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Abstract

Urachal adenocarcinomas (UrC) are rare but aggressive. Despite being of profound therapeutic relevance, UrC cannot be
differentiated by histomorphology alone from other adenocarcinomas of differential diagnostic importance. As no reliable
tissue-based diagnostic biomarkers are available, we aimed to detect such by integrating mass-spectrometry imaging-based
metabolomics and digital pathology, thus allowing for a multimodal approach on the basis of spatial information. To achieve
this, a cohort of UrC (n=19) and colorectal adenocarcinomas (CRC, n=27) as the differential diagnosis of highest
therapeutic relevance was created, tissue micro-arrays (TMAs) were constructed, and pathological data was recorded.
Hematoxylin and eosin (H&E) stained tissue sections were scanned and annotated, enabling an automized discrimination of
tumor and non-tumor areas after training of an adequate algorithm. Spectral information within tumor regions, obtained via
matrix-assisted laser desorption/ionization (MALDI)-Orbitrap-mass spectrometry imaging (MSI), were subsequently
extracted in an automated workflow. On this basis, metabolic differences between UrC and CRC were revealed using
machine learning algorithms. As a result, the study demonstrated the feasibility of MALDI-MSI for the evaluation of FFPE
tissue in UrC and CRC with the potential to combine spatial metabolomics data with annotated histopathological data from
digitalized H&E slides. The detected Area under the curve (AUC) of 0.94 in general and 0.77 for the analyte taurine alone
(diagnostic accuracy for taurine: 74%) makes the technology a promising tool in this differential diagnostic dilemma
situation. Although the data has to be considered as a proof-of-concept study, it presents a new adoption of this technology
that has not been used in this scenario in which reliable diagnostic biomarkers (such as immunohistochemical markers) are
currently not available.
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development. It obliterates to form the median umbilical
ligament and runs from the roof of the bladder to the umbi-
licus in the midline within the space of Retzius [1]. While
macroscopic residues are uncommon, microscopic urachal
remnants can be detected in up to 32% of adults [2]. With an
incidence of <1 case per 1,000,000 people per year, urachal
cancer can rarely arise from these remnants with urachal
adenocarcinomas (UrC) accounting for over 90% of cases
[3-6]. Non-cystic type UrC mostly (57%) exhibit a mucinous
histology followed by intestinal, not otherwise specified
(NOS), mixed, and signet ring cell histology subtypes [4, 7].
These histological subtypes, however, show striking overlaps
with other types of adenocarcinomas. This can pose a major
differential diagnostic problem in the histopathological eva-
luation of biopsies from this region. However, the correct
distinction from other tumors is vital as the therapy regimes
differ. For example, and most importantly, a colorectal ade-
nocarcinoma (CRC) growing into the bladder mostly repre-
sents a palliative situation while localized UrC can be cured
by partial cystectomy with resection of the median umbilical
ligament and umbilicus. As in this specific setting immuno-
histochemistry is of little utility and radiology and clinical
examination often are non-conclusive, tissue based diagnostic
biomarkers are urgently needed to allow a correct pre-
operative diagnosis and individual therapy planning [4]. We
therefore sought to identify metabolic diagnostic biomarkers
using mass spectrometry imaging (MSI), which has not been
performed in this field.

The tumor metabolism is known to differ from metabo-
lism of corresponding normal cells [8]. Reprogramming of
the energy metabolism is one of the hallmarks of cancer [9],
including elevated glutaminolysis [10] and enhanced gly-
colysis rates even under aerobic conditions, known as the
Warburg effect [11]. The altered metabolism of cancer is
necessary for the enhanced proliferation rate of tumor cells
[12, 13]. To analyze metabolic alterations in situ, matrix-
assisted laser desorption/ionization (MALDI) MSI is a
powerful tool [14]. Depending on the applied matrix, dif-
ferent types of analytes can be detected on a single tissue
section. By scanning the section with a laser and combining
with the pixel-wise sensitive detection by mass spectro-
metry, the spatial information of various metabolites in the
tissue is revealed. The combination of data obtained from
MSI with histopathological information, known as multi-
modal imaging, is crucial to avoid artefacts in data analysis
[15] and allows for correct classification of profiles in
cancer and non-cancerous tissue. Highly detailed histolo-
gical or immunohistochemical data for co-registrations can
be obtained by digital pathology accompanied by significant
annotations by pathologists [16].

Multimodal analysis of MSI data with fluorescent image
data from a digital pathology software was demonstrated
lately [17]. A similar approach was additionally recently
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described for the combination of MSI data with digital
pathology information from hematoxylin and eosin (H&E)
stained slides [18]. This is relevant as H&E-staining of
tissue specimen represents a routine histological technique
of high informative value on cellular and non-cellular level,
in context of tissue structure and composition. We therefore,
for the first time, used this new technological approach to
detect diagnostic biomarkers in a critical tissue based dif-
ferential diagnostic setting, focusing on the discrimination
of UrC and CRC.

Material and methods
Cohort and construction of tissue micro-arrays

A cohort of UrC and CRC was retrospectively collected
from the archive of the Institute of Pathology at the Uni-
versity Hospital Essen (UrC: n =14, CRC: n =27) and of
the Institute of Pathology at the University Hospital Got-
tingen (UrC: n =5). Details on clinico-pathological data are
given in Table 1. Diagnoses of UrC and CRC were estab-
lished following WHO criteria [19, 20]. Histopathological
information was compiled after review by a genitourinary
(GU) pathologist (HR). Tumor areas were marked on the
H&E slides (HR) and TMAs were constructed using an
automated platform (TMA Grand Master, 3DHISTECH,
Budapest, Hungary) with three cores per case (diameter:
1.3 mm). The study was approved by the ethics committee
of the University of Duisburg-Essen (15-6372-BO) and it
was performed in accordance with the Helsinki declaration
and its amendments.

Digital pathology

TMAs were sectioned and H&E stained on a HE600 plat-
form (Ventana/Roche diagnostics, Oro valley, AZ, USA)
using standard diagnostic protocols. Stained TMAs were
scanned using an Aperio AT2 system (Leica Biosystems,
Wetzlar, Germany) for creation of digital whole slide ima-
ges (WSIs). WSIs were annotated by a GU-pathologist
(HR) using the software QuPath v0.1.2 [21] as basis of
adjustment of automated tumor detection thresholds (JMN).
After TMA dearraying and cell detection, smoothed features
were calculated for 25 um and 50 um. The classifier was
trained on tumor and non-tumor regions. The random trees
classifier was built with 23,755 training objects and classi-
fication results were verified by the pathologist.

Mass spectrometry imaging

Serial TMA sections (4 um thickness) were cut onto indium
tin oxide coated glass slides (Bruker Daltonik GmbH,
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Table 1 Clinico-pathological data of the cohort with urachal
adenocarcinomas (UrC) and colorectal adenocarcinomas (CRC).

UrC CRC
N (%) N (%)
Sex Female 8 (42) 11 (41)
Male 11 (58) 16 (59)
Total 19 27
Age (median, y) 50 74
Sheldon stage 1 0 (0)
I 0 (0)
IIA 7 (37)
1B 0 (0)
I1IC 1(5
1D 0 (0)
IVA 1(5
IVB 6 (32)
n/a 4 (21)
Total 19
Mayo stage I 3 (16)
i 5(26)
I 1(5
v 6 (32)
n/a 4 (21)
Total 19
TNM tumor stage pT1 0 (0)
pT2 5(19)
pT3 15 (56)
pT4 7 (26)
Total 27
TNM lymph node status pNO 14 (52)
pN1 5(19)
pN2 8 (30)
Total 27
Grade Gl 1(5) 3(11)
G2 14 (74) 18 (67)
G3 4 (21) 6 (22)
Total 19 27
Subtype Intestinal 5 (26) 25 (93)
Mucinous 7 (37) 2 (7)
Signet ring cell 2 (11 0 (0)
NOS 4 (21) 0 (0)
Mixed 1(5 0O
Total 19 27

Tumor stage of UrC is indicated using the Sheldon [39] or Mayo
staging system [40] as commonly accepted. The Tumor, Node,
Metastasis (TNM) system in its 7th edition was used for staging of
CRC [41].

y years, n/a data not available, NOS not otherwise specified.

Bremen, Germany) using fresh blades for every new block.
Sections were stored at 4 °C in the dark until further use.
Directly before matrix application, TMA sections were
deparaffinized twice for 8 min in reagent grade xylene, as
described by others [22]. Matrix N-(1-naphthyl) ethylene-
diamine dihydrochloride (NEDC) (299% p. a., Carl Roth
GmbH + Co. KG, Karlsruhe, Germany) was used at a
concentration of 7 mg/ml in Methanol/Water (70/30, v/v).

Matrix application was executed using the TM-Sprayer
(HTX Technologies, LLC, Chapel Hill, USA) with a flow
rate of 0.12 ml/min, a velocity of 1200 mm/min, and 3 mm
track spacing for 30 passes at a nozzle temperature of
70°C. Samples were stored in a dry cabinet (Eureka
Dry Tech/Taiwan Dry Tech, Taipei City, Taiwan) until
measurements.

MALDI-Orbitrap-MSI was performed on a Spectroglyph
MALDVESI Injector (Spectroglyph, LLC, Kennewick,
USA) coupled with a Q Exactive Plus orbitrap (Thermo
Fisher Scientific Inc., Waltham, USA). Pierce Negative Ion
Calibration Solution (Thermo Fisher Scientific Inc.) was
used for external mass calibration. Raster step size was set
to 75 pm. The mass range m/z 85—-1000 was recorded with a
fixed inject time of 250 ms and a mass resolution of 70,000
in negative ion mode.

Data analysis

MALDI-Orbitrap-MSI data were converted to imzML
format using the software Spectroglyph Image Insight Ver
0.1.0.17171 (Spectroglyph). For data exploration, TMAs
were combined into one dataset using the software SCiLS
Lab MVS 2020a Pro (Bruker Daltonik GmbH). A peak list
was created manually to exclude artefacts and matrix peaks.
Spectra were normalized to the total ion count and ion
images were generated with a threshold of +1 mDa. Ana-
lytes were putatively annotated by their accurate mass using
METLIN [23] and the Human Metabolome Database
(HMDB) [24].

Further data analysis was performed with Python 3.7
(Python Software Foundation, Wilmington, USA). MSI
imzML data was imported using the pyimzML parser. A
software solution was implemented for the automated co-
registration of MSI data with digital pathology results from
QuPath using OpenCV [25]. Spectral information was
extracted for classified tumor regions of TMA cores for
manually picked peaks (n=199) and mean intensities for
cores were calculated. Analytes with absolute mean inten-
sities above 70 (n = 173) were used to calculate the feature
importance by random forest classification with a threshold
of 0.01, yielding 27 ion channels (Supplementary infor-
mation). Different algorithms (k-nearest neighbors (KNN),
support-vector machine (SVM), and random forest) were
used to classify cases based on metabolic profiles using
eightfold cross-validation. For this purpose, mean inten-
sities for each case were calculated by combining core
intensities. The diagnostic ability of the classifiers was
visualized in a receiver operating characteristic (ROC) using
scikit-learn [26]. Differences between groups were further-
more visualized via t-distributed stochastic neighbor
embedding (t-SNE) [27] and boxplot analyses. Boxplots
were generated with tumor cases, using mean intensities for
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each tumor. Statistical significance was calculated with the
statannot package using Kruskal-Wallis test with Bonfer-
roni correction.

Results

In order to characterize UrC versus CRC, TMAs were
established. First, thin sections were analyzed by the
established histopathological classification upon H&E-
staining. In a second step these TMAs were analyzed
by MSI.

Tissue specimen

Four TMAs (UrC: n=2, CRC: n=2), consisting of 146
TMA cores in total (UrC: n = 19 cases, CRC: n = 27 cases),
were constructed for analyses. The cohort comprises 66
UrC cores, derived from 19 cases and 80 CRC cores from
27 tumor samples. All analyzed cores included tumor and
non-tumor regions.

Histopathological classification and transformation
on mass spectrometry imaging data

Cells from 146 TMA cores were automatically detected
using the QuPath software and classified by utilizing cell
features in a random trees algorithm on the basis of H&E
images. In this way, stained tissue sections (Fig. 1A) were
divided into tumor and non-tumor regions, e.g., stroma and
necrotic tissue (Fig. 1B, D and E). The resulting mask of
tumor regions was transferred onto MSI data after image
transformation, minimizing the inclusion of non-tumor
regions in data analysis (Fig. 1C).

Differentiation of UrC and CRC through multivariate
analyses

Metabolic differences in tumor regions from UrC and CRC
tissues were demonstrated through multivariate analyses.
Twenty-seven m/z channels were selected using feature
importance and were used for the calculations (Supple-
mentary information). Similarities between metabolic phe-
notypes are visualized via t-SNE algorithm. A separation of
UrC and CRC cores can be recognized, however, transition
between tumor groups shows overlaps (Fig. 2A). Con-
sidering tumor subtypes of all analyzed cases revealed that
outliers particularly consist of mucinous CRC (n=2),
which seem to resemble metabolic profiles of mucinous
UrC specimen (Fig. 2B).

Different classifiers were trained on the metabolite
intensity data of UrC and CRC cases. Using cross-valida-
tion, a classification accuracy of 0.87 (+0.15) was yielded
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using a random forest algorithm, 0.87 (+0.22) using a KNN
algorithm and 0.83 (+0.24) using a SVM algorithm. The
corresponding ROC analysis describes the ability to dis-
tinguish between UrC and CRC tumors and shows an area
under the curve (AUC) of 0.94 for the random forest clas-
sifier, 0.9 for the KNN classifier and 0.88 for the SVM
classifier (Fig. 2C).

UrC metabolite levels differ from CRC metabolite
levels

Several metabolites were found to be significantly different
in their abundance, when comparing UrC with CRC spe-
cimen. However, no analyte was found to be abundant
uniquely in one tumor group. Antioxidant taurine (m/z
124.0064) shows higher signal intensities in cores of the
CRC group (Fig. 3), which was verified through statistical
analysis (p = 0.0009). A classification accuracy of 0.74 was
achieved by a random forest classifier based solely on
taurine levels. Intensity levels of taurine and further analytes
that are significantly different in the tumors are visualized in
boxplots (Fig. 4). Ion channels m/z 170.0231 and m/z
186.0188 are enhanced in CRC samples as well. These m/z
values represent the chloride adduct ions of purine bases
adenine and guanine with respective p values of 0.0003 and
0.0003 (Fig. 4C, D). Supporting these results, taurine,
adenine, and guanine were detected as [M-H]™ and [M +
CI]™ ions, showing similar differences between groups.
Therefore, only the ion channel with higher intensity is
shown, respectively.

Furthermore, analytes were found to have higher abun-
dances in UrC. The analyte with m/z 115.0026 was anno-
tated as fumarate. The tricarboxylic acid cycle metabolite
shows increased intensity levels in UrC specimen, com-
pared to CRC specimen (p =0.0006) (Fig. 4A). Likewise,
ion channels m/z 232.0829 and m/z 238.0485, a N-acyl-
alpha amino acid, show significantly higher levels in UrC
specimen with p values of 0.0002 and 0.0341, respectively
(Fig. 4E, F).

Discussion

The histopathological differential diagnostic process of UrC
is of major therapeutic importance. However, as supportive
diagnostic technologies were shown to be helpful only in a
subset of cases or specific settings [4, 28, 29], diagnostic
biomarkers are urgently needed.

For the detection of diagnostic biomarkers in UrC, we
therefore sought to employ a technology that has not yet
been used in this setting (MALDI-MSI). Aims of the pre-
sent study were to (i) show the feasibility of MALDI-MSI
for the evaluation of FFPE tissue in UrC and CRC as its
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Fig. 1 Results of histopathological classification and assignment on
mass spectrometry results in an urachal adenocarcinoma (UrC)
core. A Hematoxylin and eosin staining. Scale: 200 um. B QuPath
classification result. Red areas are classified as tumor and green areas
as non-tumorous regions. C Mass spectrometry imaging result for m/z

most relevant differential diagnosis, (ii) combine spatial
MALDI-MSI data with annotated histopathological data
from digitalized H&E slides, and finally (iii) evaluate
metabolites as a differential diagnostic biomarker in UrC
versus CRC.

Considering the first aim, the analysis of metabolites
from FFPE tissue is still a great obstacle. Although the
feasibility of MALDI-MSI for the evaluation of FFPE tissue
was demonstrated in principle [22], it has to be noted that
less metabolites are detectable via MS in FFPE samples
compared to fresh frozen tissue [30]. However, in case of
rare tumors such as UrC, where only few tissue samples are
available over years, the use of FFPE material is inevitable.
In this study, the less commonly used matrix NEDC [31]
was utilized and a successful application on FFPE tissue
samples was demonstrated. Considering these results, the
present study is the first to use these techniques in this
setting showing metabolic differences.

The metabolite with most prominent differential expres-
sion between UrC and CRC, taurine, is an amino acid with
antioxidative properties, that can induce apoptosis and can
suppress proliferation in tumor cells [32, 33]. Increased
taurine levels in CRC in comparison to non-tumorous spe-
cimen were reported previously [34]. This emphasizes the
need of spatially separating tumorous from non-tumorous
tissue in the MALDI-MSI analysis to detect metabolites that

Non-tumor 0%

@ Tumor
@ Non-tumor

@ Tumor

100 %

214.0482 in classified tumor regions. D Area of zoom with higher
magnification of hematoxylin and eosin staining. Corresponding area
is annotated in Fig. 1A. Scale: 100 um. E Area of zoom with higher
magnification of the classification result. Corresponding area is
annotated in Fig. 1B.

derive from the cancer cells themselves but not from the
stromal compartment or non-tumorous epithelia. We
addressed this issue by H&E-staining of serial sections of
the TMA used for MALDI-MSI analysis. These H&E slides
were scanned, and cancer cells were digitally identified after
training of an algorithm based on the pathologist’s annota-
tions and manual validation of the final detection results.
After merging the MALDI-MSI data with data from digital
pathology, the metabolic profile could be spatially assigned
to the cancer itself thus acting as a proof-of-concept of the
study’s second aim to combine MALDI-MSI and histo-
pathological data with spatial discrimination (Fig. 1). The
relevance of this multimodal approach is emphasized, as the
2021a release of the commercially available MSI software
SCiLS Lab (Bruker Daltonik GmbH) now also allows an
export of QuPath annotations into SCiLS Lab.

Beside taurine, also several small molecules with sig-
nificantly different levels in the two tumor types were
detected. This is important for achieving the AUC of 0.94 in
ROC-analyses (Fig. 2C). Best classification result was
obtained using a random forest algorithm, which is limiting
data-overfitting and was used in various MSI approaches
before [35]. However, for taurine alone, the diagnostic
accuracy was 74% with an AUC of 0.77 representing an
excellent result in the present study setup. As the two tumor
types also show an overlap in the t-SNE visualization, it is
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Fig. 2 Visualization of metabolic differences between urachal
adenocarcinomas (UrC) and colorectal adenocarcinomas (CRC).
A t-distributed stochastic neighbor embedding (t-SNE) algorithm.
Each dot represents one TMA core. UrC cores: n =66, CRC cores:
n = 80. B Visualization of cases via t-SNE including tumor subtypes.
Arrows indicate mucinous CRC. UrC: n=19, CRC: n=27.
C Receiver operating characteristic (ROC) analysis of a cross-

A

3mm

validated k-nearest neighbors algorithm (black), random forest algo-
rithm (dark gray), and support-vector machine algorithm (light gray)
on tumor cases. UrC: n =19, CRC: n = 27. MUC: mucinous subtype,
INT: intestinal subtype, NOS: not otherwise specified subtype, SRG:
signet-ring cell subtype, MIX: mixed subtype, KNN: k-nearest
neighbors, RF: random forest, SVM: support-vector machine.

Intensity (arb. units)
I
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Fig. 3 Ion image of m/z 124.0064, annotated as analyte taurine. A Urachal adenocarcinoma (UrC) TMA cores. B Colorectal adenocarcinoma
(CRC) TMA cores. Mucinous CRC cases are highlighted in rectangles. Scale: 3 mm.

interesting to note that most outliers were of mucinous
subtypes both in UrC and CRC with strong discrimination
of intestinal type tumors (Fig. 2A and B). These differences
have to be kept in mind when applying the technology in
this scenario. However, considering the third aim of the
study, the diagnostic accuracy of taurine levels measured by
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MALDI-MSI considerably outperforms currently available
adjunctive technologies such as immunohistochemistry of
beta-catenin or CK7 [4, 36, 37].

Taurine was additionally identified to be enhanced in
urine samples of patients with a colorectal neoplasia [38]. In
turn, the finding of lower taurine levels in UrC specimen
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Fig. 4 Boxplot analyses of metabolites, detected by MALDI-Orbi-
trap-MSI, extracted from classified tumor regions in urachal ade-
nocarcinomas (UrC) and colorectal adenocarcinomas (CRC). Cores
derived from one case were combined by mean intensities. A m/z
115.0026 (fumarate), (B) m/z 124.0064 (taurine), (C) m/z 170.0231

might also be reflected in urinary samples and should be
further analyzed.

Our study has some limitations. As stated above, data
quality could be increased, if fresh frozen tissue of both UrC
and CRC would have been used. However, as UrC is such a
rare tumor type, FFPE tissue samples are the only available
source of material in sufficient numbers. Although we addi-
tionally analyzed different cores per sample and discriminated
tumorous from non-tumorous areas, the number of samples,
i.e., cohort size, used in the present study still is low. There-
fore, the results should be considered as a proof-of-concept
with the result of a promising diagnostic biomarker (taurine)
from a combined MALDI-MSI/digital pathology approach,
which has to be validated in further studies and larger cohorts.
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