) and [Hb+Mb] of the muscle layer was varied in simulation in
order to determine the optical sensitivity to hemodynamic changes in the SCM. The baseline
total hemoglobin+myoglobin concentration (total[Hb+Mb]) was determined using Beer’s Law
by scaling previously reported muscle optical absorption values by the extinction spectrum of
deoxyhemoglobin [36,48]. This was done after subtracting the absorption due to water (assumed
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Fig. 1. The geometry of the neck used for the Monte Carlo simulations. The subcutaneous
fat layer thickness was varied from 1- 10 mm and 3 different skin absorptions were used to
simulate a variety of skin tones. The optical properties of the SCM were varied to simulate
the effects of two different hemodynamic perturbations.

to be 62.5%) [39,49–51]. The resulting baseline total[Hb+Mb] was 129 µM. The StO2 at baseline
was estimated to be 70%. The optical properties of the muscle layer were changed by varying
both the total[Hb+Mb] as well as the StO2.

We simulated two different perturbations and resulting hemodynamic changes previously
described in the literature: 1) task failure during a neck flexion, which increased total[Hb+Mb]
by 9.0 µM and decreased StO2 by 2.03%, and 2) task failure during an inspiratory threshold
loading test, which increased total[Hb+Mb] by 20.7 µM and decreased StO2 by 8.00% [16].
Task failure for both tasks is defined as the moment when the subject is unable to perform the
task at the proper difficulty for the third consecutive time. We then calculated the difference in
detected light between baseline and the two perturbations by simulating 109 photon packets in
the Monte Carlo simulation for each scenario. The simulation outputs included the pathlength of
each detected photon packet for each layer, which when weighted by the absorption coefficient
(µa) in each layer gave the resulting detected photon weight. The overall sensitivity to the SCM
was calculated by comparing the total detected photon weight of the different scenarios at 6
different source detector (SD) separations from 10-35 mm. We also investigated the effects of
lipid layer thickness by varying the lipid layer from 1-10 mm and skin absorption by comparing
the effects of 3 different skin absorption values found in the literature corresponding to range of
skin tones [15,19].

2.2. Custom FD-NIRS system

We adapted our previous custom digital FD-NIRS system to take SCM measurements on the neck.
A system block diagram is shown in Fig. 2 and prior versions of this system are described in
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more detail elsewhere [52–54]. Briefly, direct digital synthesizers (DDS) were used to modulate
two fiber coupled laser diodes at 730 and 850 nm (Blue Sky FMXL730-030YFGA, ThorLabs
LP852-SF30). The lasers were modulated at 145/155 MHz respectively to allow temporal
multiplexing. The detected light was measured by a fiber coupled avalanche photodiode (APD)
(Hamamatsu S11519-30). The resulting signal was digitized by a 250 MHz analog to digital
converter (ADC), where it was compared to a reference signal picked off from the DDS chips to
determine the changes in amplitude and phase induced by the tissue. A calibration procedure was
used to remove the instrument response function as previously described [53]. Amplitude and
phase were computed in an field-programmable gate array (FPGA) using the Goertzel Algorithm
[33,34].

Fig. 2. The system block diagram for our custom digital FD-NIRS system adapted for
SCM measurements. DDS=Direct Digital Synthesizer, ADC=Analog to Digital Converter,
APD=Avalanche Photodiode, TEC=Thermoelectric Cooler.

A number of parameters for the system were adapted in order to optimize the system for SCM
measurements. Most importantly, the SCM is generally more absorbing than tissue that has been
measured previously by our system (e.g. breast, finger, forearm [53–55]), and so the system was
optimized for maximum signal to noise ratio (SNR) while maintaining measurement speeds of
at least 10 Hz, a rate commonly used by previous CW studies of the SCM [14–15]. The two
wavelengths used here, 730 nm and 850 nm, were chosen for their ability to separate oxy[Hb+Mb]
and deoxy[Hb+Mb] as they are on different sides of hemoglobin’s isosbestic point. Additionally,
high SNR was achieved for the lasers at these wavelengths. We did not add additional lasers as
each laser would need to be operated at lower power due to ANSI limits. The source and detector
fibers were placed 25 mm away from each other, the largest source-detector separation that gave
an adequate SNR through the SCM based on feasibility data. The DDS signal was amplified
(11 dB and 1 dB for 730 nm and 850 nm respectively) to increase RF power to the lasers and to
maximize the modulation depths of the lasers while avoiding clipping. A 110-180 MHz Bandpass
filter was used to reduce background noise in the detected signal. Measurements were captured
using 65536 digital samples/modulation frequency, and 36 repetitions were averaged, resulting in
an overall measurement rate of 10 Hz. The system SNR measured on a silicone optical phantom
with similar optical properties to neck tissue (µa = 0.034, 0.017 mm−1 and µs

′ = 0.51, 0.50 mm−1

at 730, 850 nm) was 42.0 dB and 42.3 dB for 730 nm and 850 nm respectively. Both lasers diodes
were fiber coupled to 400-µm core diameter fibers bundled into a single ferrule to deliver light to
the tissue. A 2.3-mm core diameter fiber bundle was used to collect remitted light. Both fibers
were custom made by Fiberoptic System Inc. (Simi Valley, CA) and terminated at a right angle
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so they could lie flat against the neck. A custom fiber holder was 3D printed to hold the right
angle source and detector fibers on the tissue.

2.3. Healthy volunteer study

FD-NIRS measurements were conducted on a group of healthy volunteers (N=10) in order to
confirm the ability to measure changes in the SCM. The group of volunteers consisted of 5
males and 5 females, aged 26-38 years old with the following ethnicities: Caucasian n=8, South
Asian n=1, Asian n=1. All measurements were conducted under an institutionally approved
protocol (BU IRB 5618E). The exclusion criteria included anyone who was considered high risk
for COVID-19. All participants were informed about the study virtually before consenting in
person and subjected to the appropriate COVID-19 safety protocols.

Hemodynamic changes of the SCM were induced by performing a series of quasi-isometric neck
flexions previously shown to affect the hemodynamics of the SCM [56]. The measurement setup
is shown in Fig. 3. Each volunteer was seated upright with the neck and head in a neutral position
against a headrest and their forehead strapped to a force sensor (Shimpo FG-3009).The probe
containing the source and detector fibers was placed on the skin above the SCM midway between
its origin (manubrium and clavicle) and insertion (mastoid process) and secured using Tegaderm
tape. Initially, the participant performed a maximum voluntary contraction (MVC), followed
by a 30-second sustained contraction, a 3 minute rest, and lastly, intermittent contractions. The
latter of which was considered to parallel intermittent contractions performed during inspiration.
Participants were able to target contractions to a specific percentage of MVC by visualizing
the indicated level on a computer monitor. The 30 second sustained flexion was performed
by targeting 75% of their MVC whereas the intermittent flexions were performed with a duty
cycle of 3 sec contraction to 3 sec relaxation and an intensity of 60% MVC for a 10 minute
duration or until task failure. Task failure was defined as the point when the volunteer could no
longer reach their target force for 3 consecutive contractions. Additionally, after the conclusion
of the FD-NIRS measurements, each subject’s skin+ lipid layer thickness was measured using
ultrasound (Vscan, General Electric) at the FD-NIRS measurement location. The skin+ lipid
layer thickness was measured from the surface to a clearly defined region between the lipid layer
and the muscle. The average of muscle depth measurements taken at the left and right hand sides
of the image were used to calculate the skin+lipid layer thickness.

2.4. Signal processing and data analysis

An inverse model which utilized a Monte Carlo based Lookup Table (LUT) was used to calculate
µa and µs

′ in post processing for FD data. The method is similar to an analytical model based
LUT inverse model described in our previous work [57]. First, a series of white (i.e. zero
absorption) Monte Carlo simulations were performed with µs

′ ranging from 0.1 to 2.0 mm−1 in
increments of 0.1 mm−1 using a pencil beam source and a detector that matched the diameter
and numerical aperture (NA) of the experimentally used detector fiber. The arrival times of
photon packets were binned in 10 ps intervals to generate the temporal point spread function
(TPSF) for each value of µs

′. A TPSF for arbitrary values of µs
′ could then be estimated by

linearly interpolating the TPSFs of two simulations spanning the desired µs
′ values. The final

TPSF, including absorption, was constructed by scaling each bin of the TPSF using Beer’s law.
Amplitude and phase changes induced by the tissue were then calculated by Fourier transforming
the TPSF [58,59]. This Monte Carlo based forward model was used to calculate the amplitude
and phase for a dense grid of µa and µs

′ pairs to form a LUT. Experimental data were compared
with each element of the LUT and the nearest optical property pair was used as the value
associated with the tissue [60]. This LUT method was validated by measuring a set of 13 silicone
optical phantoms with optical properties similar to the neck region, and compared the resulting
µa and µs

′ to a traditional analytical model [26]. The percent difference between these two
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Fig. 3. The system setup for the healthy volunteer study. The subjects performed quasi-
isometric neck flexions by pushing their forehead forwards against the head strap. A force
gauge was used to measure the applied force, which was projected on a monitor in front of
them.

methods was 4.8% in µa and 5.7% in µs
′ across this set of phantoms (Figure S2). Beer’s Law

was used to calculate concentrations of oxyhemoglobin+ oxymyoglobin (oxy[Hb+Mb]) and
deoxyhemoglobin+ deoxymyoglobin (deoxy[Hb+Mb]). A 20% lipid fraction and 62.5% water
fraction were assumed for the entire tissue [35,39,49–51]. At these wavelengths, water and
lipid account for only a small, but measurable fraction (5-10%) of the total absorption, with the
absorption due to water being an order of magnitude higher than the absorption due to lipids.

For the sustained flexions, a first order linear locally weighted scatterplot smoothing (LOWESS)
filter with a 20 point (2 s) window was used in order to smooth the data. Differences in the
chromophores were calculated between the onset of the flexion and maximum changes during
the flexion (local maximum for deoxy[Hb+Mb] and total[Hb+Mb] and a local minimum for
oxy[Hb+Mb]). Maximal points were manually selected to avoid obvious artifacts due to motion.
For the intermittent flexions, a first order linear LOWESS filter with a 600 point (60 s) window
was used in order to smooth the data to calculate the trend of the resulting signal while averaging
the oscillations that occurred every 3 seconds while the subjects are contracting and relaxing
their SCM. Oxy[Hb+Mb], deoxy[Hb+Mb], and total[Hb+Mb] were selected at three different
timepoints: the onset of the flexion, the maximum of the early changes (defined as < 3 min after
the onset of the flexion), and the end of flexion after 10 mins or at task failure. The differences
between the baseline and maximum early and late changes were also calculated. Mann-Whitney
U Tests were used to compute the statistical significance of the resulting chromophore changes
between males and females as well as between FD and constant scattering (significance level
p<0.05). All data analysis and signal processing was performed using MATLAB (Mathworks,
Natick, MA).

Amplitude data was also analyzed using the modified Beer-Lambert Law (Eq. (1)) in order
to compare FD results in which continuously updated µs

′ measurements are available, against
a constant scattering (CS) scenario, which is often used with CW-NIRS analysis in muscle
measurements studies [16]. An estimate for DPF is required in order to calculate the change in
µa using this method. The DPF represents the ratio between the mean optical pathlength and the
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source-detector separation. The DPF accounts for multiple scattering events that occur in tissue,
which increase photon pathlength compared to the source-detector separation [22,23]. For the CS
scenario, a DPF of 4 was used similar to prior work [16]. Additionally, the first µa measurement
for each experiment was used to obtain an estimate for the baseline values of the chromophores,
and the modified Beer-Lambert Law was used to calculate changes in µa assuming a constant
DPF of 4 throughout the experiment. Equations (1) and (2) were used to calculate ∆µa as well as
the DPF when it wasn’t fixed. In these equations, d represents the source-detector separation
(25 mm for this work).

∆µa(λ) =
1

DPF(λ) ∗ d
∗ ln

(︃
amp(λ, 0)
amp(λ, t)

)︃
(1)

DPF(λ) =
1
2

√︄
3µ′s (λ)
µa(λ)

⎡⎢⎢⎢⎢⎢⎣1 −
1(︂

1 + d
√︁

3µa(λ)µ
′

s (λ)
)︂ ⎤⎥⎥⎥⎥⎥⎦ (2)

3. Results

3.1. Monte Carlo simulation results

The two different simulated perturbations: neck flexions and an inspiratory threshold loading
challenge, both resulted in a decrease of detected light at both wavelengths. A larger decrease
was observed at 730 nm compared to 850 nm due to the decrease in StO2. Figure 4 shows the
relative sensitivity of the SCM to the simulated inspiratory threshold loading challenge at six
source-detector separations (10-35 mm) and 10 lipid layer thicknesses (1-10 mm). In general, the
sensitivity to the SCM increased as the source-detector separation increased, with longer source
detector separations being more sensitive to hemodynamic changes in the SCM.

Fig. 4. The sensitivity to a hemodynamic change in the SCM simulating an inspiratory
threshold loading challenge. The simulations were run at 10 different lipid layer thicknesses
(1-10 mm) and 6 different source detector separations (10-35 mm). The error bars represent
the standard deviation of 10 simulations.

In general, sensitivity to the SCM decreased as the lipid layer thickness increases. Previous
groups have excluded subjects with a lipid layer great than 10 mm citing a lack of SCM
measurement sensitivity under those conditions [16]. These simulation results support this
finding, especially for short source detector separations. The sensitivity to the perturbations were
similar for the three skin absorptions tested, resulting in a less than a 3.0% difference between
the 3 pairs of absorptions. However, it is important to note that the amount of detected light
decreases as the skin gets darker and more absorbing, resulting in lower detected photon weights
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and lower measurement SNR, which could make it more challenging to measure these individuals.
Blood oxygenation changes of the IJV and internal CA were also tested to determine if these
large vessels could affect measurements of the SCM. We found that oxygenation changes in these
vessels had a minimal effect on the detected signal (<10%) for the SD separations tested and the
geometry used here.

Based on these results, as well as the feasibility measurements described earlier, a SD separation
of 25 mm was chosen for healthy volunteer measurements. This SD separation should provide
substantial sensitivity to changes in expected SCM hemodynamics regardless of skin tone and for
a wide range of adipose thicknesses.

3.2. Healthy volunteer study

At baseline, the average oxy[Hb+Mb] was 104.7± 36.3 µM, deoxy[Hb+Mb] was 56.6± 11.8
µM and total[Hb+Mb] was 161.4± 43.6 µM. Additionally baseline optical properties are shown
in Table S1. Large changes in the hemodynamics of the SCM were observed during flexions.
Figure 5 shows changes in deoxy[Hb+Mb], oxy[Hb+Mb] and total[Hb+Mb] in a set of sample
flexions. Figure 6 shows a summary of the observed changes across the group of volunteers.

Fig. 5. Sample chromophore data from the sustained flexions (top) and the intermittent
flexions (bottom). The black line indicates the smoothed data. The colored points indicate
the points of interest: the beginning of the flexion, the early maximum/minimum, and the
end of the flexion.

For the sustained 30 second flexion, the majority of the subjects had an increase in de-
oxy[Hb+Mb], a decrease in oxy[Hb+Mb], and an initial decrease followed by an increase in
total[Hb+Mb]. The maximal change for these parameters typically occurred close to the end
of the flexion. There was one subject that had an increase in oxy[Hb+Mb] during the flexion
(rather than the more common decrease).

For the longer 10-minute intermittent flexion, there was typically a distinct early phase of
hemodynamic changes that occurred within the first three minutes, followed by slower changes
over the remainder of the measurement. The early changes typically presented as rapid increases
in deoxy[Hb+Mb] and decreases in oxy[Hb+Mb]. The increases observed in total[Hb+Mb] are
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Fig. 6. Summarized FD-NIRS results from the healthy volunteer study. The bars indicate the
mean and the error bars indicate the standard deviation of the group or subset of volunteers.
The asterisk indicates that the male and female values are significantly different using a
Mann-Whitney U Test (p < 0.05).

more complicated and followed one of two distinct patterns (see Figure S2). In some subjects, the
changes occurred in a sustained manner over the duration of the intermittent contraction whereas
in others, total[Hb+Mb] reached a maximum during the early phase, similar to deoxy[Hb+Mb],
followed by a gradual decrease. By the end of the intermittent flexion, deoxy[Hb+Mb] was
typically higher than baseline and oxy[Hb+Mb] was typically lower than baseline, but to a lesser
extent than at the early phase of the measurement. Total[Hb+Mb] typically ended higher than
baseline.

Figure 6 also highlights the differences in the magnitude of the hemodynamic changes between
males and females. The absolute changes for deoxy[Hb+Mb], oxy[Hb+Mb], and total[Hb+Mb]
were approximately 2-2.5x larger in males compared to females for both sustained flexion and
both early at later time points of the intermittent flexions. Statistical significance was observed in
6 out the 9 comparisons as indicated in the figure.

3.3. Comparison between FD and CS analyses

Figure 7 shows an example of amplitude, phase, µa and µs
′ changes during a sustained flexion.

Tables S1 shows average changes in these parameters over all of the study subjects. In general,
there were changes in both amplitude and phase, as well as µa and µs

′ during flexions. There were
several notable differences when comparing FD and CS analyses of chromophore changes. An
example of this is shown in Fig. 7 (rightmost column), and the study averages are shown in Fig. 8.
FD analyses yielded magnitude of changes that were ∼ 2-2.5x larger on average compared to CS
analyses. These differences may be due in part to the observed changes in µs

′ during the flexions,
which are not accounted for in the CS method, which assumes a constant DPF throughout the
measurement. It is also of note that the DPF calculated using baseline FD-derived µa and µs

′

values was 3.28± 0.50 at 730 nm and 2.77± 0.61 at 850 nm across the study subjects. These both
differ from the assumed DPF of 4 used for CS processing [16,17]. During the sustained flexion
the DPF decreased by 0.70± 0.26 at 730 nm and 0.19± 0.39 at 850 nm. It is also of note that the
FD-derived chromophores were noisier than the CW-derived chromophores. This appears to
be related to the inclusion of phase measurements in the FD analysis, which were substantially
noisier than the amplitude data.
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Fig. 7. Sample amplitude, phase, µa and µs ′, and chromophore data from a sustained flexion.
The rightmost column shows chromophore processed with FD (top) and CW (bottom).

Fig. 8. Summarized results from the healthy volunteer study comparing FD-NIRS analysis
to constant scattering (CS) analysis. The bars indicate the mean and the error bars indicate
the standard deviation of the group of volunteers. The asterisk indicates that the FD and CS
values are significantly different using a Mann-Whitney U Test (p < 0.05).
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4. Discussion

We have demonstrated here that quasi-isometric flexions of the SCM induce hemodynamic
changes measurable with FD-NIRS. Changes included rapid drops in oxy[Hb+Mb] and increases
in deoxy[Hb+Mb] and total [Hb+Mb]. On average, these changes were larger in male
volunteers than female volunteers. Additionally, FD analyses led to chromophore changes that
were consistently of larger magnitude compared to CS analyses. These results help to confirm that
the additional information provided by FD-NIRS could give valuable insight into the physiology
of the SCM while providing more accurate measurements compared with CW-NIRS.

The Monte Carlo simulation results confirmed that expected hemodynamic changes in the
SCM induce large (>10%) changes in detected optical signals for SD separations of at least
25 mm. This was true up to about a 5 mm adipose layer thickness, after which changes decayed
rapidly, especially for 850 nm. The average measured skin+ adipose thickness for the volunteers
in this study was 3.59± 0.74 mm, which strongly suggests that the FD-NIRS measurements
of these volunteers were capable of detecting SCM hemodynamic changes. Skin tone had a
relatively small effect on the relative detected signal changes in simulation, but darker skin
decreased the overall detected signal amplitude substantially, which is an important factor when
measuring a diverse patient population. The average optical properties measured from the healthy
volunteers matched well to the optical properties of the muscle layer used in the MC simulations
(µs

′ = 0.50± 0.07 mm1 in volunteers vs 0.42 mm−1 in simulation for 850 nm). This serves as a
validation that the optical properties used in the simulations were reasonable estimates for the
measured tissue and is also a good indication that detected light traveled to the muscle layer.
Since the top layers (skin and subcutaneous fat) have an approximate 2.5-5x higher µs

′ than the
SCM layer, one would expect measured µs

′ to match these upper layers rather than the deeper
SCM layer if there was insufficient measurement depth. We did not observe any statistically
significant correlations between the measured adipose layer thicknesses and the magnitude of
chromophores changes in volunteers. However, the measured volunteers were generally young
(26-38 years old) and physically fit, and it is likely that inclusion of future subjects with thicker
adipose layers may substantially attenuate measured SCM changes.

There were notable patterns in hemodynamic responses across subjects. For example, during
the intermittent flexions, there was typically a substantial increase in deoxy[Hb+Mb] and a
decrease in oxy[Hb+Mb] near the onset of the flexions. This is consistent with a rapid increase
or overshoot in tissue oxygen extraction, which has been observed in prior works [47]. These
changes are followed by a more gradual increase in total[Hb+Mb], consistent with prior work
that indicates increased nitric oxide signaling to trigger vasodilation [47,61] enhancing oxygen
delivery in response to increased oxygen consumption the muscle. It is also important to note that
in some cases the measured tissue µs

′ values were less than 10x the µa values, which violates an
assumption of the diffusion approximation [23]. For this reason, we opted to use a Monte Carlo
based LUT to calculate the optical properties instead of a more traditional analytical model.

Large differences in the baseline chromophores as well as the magnitude of chromophore
changes during flexions were observed between males and females. It has previously been
observed that males, on average, have a higher hemoglobin content in blood measured from
capillary and venous blood draws [62]. Our previous work using a similar FD-NIRS instrument
has also observed large chromophore concentration difference between the sexes for bony
anatomic locations [63]. Our work was limited by a small sample size whereas a larger sample
size may provide more robust characterization of sex-differences. Regardless, these results
strongly suggest that sex is an important factor to consider in future studies.

An advantage of FD-NIRS is the ability to quantify both µa and µs
′. Conversely, CW-NIRS

methods typically assume constant scattering and do not consider differences in optical properties
at different wavelengths, inter-subject differences, or changes in µs

′ during dynamics. We
observed µs

′ changes during flexions in this study of approximately 10.9% for 730 nm and 4.6%
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for 850 nm. Other groups have also observed µs
′ changes during exercise in the forearms and

the quadriceps [24,25]. Additionally, these prior studies also showed that µs
′ changes affected

the resulting chromophores changes. However, unlike these previous studies, we observed
larger changes in oxy[Hb+Mb] and deoxy[Hb+Mb] when using FD compared to CS during
flexions, which was the opposite of what was previously reported. One possible explanation of
this discrepancy is the relationship between the actual measured baseline optical properties (as
measured with FD-NIRS) compared to the assumed DPF for CS analysis. While this study and
the prior studies all assumed a DPF of 4 for the CS method, our subjects had a measured DPF at
baseline of less than 4, while the prior studies had a measured DPF greater than 4. Following the
modified Beer-Lambert Law, lower DPF values lead to larger ∆µa changes and larger subsequent
chromophore changes, potentially explaining why our FD data showed larger chromophore
changes. Additionally, decreases in µs

′ were observed during many flexions, especially at 730 nm,
which decreased the DPF even further and led towards larger chromophore changes. The results
from prior work have been mixed, but generally show slight increases in scattering after exercise
which was also attributed to an increase in total[Hb+Mb], which should lead to more red blood
cells in the measured volume and potentially higher µs

′ [24] as well as the accumulation of
metabolic by-products and hormones which could also increase µs

′ [24,25,64]. Therefore our
decrease in scattering is surprising, given that we also saw an increase in total[Hb+Mb] during
the same time period. Possible explanations for this discrepancy include changes in muscle
configuration leading to changes in the partial volume probed by light, which mostly occurs
during the onset of the flexion but can also occur during the flexion to a lesser extent. Additionally,
deoxy[Hb] is slightly less scattering than oxy[Hb], which previous sources have noticed that it
can in some cases counteract the increase in scattering due to the increases in total[Hb+Mb] if
the decrease in saturation is significant enough [24,43,64]. It is also of note that the measured
hemodynamic changes on healthy volunteers here were substantially larger than prior published
CW measurements on the SCM [16]. For example, the average changes in total [Hb+Mb] were
18.6± 15.0 µM at the end of the intermittent flexions in this study, compared to a change of
9.0 µM in the SCM induced by inspiratory threshold loading. These differences could be due
to differences in FD versus CW processing and the assumptions related to the DPF, as well as
differences in study procedures (i.e. duty cycle; intensity of MVC; isometric versus isotonic
contractions; incremental versus constant load) and subject populations.

As shown in our results, sensitivity to SCM hemodynamics decreases as adipose thickness
increases, likely leading to less accurate results for large (>5 mm) adipose thicknesses. Although
substantial hemodynamic changes were observed in this study using an inverse model that assumes
homogeneous tissue optical properties, going forward, a multilayer inverse model accounting
for skin, subcutaneous adipose tissue, and muscle may improve sensitivity to the deeper SCM
tissue. Parameters such as adipose thickness can be derived from ultrasound assessment of
these tissues before application of the FD-NIRS optode. Additionally, some groups have now
combined FD-NIRS with Diffuse Correlation Spectroscopy to calculate a blood flow index (BFi)
and muscle metabolic rate of oxygen (MRO2) tissue metabolism, which provide a more complete
picture of muscle metabolism [31,65,66]. SCM measurements would also likely benefit from
this combination of techniques in future work.

5. Conclusion

We have shown that FD-NIRS is sensitive to hemodynamic changes in the SCM through both
MC simulations and during quasi-isometric neck flexions of healthy volunteers. A custom digital
FD-NIRS system was used to measure these changes. Based on these results, we hypothesize that
FD-NIRS measurements of the SCM may provide an important new means to monitor patients
during MV, potentially assisting with guiding appropriate unloading and weaning from MV.
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