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The functional brain favours segregated modular
connectivity at old age unless affected by
neurodegeneration

Xue Chen 129@, Joe Necus 239&, Luis R. Peraza 4'5'9, Ramtin I\/\ehraram2'4'6'7'9, Yanjiang Wang1,
John T. O'Brien® 8, Andrew Blamire® 4, Marcus Kaiser?34 & John-Paul Taylor4

Brain's modular connectivity gives this organ resilience and adaptability. The ageing process
alters the organised modularity of the brain and these changes are further accentuated by
neurodegeneration, leading to disorganisation. To understand this further, we analysed
modular variability—heterogeneity of modules—and modular dissociation—detachment from
segregated connectivity—in two ageing cohorts and a mixed cohort of neurodegenerative
diseases. Our results revealed that the brain follows a universal pattern of high modular
variability in metacognitive brain regions: the association cortices. The brain in ageing moves
towards a segregated modular structure despite presenting with increased modular hetero-
geneity—modules in older adults are not only segregated, but their shape and size are more
variable than in young adults. In the presence of neurodegeneration, the brain maintains its
segregated connectivity globally but not locally, and this is particularly visible in dementia
with Lewy bodies and Parkinson’'s disease dementia; overall, the modular brain shows pat-
terns of differentiated pathology.
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and electrophysiological technologies that allow us to fur-

ther our understanding of its structure and function. By
these recent developments, we know that brain function is dic-
tated by complex interactions between neurons in the micro-,
meso- and macroscales!, and that these are shaped in a functional
network with specific properties and characteristics>3. The
functional brain network is small-world, meaning that its struc-
ture reflects a balance between efficient communication and
wiring cost®>. The brain achieves this efficiency by creating
groups of neurons densely connected among themselves but
loosely communicated between the different groups; these are
typically referred to as communities or modules®. It is hypothe-
sised that the modularity of the brain is the result of evolution,
where, in an always changing environment the brain developed a
strategy to adapt subsystems rapidly without compromising the
totality of its network®. In this regard, recent studies on brain
dynamics have reported that modules constrain dynamic com-
munication within their boundaries without affecting other
modules>’-8. This property also gives the brain superior resilience
against attacks either by disease or injury®°.

Previous research in brain modularity has reported, con-
sistently, several major modules such as the motor-sensory, visual
and default-mode modules'®!1. Although there is no agreement
on their number, the majority of functional studies report that
between three to ten modules are present in the brain®!2, This
number depends on many factors and methodologic preferences
such as the number of brain regions (brain parcellation), the
chosen brain atlases!3, neuroimaging pre-processing pipelines!4,
connectivity measures (e.g. wavelet or Pearson correlations), and
treatment of connectivity weights!®. Regardless of these differ-
ences, it is now agreed that brain modules are variable across time
and between individuals, changing in shape and size depending
on the cognitive task or no task at all, as is the case of the resting
state. A recent investigation by Bassett, et al.1® in a task-based
functional magnetic resonance imaging (fMRI) study found that
after training, brain modules become more segregated and this
was linked to learning and specialisation of regions. In the same
fashion, Baum, et al.l” reported that the modular brain becomes
segregated during development, from childhood to adulthood, a
finding reported as well by others!®. From the perspective of
diseases, alterations to the brain’s modularity depend highly on
the disease. In schizophrenia, for instance, there is a decrease in
modularity suggesting leakage of information between modules'?
while in Lewy body diseases there is an increase in modularity
suggesting segregated communities!®20, Certainly, the processes
of ageing and neurodegeneration can alter brain communities;
however how this is done and how the brain diverges from
healthy ageing to a dementia state due to neurodegeneration is
still not completely understood.

To address this issue, we studied functional modular changes
by the ageing process within two public databases; the Enhanced
Nathan Kline Institute Rockland Sample (NKI, N=297
participants)?! and the 1000 Functional Connectomes Project
(TFC, N=359)22. Additionally, to test the effects of neurode-
generation on brain’s communities we also analysed a Newcastle
University (NCL) database of neurodegenerative dementias?3-2°
which comprised an Alzheimer’s disease dementia group (ADD,
N =42), and two Lewy body disease groups which included both
dementia with Lewy bodies (DLB, N = 38) and Parkinson’s dis-
ease dementia (PDD, N=17). These diseases are the most
common cause of neurodegenerative dementia in older adults?®
and represent a spectrum between a more cortical amyloid dis-
ease and subcortical alpha-synuclein disease that often concur in
patients?’. The NCL database also included age-matched healthy
participants (N = 34).

The brain can now be studied by a range of neuroimaging

We investigated group modular variability (MV) which mea-
sures the heterogeneity of network communities across
participants?8. Additionally, we studied a proposed measure we
have named modular dissociation (MD). MD is defined as the
community difference between two networks constructed by
global and local thresholding of network connections. The global
threshold is the standard and most used method for network
construction while local thresholding is an alternative approach
that favours segregation of modules by connecting the k nearest
neighbours of a node, i.e. the strongest k connections. Hence, MD
measures how close a globally thresholded network is from the
nearest neighbour connectivity regime that favours modular
segregation; thus high MD values indicate that the networks
dissociate from the nearest neighbour connectivity regime.

We compared differences in MV and MD between young and
older adults from the NKI and TFC cohorts and the deviation
from healthy ageing to disease with the NCL cohort. This analysis
was performed at optimal edge density (network cost) using 451
region-of-interest (ROI) functional atlas?®. For validation pur-
poses, group MV and MD were also estimated at 10 and 20%
edge densities, and with three additional functional atlases; 100,
200, 247 ROI. A schematic figure showing the estimation pro-
cedure is shown in Fig. 1.

Our results show that the brain has a consistent pattern of high
MV and MD across all studied cohorts which involves the higher
association cortices and basal brain structures respectively, indi-
cating a topographic and preserved universality to these mea-
sures/patterns. These patterns also demonstrated a consistent
change as a result of healthy ageing, as observed in both inde-
pendent ageing cohorts, where the brain moves towards a more
segregated modular network structure that favours nearest
neighbour connectivity despite presenting with increased mod-
ular heterogeneity, with the exception of the insulo-opercular
cortex which showed higher values of dissociation and hetero-
geneity in older adults. However, in the presence of neurode-
generative dementia, the brain’s dissociation remains invariant—
globally it stays in a segregated state, which is particularly pro-
nounced in DLB and PDD. In contrast, it is heavily altered at the
modular level with decreased MD in frontal-related modules and
increased MD in the motor-sensory module. The present work
represents an advancement in the understanding of the effects of
ageing in the modular brain and the changes driven by neuro-
degenerative diseases on the ageing brain.

Results

Participants from the ageing neuroimaging databases were
selected and divided by age: young adults (YA) between 20-40
years old (NKI=151 and TFC =257 participants) and older
adults (OA) between 60-80 years old (NKI = 146 and TFC = 102
participants). The healthy participants within the NCL neuroi-
maging database were classified as an independent OA group and
used as a reference for comparisons with the three dementia
groups. Demographics of all groups are given in Supplementary
Table 1.

Length-vs-strength connectivity behaviour is not different
among dementias. We examined edge distance vs edge strength
(weight) behaviour within each group and performed compar-
isons between groups for each of the three cohorts in this study.
Weights for this analysis belonged to the network connections
that survived optimal edge density using local threshold network
construction (Supplementary Fig 2). We implemented a linear
model to test for differences in the intercept and slope between
two groups with connectivity strength as the dependent variable.
In both ageing cohorts (TFC and NKI) a difference in the
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Fig. 1 Methods for modular variability (MV) and modular dissociation (MD). a Resting-state functional MRI pre-processing pipeline and time-series
extraction from functional atlases. b Pearson correlation matrices. ¢ Optimal local threshold estimation; the network edge density at which Q—Q,qng is
maximum. d Thresholded matrices by optimal density using local and global threshold network construction methods. e Louvain's community and modular
dissociation (MD) estimation, see also Supplementary Fig 1. f Modular variability (MV) using consensus community. g Group means MD; subcortical
regions and cerebellum showed in all groups high MD while motor-sensory, frontal, temporal pole and occipital cortex show low MD. h Group mean MV;
patterns of high and low MV were consistent across all groups. Motor-sensory, occipital, and temporal pole showed low MV while parietal, ventral frontal

and insulo-opercular cortices showed high MV.

strength-vs-distance slope was found. Both older adult groups
presented with a more negative slope compared with the YA
groups indicating a faster decrease of connectivity strength as the
Euclidean distance increases, which was significant at a p-
value = 0.0002, Fig. 2a, b. Differences in the intercept were found
for the TFC cohort, with OAs showing a higher intercept com-
pared with YAs (p-value <0.0001) but no differences for this
parameter were found for the NKI cohort. The covariate for sex
was significant for the NKI group indicating differences in con-
nectivity strength between males and females, p-value <0.0001.
For the TFC cohort, sex was not a significant variable
(p-value = 0.54).

Fig. 2c shows the estimation of Q-Q,,,4 (the modularity index
difference between the participant’s network modularity Q, and
that of an equivalent random network Q,,.® see methods
section) across a range of network edge densities for the NCL
cohort, and which reached its maximum at 3.24% for the 451-
ROI atlas; this edge density is referred to as optimal density (see
methods section). Optimal density estimation for the other
cohorts is shown in Supplementary Fig 2. When comparing the
distance-vs-strength profile for the NCL cohort, all dementias
showed a significant negative slope that was steeper than the OA
group (p-value < 0.0016). The ADD group showed no significant
difference for the intercept when compared with OA
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three neurodegenerative dementias showed a significantly steeper slope when compared with OA. g-i NCL; slope and intercept comparisons between

dementias. The three dementia groups did not show differences in their slopes. Coefficients; p;

Psex= S€X.

(p-value = 0.55) whereas the DLB and PDD groups showed a
significant lower intercept (p-value <0.001). However, when
comparing between dementias no significant slope differences
were found, indicating that their strength-vs-distance connectiv-
ity profile was broadly similar, although their intercepts were
different in all between-dementia comparisons (p-value < 0.001).
Contrasting with the experiments for the ageing cohorts, age and
sex were added as covariates of no interest. In all comparisons
these covariates were significant, indicating that for the NCL
cohort, age and sex influenced functional connectivity strength.

4

intercept difference, ps= slope difference, .= age,

Because of this, age and sex were added as covariates of no
interest in all subsequent analyses.

Modular variability is higher in association cortices than pri-
mary cortices. Due to the unbalanced group sizes in our study,
we estimated MV using a bootstrapping approach where at each
iteration an equal number of individuals from each group were
randomly sampled without replacement and their community
consensus was estimated (see Methods section for details on this
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Fig. 3 Modular variability (MV), consensus communities and group means. a Nathan Kline Institute (NKI) consensus modularity and module definitions
shown in coloured spheres (top). Group mean MV for young adult (YA) and older adult (OA) groups (middle). Mean MV per module is shown as bar plots
for the OA and YA groups (bottom); colours for each bar match the communities. b Same as (a) but for the 1000 functional connectome (TFC) cohort. ¢
Same as (a) for the Newcastle (NCL) cohort. The left hemisphere (L), right hemisphere (R). Results presented here used the 451-ROI atlas for the NKI and
NCL cohorts at optimal edge density; for results using other atlases see Supplementary Fig 5. The mean values and standard deviations shown in the bar

plots are obtained by 500 times with bootstrapping approach.

bootstrapping approach). Then, MV was computed as the
variability between each selected participant and the consensus
community at that iteration. These consensus communities were
saved and a final meta-consensus was estimated and shown in
Fig. 3 at the top of each panel. For the NKI cohort, eight con-
sensus modules were found (Fig. 3a), seven modules in the TFC
cohort (Fig. 3b), and for the NCL a total of nine modules
(Fig. 3c). Several modules were consistent across cohorts. For
instance, occipital and motor-sensory modules were found in the
three cohorts. Additionally, for the NKI and NCL cohorts, which
had the same parcellation and data pre-processing pipeline, cer-
ebellar, motor-sensory, and occipital modules were also

consistent. There were some notable differences, however; for
instance, nodes within the basal brain were grouped with the
insula cortex for the NKI cohort, while for the NCL cohort these
same nodes were grouped with the cerebellum as a community.

We then studied group modular variability (MV) in our three
study cohorts. Mean MV for all groups is shown in Fig. 3a-c. All
three independent cohorts and their subgroups showed a
consistent pattern of MV across the brain. MV was higher at
inferior frontal, parietal, insular cortices, inferior post and pre-
central gyri as well as superior temporal gyri. Regions of low MV
were the occipital, superior motor-sensory (or superior central
gyri), temporal poles and the cerebellum (the latter for the NKI
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and NCL cohorts only). The superior frontal cortex also showed
low MV but to a lesser extent compared with the occipital cortex.
Even though the TFC cohort database did not have cerebellar
connectivity, had a lower atlas resolution (177 ROI) and an
independent pre-processing pipeline, this cohort showed a similar
MV pattern to the other two cohorts (Fig. 3b).

The within module mean MV for all groups is shown as bar
plots at the bottom of each panel in Fig. 3. For all cohorts, the
occipital and cerebellar modules showed the lowest MV values,
followed by the motor-sensory modules. Modules with high mean
MV were those with frontal, insular, and parietal aspects in their
topological distribution; specifically, parietal and insular cortices
were the regions with the highest MV.

We also estimated modular dissociation (MD). In this case,
MD can be estimated within each participant (i.e. bootstrapping
was not necessary) and mean MD was computed directly. Similar
to MV, the pattern was consistent across the three cohorts
although similarities were more evident between the NKI and
NCL groups; the mean MD maps are shown in Supplementary
Fig 3. For the TFC, low MD is found in occipital, and pre and
post-central gyri, while high MD is found in temporal poles and
one node in the ventromedial prefrontal cortex. NKI and NCL
participants also showed low values of MD in occipital, and
motor-sensory cortices while regions of high MD were located
primarily in cerebellar, basal structures and insular cortices.
Similar results were found in other atlases as well (see
Supplementary Fig 6).

Healthy ageing showed consistent patterns of increased mod-
ular variability and decreased modular dissociation. We per-
formed between-group comparisons for MV and MD, and for the
NCL cohort, we were interested in comparisons between OA and
the neurodegenerative dementias. All tests were corrected for age,
sex and study by regressing out these covariates before non-
parametric permutations for the between-group comparisons.

The TFC-OA group showed an overall increase of MV across
the brain while the NKI-OA group showed regions of high and
lower MV when compared with YA (Fig. 4a, b). However, despite
this difference both ageing groups showed a similar pattern of
high MV within occipital, insular and ventral frontal cortices in
OA compared with YA. For the NKI groups, OA showed lower
MYV within parietal, motor-sensory, cerebellum and part of the
superior frontal cortices (Fig. 4a).

The MD patterns for both ageing cohorts, NKI and TFC, were
also similar. Again, insular areas showed significantly higher MD
in older adults while cerebellum, temporal and motor-sensory
regions showed lower MD in OA compared with YA (Fig. 5a).
For the TFC cohort, in particular, the occipital cortex showed
significantly higher MD in OA compared with YA (Fig. 5b); this
trend also existed within the NKI cohort, but it was not
significant after corrections for multiple comparisons. Between-
group comparisons for both ageing groups survived FDR
correction for multiple comparisons at a p-value < 0.05. Corrected
results for the NKI comparisons for MV and MD are shown in
Fig. 4c and Fig. 5¢ respectively.

Neurodegenerative dementias show differentiated patterns of
modular variability and dissociation. When comparing
dementia patients with OA within the NCL cohort, the ADD
group showed on average higher MV within the occipital cortex
while lower MV was found in the rest of the cortex, Fig. 6a. The
DLB group also showed higher MV in the occipital cortex as well
as in the motor-sensory cortex, Fig. 6b. Surprisingly, the DLB
group showed regions that were statistically different, but the
direction of this difference (higher or lower than OA) changed

between iterations during the bootstrapped meta-analysis,
resulting in low differences (shown with pale grey colour) but
significant and represented by large spheres. These regions were
located primarily within the insular and ventral frontal cortices.
For the PDD group, differences were not significant for MV
(uncorrected) compared with OA, with only a trend of high MV
within the cerebellum, Fig. 6c.

MD was also compared between dementias and OA, where the
ADD and DLB groups showed a similar pattern of MD with
higher values in occipital and motor-sensory cortices and lower
values within frontal, ventral frontal, precuneus and basal brain
regions. PDD, on the contrary, showed a differentiated pattern of
MD compared with the other two dementias, with lower MD at
the occipital cortex and high MD within cerebellar, insulo-
opercular and motor-sensory cortices, Fig. 7.

The functional brain moves towards a segregated modular
structure with ageing whereas neurodegeneration alters this
segregation locally. We further decided to explore MD differ-
ences between young adults and the neurodegenerative dementia
groups. This was possible by using the healthy OA groups within
the NKI and NCL cohorts as reference groups; MD values were
analysed relative to the OA groups to create an MD,o, index (see
Methods section). Fig. 8a shows MD values from both OA
groups. There was a high agreement between both OA groups
regarding MD; Pearson r = 0.8, p-value = 1.17e-102, R? = 0.64.
Fig. 8b shows the global MD across all nodes; here MD was
significantly higher in YA compared with OA globally while this
measure did not change significantly in our exemplar dementia
groups indicating that globally MD is not affected by neurode-
generation; i.e. MD,o, was significantly different from zero in YA
but not in the dementia groups. However, when we analysed MD
changes relative to OA for each of the identified communities,
higher YA MD was present in six of the nine modules, as shown
in blue in Fig. 8c; ventral frontal, fronto-parietal, temporal,
motor-sensory, cerebello-basal, and lateral fronto-parietal mod-
ules. For the modules with a frontal component, the MD change
was on the average negative in the dementia groups (Supple-
mentary Fig 4e, f and i), indicating lower MD compared with OA.
For the temporal module, the ADD group showed a positive
change although this was significantly lower than YA MD
changes (Supplementary Fig 4c), and for the cerebello-basal
module the PDD group showed on average a positive MD change,
but this was significantly lower than the YA MD change. For the
motor-sensory module, all groups showed a positive change
relative to OA, but this change in dementias was significantly
lower than YA (Fig. 8c, Supplementary Fig 4a). From these
results, it is worth noting that for the occipital module, the PDD
group showed a significant negative change of MD which con-
trasted with the positive MD change in ADD and DLB groups
(Supplementary Fig 4g).

Discussion

Our research study showed consistent patterns of group modular
variability (MV) and modular dissociation (MD) across the three
independent neuroimaging cohorts and which suggest pattern
universality for these two characteristics. Our main findings are
that in the ageing brain, its modules move towards a connectivity
regime that favours segregation while brain modules become
more heterogeneous in older adults compared with young adults.
This shift towards segregated modular connectivity is not affected
by neurodegeneration globally. However, at the modular level,
there are marked changes where modules showed increased and
decreased modular dissociation depending on the type of neu-
rodegenerative disease.

6 COMMUNICATIONS BIOLOGY | (2021)4:973 | https://doi.org/10.1038/s42003-021-02497-0 | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02497-0

ARTICLE

Postcentral_R

NKI MV
a c 8.’ Cingulum_Ant_R
O A 3 Amygdala_Hipp_L
4 <« :?8‘ ‘Lg“‘/ © c R NKI MV c>)- Frontal_Inf_Oper_L
ce L‘&& ‘A P %% older vs young \i Temporal_Mid_R
® t« . © > adults [} Angular_L
© ﬁ {.‘" % % Temporal_Mid_L
o s PostcentraLR_ —
> Temporal_Inf_R
Brain stem_R
Frontal_Inf_Orb_R
Thalamus_R
Calcarine_L
Thalamus_R
Caudate_R
Temporal_Pole_Sup_L
Temporal_Sup_L
Temporal_Sup_R
Temporal_Sup_L
Thalamus_L
Insulo-opercular L tontal ed o L
¢ cortex 3 Frontal Med O R
© Temporal_Sup_L
g’ Temporal_Sup_R
3 Frontal_Sup_Orb_L
TFC MV g., Fusiform_L
A Temporal_Sup_L
OIder vs young _‘Q Frontal_Inf_Orb_L
ad u |tS E Rolandic_Oper_L
-8 Temporal_Sup_R
9 ‘ :‘6% % ° B Thalamus_L
© [ ?’ < bl Thalamus_L
‘t‘&:: &%8 ‘:‘ é:: ° Tempo.raLSuD,R
3 Rolandic_Oper_R
‘: (9] ‘“k "‘s Rolandic_Oper_L
o “¢% ® Frontal_Inf_Orb_L
’Q ‘t .,»"“’ <@ Cuneus_L
¢ ¢
;‘“ &) o ' [ Sy Postcentral_L

Insula_R
Frontal_Inf_Orb_L

Fusiform_R

Caudate_R

Insulo-opercular Postcentral R
Thalamus_R

Cortex Precentral_L

I

older > young adults older < young adults

p-value = 0.5 =7 ® p-value < 0.001

Rolandic_Oper_R
Cerebellum_4_ 5 R

Cuneus_R
Insula_R

Insula_L

0 5
Z score
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Our method of modular variability measures the variability in
community assignment of a node when compared against the
group’s consensus community. Hence, MV measures modular
heterogeneity across participants. This measure was observed to
be high within association cortices: the posterior and anterior
association cortices, which span the parietal and frontal lobes.
The limbic association cortex which spans the temporal pole did
not demonstrate high MV.

In contrast, the insular cortices showed high MV in all groups.
The brain regions showing high MV are known brain areas
considered of high demand; i.e. that these engage with multiple
modules or brain systems and are involved in multiple cognitive
tasks’. Indeed, the regions of high cognitive activity identified by
Bertolero, et al.” are remarkably similar to our pattern of high MV
across participants. Hence, our MV pattern maybe capturing the
different interactions between nodes of high demand that connect
with a great variety of regions and modules.

Brain regions with low MV were the motor-sensory, occipital
cortex and cerebellum. The motor-sensory and occipital cortices
are known primary cortices that receive information from tha-
lamic connections®’. These network modules are also the most
consistently reported in the literature indicating that these are
highly integrated into the functional brain and that nodes within
these modules interact less often with other brain regions®!. The
cerebellum was found here to be a module with low MV, this
structure is highly connected to the basal ganglia®? and it is
topologically isolated from the cortex, with the dentate nucleus as
its main route to the basal brain33 and which may drive its
consistent modular integrity.

A hypothesis for the differences in modular variability between
the association and primary cortices is that during the neuro-
genesis, the association cortex develops later in humans allowing
flexibility of function and behaviour?4, whereas primary cortices
develop earlier with strong connections from the basal brain,
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Fig. 5 Age effects of modular dissociation (MD). a Age differences in MD within the Nathan Kline Institute (NKI) cohort, older adults (OA) compared
with young adults (YA). b Age differences in MD within The 1000 functional connectome (TFC) cohort OA compared with YA. ¢ Significant brain regions
for the NKI-MD comparison; corrected at p-value < 0.05. Differences were assessed with non-parametric permutations (5000) after regressing covariates
of no interest. Regions' names are given using the Automatic Anatomical Labelling (AAL).

which may also control their cytoarchitecture and functionality3>.
The high modular variability observed in particular within the
insular regions and operculum seems to indicate high demand.
The insula in the human brain is characterised by the presence of
von Economo neurons, which are fast communication circuits
within the brain3¢. Additionally, it has been reported that the
insula is involved in multiple brain functions, regulating salience
stimuli and activity between brain systems such as the attention
and default mode systems>’.

The patterns for MD and MV showed low values within the
motor-sensory and occipital cortices/modules indicating that at
the group level these modules are very homogeneous across
participants and are densely connected within their respective
communities, i.e. segregated by nearest neighbour connectivity.

The MD pattern showed remarkably high values within basal
regions in all groups. Because of the definition of MD, this index
measures the difference between global and local threshold con-
struction methods. This difference is mainly driven by the
weakest connections introduced by the local thresholds and

which change the topography of communities. These connections
are not weak in correlation given that these belong to the
strongest nearest neighbours for each node within the partici-
pant’s connectivity matrix. However, the higher MD values
within the basal region indicate that nodes within this region have
a high tendency to disconnect or join other modules, i.e. dis-
sociate. In this regard, the basal brain and specifically the thala-
mus presents with weak and sparse connections to the cortex3,
even though these connections can control the global functional
dynamics of the whole cortex38.

The structure of weak connections in the brain has been a
matter of intense research. These connections are found to be
non-random, and their function is thought to relate to network
path length shortening®. Also, previous research has found that
the weak long-distance connections contribute to the brain’s
complexity’ and that their strength decreases with cortical
distance?, a finding that we also confirmed here (in Fig. 2).
Previous investigations in modular connectivity have used the
strongest connections using either static!® or dynamic!®
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approaches. It is highly plausible that because of the weak and
dynamic nature of the basal connections, these previous studies
were not sensitive to basal connectivity, even though these are
highly targeted by a wide range of brain diseases and
conditions*!.

The comparisons between ageing groups, OA vs YA, from both
cohorts showed similar patterns of MV and MD suggesting that
the ageing process follows a consistent path of alterations. Also,
our results demonstrate that generally, the brains of OA become
more segregated with lower dissociation values compared with
YA. The motor-sensory, temporal cortex and cerebellum which
are regions of low MD, have this metric further decreased in OA
while regions within insular and occipital cortices show increased
MD. It is hypothesised that modular segregation is a result of
functional specialisation!”. In this regard, Baum et al.l” found,
using structural networks from diffusion tensor imaging (DTI),
that modules segregate from childhood to adulthood, which
agrees with our results using functional connectivity and further
extrapolates this conjecture to older adults. Baum et al. also

reported that the opercular cortex does not follow segregation
with age which agrees with our result in functional networks. The
high MV and MD shown by the OA group in the insulo-
opercular cortex compared with YA were observed in both NKI
and TFC cohorts indicating a universal characteristic.

The occipital cortex also showed higher MD and MV in OAs
from both ageing cohorts, although this characteristic was more
prominent in the TFC cohort. The occipital cortex is one of the
most resilient regions to ageing; cortical thickness in this region
does not significantly decrease with ageing*?> and shows minimal
thinning/atrophy in ADD*3. However, this cannot explain the
higher MD and MV observed in OA because cortical thickness
within the insular cortex, contrary to the occipital cortex, is sig-
nificantly reduced by ageing#2. At this point, our only explanation
is that both regions are of higher demand in the old age brain.

When we compared MV and MD between dementias and older
adults, only results for the comparison PDD vs OA survived cor-
rection for multiple comparisons. This also indicated that for ADD
and DLB, our two nodal indices remained fairly invariant to the
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presence of these neurodegenerative dementias. However, a pattern
was observed in ADD and DLB; these dementias showed a trend of
higher MD in the occipital and motor-sensory cortices. This con-
trasted with the NKI and TFC cohorts where OA showed lower
MD for these regions compared with YA, which suggests that MD
in the motor-sensory cortex partially returns to YA’s levels in the
presence of neurodegeneration and that this region departs from a
modular segregation regime that is a characteristic of ageing.
PDD showed higher MD in motor-sensory and insular cortices
as well as in the cerebellum; only occipital and frontal cortices
showed a trend that favours segregation of modules. These dif-
ferences may be related to the neuropathology of the Lewy body
diseases affecting motor and cognitive brain functions. In a recent
investigation by Kim et al.#4, the authors reported an increase in
network state transitions, which they called State I and II net-
works, in PD patients and which suggested unstable brain
activity. This agrees with our finding of a higher MD in our group
of PDD patients and which indicates a departure from segregated
but structured brain modularity. However, more research on
larger cohorts will be needed to bring more light into this.

10

The global mean MD across the cortex did not change sig-
nificantly with the presence of dementia, which is particularly
visible in DLB and PDD, contrary to normal ageing which
showed lower MD in OA compared with YA. However, and
despite this global invariance, at the modular level, there were
significant changes in all dementia groups. Six of the nine mod-
ules showed lower relative MD than the YA group. This first
indicated that with ageing, the brain is more segregated, with
nodes closer in relative strength to their communities. However,
the effects of dementia vary, for some modules, the tendency is of
higher or lower MD depending on the type of dementia but in
many of these cases this was significantly different from zero,
indicating the change. For instance, the negative relative MD in
all dementias for the ventro-frontal module (Fig. 8c: the module
in red) shows that during ageing, nodes within this module follow
a connectivity regime that favours modular segregation, and that
in the presence of neurodegeneration, nodes follow this tendency
even further (negative MD,p). The contrary occurred with the
motor-sensory module, where the positive relative MD in all
dementias shows that this module is partially ‘restored’ to young
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adult levels of dissociation. The pattern of MD,p5 between ADD
and DLB is very similar, confirming the similarities between these
two diseases. Surprisingly, the PDD group showed a completely
different MD,o, pattern compared with DLB, even though pre-
vious investigations have suggested functional similarities
between DLB and PDD?2>45,

Previous investigations have focussed their attention on the
strongest connections. This is certainly sensible; the strongest
connections are less influenced by noise and are less likely to be of
artefactual origin. However, recent investigations have shown the
importance of weak or slightly weaker connectivity within the
brain. In a resting state, fMRI investigation linking brain con-
nectivity with intelligence quotients (IQs) from participants,
Santarnecchi, et al.#¢ found that the 60-80% range of the weakest
end of the edge-weight distribution, correlated with IQ, and this
correlation was higher and more significant than for the strongest
connections at the 1-20% range. In our investigation, we per-
formed a test to observe where in the connectivity matrix the
weak edges were added by the local thresholding method (Sup-
plementary Fig 7). Most of the added edges by the local threshold
construction method were intra-modular edges, i.e. these edges
made communities concise. On the contrary, edges added by the
global threshold were inter-modular, or in other words these
aimed to fuse modules; especially the motor-sensory and
temporo-parietal modules, Supplementary Fig 7c, g. Additionally,
the number of intra-modular edges (by their mean node degree
from binarised edges) added by local thresholding correlated
positively with global MD, proving their influence on the
MD index.

The network construction method by local thresholding
showed interesting properties in our investigation. Using this
method, the modularity statistic Q was not different between
dementia groups and OA, and the same can be seen for the NKI
database of OA and YA, Supplementary Fig 2. Also for both
cohorts, Q variance is lower when using the local thresholding
method. Another observation is that the mean number of mod-
ules estimated by local threshold is the same for all groups within
each of the databases (NCL =9, TFC = 7, and NKI = 8 modules
at their respective optimal edge densities). This is because the
local thresholding method is based on the k-nearest neighbour
graph, which favours local connectivity by connecting the closest
nodes and inducing a more segregated network. This was con-
firmed by analysing the edge Euclidean distance distribution for
the connections introduced by the local threshold network con-
struction regime, where close-range connections are highly
introduced. Also, the long-range weaker connections, although
less probable than short-range, are more probable than in a global
threshold regime (Supplementary Fig 8). In conclusion, the
weaker connections added by local thresholding, and which
connected nearest neighbours, did not aim to communicate
between modules but to consolidate modules, even in the pre-
sence of disease, in our case, neurodegenerative dementia.

Fig. 9 shows an explanation for the introduction of short-range
weaker connections by the local thresholds in neurodegeneration.
Currently, it is accepted that neurodegenerative diseases target
specific brain systems or modules;*” neurodegenerative diseases
affect connectivity within these specific systems and their short-
range connections#3, Despite being affected by neurodegenera-
tion, these local links are still connecting the nearest neighbours
within their respective communities and can survive a local
connectivity regime (Fig. 9¢). The finding that modularity statistic
Q (Supplementary Fig 2) and the number of modules were not
different between dementias and OA using local thresholds
support this.

Recent studies have suggested that head motion influences
functional connectivity measures?*->1. Although we performed

motion correction in the pre-processing steps of resting-state
fMRI images before analysis, the impact of small movements is
still uncertain. We thus estimated the framewise displacement
(FD, a motion index that integrates the six motion parameters
inferred by FSL-FLIRT) for each participant and removed parti-
cipants whose mean FD was larger than 0.5 mm. Supplementary
Fig 9 showed mean FD values for all participants and groups in
NKI and NCL cohorts. And the study demographics after
exclusion of large mean FD was shown in Supplementary Table 2.
The mean FD was then added as a covariate of no interest
together with sex and gender in the repeated analysis to test if the
motion affected our results or not. Only the NCL and NKI
cohorts were studied since the TFC cohort was pre-processed in a
previous study and no motion parameters were available?2. As
shown in Supplementary Fig 10, the motion indeed influenced
the functional connectivity strength, particularly affecting the
short-range connections, which was consistent with the previous
work®! showing increased/diminished connectivity for short-/
long-distance edges. However, the motion was found not to affect
our main results. The related details and results (Supplementary
Fig 11-16) are described in the Supplementary Discussion.
Identical to the analysis without FD regression, the association
cortices were found to have larger MV than primary cortices. The
mean MD followed similar patterns to MV with low values within
the motor-sensory and occipital modules. Compared with the YA
group, the OA group showed high variability and was more
segregated with lower dissociation values. Although the modules
and MD patterns within modules varied for the NCL cohort, the
three dementia groups were also shown not to differ in terms of
global mean MD compared to the OA group. And compared to
OA and dementia groups, the YA group consistently showed
higher MD which was mainly distributed in frontal related
modules, temporal cortex and cerebellum. This group-level
regression analysis of FD was widely used to correct motion
artefacts®, however, in addition to this noisy effect, the neural
effect of head motion has been previously highlighted®?, which
may lead to changes in neural activity and thus to be one lim-
itation of our work.

In addition to the potential effect of head motion, it also
remains unclear if the findings are robust on the basis of well-
established brain parcellations. In order to investigate this further,
we conducted a replication study using a multi-modal atlas
Human Brainnetome Atlas®? which in total included 210 cortical,
36 subcortical and 28 cerebellar subregions. The mean FD, sex
and age were added as covariates of no interest in analysis. The
corresponding results were shown in the Supplementary Dis-
cussion and Supplementary Fig. 17-22. The modular definitions
at the optimal edge density of 4.40% varied compared to the edge
density of 3.24% based on 451-ROI atlas. For example, the
frontal-parietal module in the 451-ROI case changed to be two
separated modules for the NKI cohort, while two separate mod-
ules in the 451-ROI case: cerebellum and occipital modules were
integrated into one module for the NCL cohort. Despite modular
differences, the general MV and MD distribution of low and high
values were maintained. When comparing OA and YA groups,
the patterns of high MV and low MD for the OA group were
weakened and even diminished on the standard atlas. However,
the features of both high MV and MD in the insulo-opercular
cortex, the trend of low MV and MD in parietal, cerebellum
cortices were comparable. Similarly, healthy ageing moves
towards a segregated modular structure from a young age and
mean global MD in DLB and PDD groups did not differ sig-
nificantly from the healthy ageing group. The ADD group, on the
contrary, was found to have higher mean MD than OA, which
was not shown in the 451-ROI case. The differences between
standard parcellation and in-house parcellation analysis mainly
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Fig. 9 Disease effects on local and global thresholding. a A toy model of healthy brain connectivity with “known” connections including vulnerable edges
which can be targeted by disease, and latent connections which are weaker than vulnerable connections. b When the model is targeted by disease, the
vulnerable connections become weaker and do not survive a global threshold. ¢ Although weakened by disease, the vulnerable connections still connect the
nearest neighbour nodes within their communities, and these connections are restored or made visible by local thresholds.

existed in the MV comparison between YA and OA (Supple-
mentary Fig 19a), and the mean MD comparison between ADD
and OA (Supplementary Fig 21b). The former differences could
be caused by the bias of registration between standard parcella-
tion and our study cohorts, which underwent different MRI scans
and were acquired at different study sites. Another factor could be
the resolution of the Human Brainnetome Atlas including 274
ROIs compared to the 451 ROI in-house atlas, which may weaken
or decrease the significance because of the global mean across the
region. The large similarity of decreased MV in the OA group
between the results on Human Brainnetome Atlas and in-house
247-ROI atlas (Supplementary Fig 19a, b vs. Supplementary
Fig 19¢, d) supports this. The later differences, on the other hand,
could be owing to the confounding effect of head motion and the
standard atlas. Evidence has been shown in the following: the
global mean MD, o4 for ADD group increased to be positive after
regressing out head motion even though this was still not sig-
nificant (Supplementary Fig 15b vs Fig. 8b); the use of the low-
resolution Human Brainnetome Atlas promoted a further
increase of the mean MD,p, for ADD group which turned to be
significant (Supplementary Fig 21b). Overall, the standard par-
cellation was demonstrated to affect the comparison results
definitely but the primary findings generally remained, especially
for the MV/MD distribution patterns, the high MV/MD of OA
group in the insulo-opercular cortex compared with YA, and local
but not global changes of neurodegenerative dementia groups:
DLB and PDD groups, which help convinced the previous studies
based on 451-ROI atlas.

In conclusion, high modular variability or heterogeneity of
modules exists within the association cortices which are known
regions of high cognitive demand. Our results on the 451-ROI
atlas showed that this is a universal characteristic of the brain,
whose changes are shown to be consistent in healthy ageing.
Similarly, modular dissociation was consistently high at basal
brain regions, and this brain characteristic decreases with healthy
ageing, indicating that the brain moves towards a connectivity
regime that favours segregation of modules, except for the insulo-
opercular cortices which depart from this regime. In contrast,
modular dissociation is not affected by neurodegenerative

dementia globally but at the modular level, which is particularly
visible in DLB and PDD. The brain is constantly learning and also
gets experienced. The ability of the brain to dissociate modules in
youth may be a reflection of continuous learning and the need for
neuronal modules to communicate and share resources. As the
brain gets older, these interactions get impaired by ageing and the
brain moves towards a more segregated network structure.
Despite this, brain modules in older adults are more hetero-
geneous across participants suggesting that the brain within
individuals also follows different strategies or paths during the
ageing process.

Methods

Experimental model and participant details

Newcastle participants and recruitment. Two independent neuroimaging databases
were combined from two clinical studies?3-2°. Participants in these studies were
recruited within the north-east of England and patients with neurodegenerative
dementia were contacted through old-age psychiatry and neurology services in the
Newcastle area (United Kingdom). A total of 42 dementia with Lewy bodies (DLB,
N =16 in study 1 and N= 24 in study 2), 44 Alzheimer’s disease dementia (ADD,
N =16 in study 1 and N =28 in study 2) and 17 Parkinson’s disease dementia
(PDD, N=17 in study 2 only) patients were recruited. Additionally, 34 age-
matched healthy control participants (N =16 in study 1 and N =18 in study 2)
were recruited as a comparison group. All patients were diagnosed by two
experienced clinicians according to the clinical criteria for these diseases: Dementia
with Lewy bodies consensus criteria®34, the diagnostic criteria for PDD?, and the
National Institute on Aging-Alzheimer’s Association criteria for AD%¢. For both
studies, approval was granted by the Newcastle Ethics Committee and all partici-
pants gave informed consent.

Enhanced Nathan Kline Institute (NKI) Rockland Sample. Participants from the
NKI-Rockland sample?! were selected and neuroimaging datasets downloaded.
Selection criteria comprised participants with resting-state (f[MRI) who were
between 20-40 years old for the young adult group (YA, N = 151) and participants
between 60-80 years old who comprised the older adult group (OA, N = 151).
Details about the recruitment of participants for this cohort can be found in
Nooner, et al.2L.

The 1000 functional connectome project. Functional connectivity matrices from the
1000 functional connectome?? were downloaded from the USC Multimodal
Connectivity Database (UMCD, http://umcd.humanconnectomeproject.org/)*’.
This connectivity repository comprises resting-state connectivity matrices (Pearson
correlations) from nine independent studies with a wide age range. A young adult
group (YA, N =257 participants between 20-40 years old) and an older adult
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group (OA, N =102 participants between 60-80 years old) were selected and
functional connectivity matrices were downloaded.

Neuroimaging procedures

Neuroimaging acquisition from Newcastle participants. Neuroimaging was acquired

in both studies with the same scanner. Structural magnetic resonance imaging

(MRI) was recorded with a 3 T Philips Intera Achieva Scanner. Acquisition pro-

tocol used a magnetisation prepared rapid gradient echo (MPRAGE) sequence,

sagittal acquisition, echo time 4.6 ms, repetition time 8.3 ms, inversion time

1250 ms, flip angle 8°, SENSE factor = 2, and an in-plane field of view of

256 x 256 mm? with a slice thickness of 1.2 mm yielding a voxel size of

0.93 x 0.93 x 1.2 mm? for study 1. For study 2, an in-plane field of view of

240 x 240 mm? with a slice thickness of 1.0 mm yielding a voxel size of

1.0 x 1.0 x 1.0 mm3 was used. For functional resting-state neuroimaging, both

studies used the same recording protocol: gradient echo echo-planar imaging

sequence with 25 contiguous axial slices, 128 volumes, anterior-posterior acquisi-

tion, in-plane resolution = 2.0 x 2.0 mm?, slice thickness = 6 mm, repetition

time = 3000 ms, echo time = 40 ms, and field of view = 260 x 260 mm?Z.
Neuroimaging protocols for the NKI and TFC databases can be found in

Nooner, et al.2! and Biswal, et al.22 respectively and references therein.

Neuroimaging pre-processing. Neuroimages from the NCL and NKI databases were
pre-processed with the same pipeline and blinded to the study groups. Non-brain
tissue was stripped with the brain extraction tool (BET) from the FMRIB Software
Library (FSL version 5.0)°8 and results were visually inspected to check if brain
structures were complete and isolated. Resting-state functional MRIs (rs-fMRI)
were then processed. For the NKI resting-state neuroimages, the first five volumes
were deleted because the time series were not steady. All rs-fMRIs were motion-
corrected using the FMRIB’s Linear Image Registration Tool (FLIRT) without
spatial smoothing. Then, the six-movement variables from FLIRT and the average
time series from the bilateral ventricle were regressed out from all resting-state
images. In order to further correct for movement and other artifacts, the rs-fMRI
time series were despiked with the BrainWavelet Toolbox>?, which is a data-driven
motion algorithm that subtracts high and low-frequency motion-related events.
Structural and functional images were then coregistered using FEAT, and nonlinear
coregistration to MNI152 space was implemented with the FMRIB’s Nonlinear
Image Registration Tool (FNIRT) within FSL. Then, fMRI time series were high-
pass filtered with a 150 s filter using FSL-FEAT. Finally, all functional images were
transformed into a 4 x 4 x 4 mm?3 resolution, and a 6-mm full-width half maxima
(FWHM) spatial smoothing was applied to all volumes.

Four functional brain parcellations or atlases were estimated with the
pyClusterROI toolbox:2? < 100, <200, < 250, and < 500 regions of interest (ROI)
were tested. For this, an independent dataset of healthy older adults (N =29
participants,16 males and 13 females, recruited within the north-east of England
and who had neuroimages recorded using the same scanner as the NCL cohort;
mean age 64.1 (standard deviation + 7.92), and mean MMSE, mini-mental state
examination, of 29 with a standard deviation + 0.88), were pre-processed with the
same pipeline as the NCL and NKI databases. The functional brain from the
independent group was parcellated with the pyClusterROI software using a grey
matter mask from the Harvard-Oxford atlas (from FSL) at a 0% threshold, and
which included the cerebellum. Details for the independent older adult database
can be found in Schumacher et al.?3 and Peraza, et al.%. The functional atlases
estimated and used in this study comprised 100, 200, 247, and 451 ROIL The
average time series within each ROI was extracted from all rs-fMRIs, and Pearson
correlation matrices were computed for each participant from the NCL and NKI
databases. The main manuscript shows results using the 451-ROI atlas while results
using the other functional atlases are given in the supplementary material.

The TFC matrices comprised Pearson correlations between 177 ROIs from a
functional atlas?® and had no cerebellar structures; only the neocortex and
subcortical structures were included. Further details about the pre-processing
pipeline used to estimate these matrices can be found in Biswal, et al.?2.

After neuroimaging pre-processing, two AD and four DLB participants from
the NCL and five OA participants from the NKI cohort were excluded due to
coregistration inaccuracies with the functional atlas; these older adult participants
presented with structural alterations in their brains that could not be normalised to
the standard MNI space.

Community and modularity statistic estimation. At this stage, there are three sets of
connectivity matrices with Pearson correlation coefficients: NCL, NKI and the TFC
cohorts. Currently, there is no consensus about the treatment of negative values
from Pearson correlation matrices for the definition of network connections, and
several approaches have been proposed such as deletion of all negative
correlations®!, transformation to an all-positive scale®? or compute the absolute
value of the correlation coefficients |r|1%. Here we decided to take the absolute value
of the connectivity matrices as we did in our previous study!® because we were
interested in the connectivity strength between regions rather than in the direction
of these correlations. Furthermore, previous evidence from functional connectivity
studies has proved the biological origin®-%4 and the importance of negative cor-
relations in the brain®, further confirming our decision of keeping this con-
nectivity information.

Networks were represented as binary undirected connectivity matrices. For this,
the weighted matrices need to be thresholded and binarised. The thresholds were
selected by edge density also known as network connectivity cost or proportional
thresholding!®. Network cost is defined as:

2T/(N? — N)x 100% 1)

where T is the total number of edges that survived the threshold and N is the
number of nodes. Three network edge densities were studied: optimal edge density
(defined below), 10 and 20% of the strongest connections.

Modularity statistics were estimated using weighted thresholded matrices. For
this, the Hadamard product between the binarised matrix and the original
weighted matrix was computed, and used for community structure and modularity
statistic estimation using the Louvain’s algorithm function from the Brain
Connectivity Toolbox (BCT)? in Matlab (Mathworks Inc, R2017a). In all Louvain
community estimations, the algorithm was run 1000 times and the optimal
community structure with the highest modularity statistic Q was saved for further
analysis.

Network construction methods. When thresholding connectivity matrices by edge
density, there are two possibilities on how this threshold is applied in order to build
the binarised adjacency matrix: local'? and global threshold®. In the global
threshold approach, a single threshold t is applied to the entire weighted con-
nectivity matrix selecting a percentage (cost) of the strongest edges; connectivity
weights below a threshold T are set to zero and above T are set to one. The local
threshold on the other hand, imposes a minimum node degree in all nodes within
the network. Local thresholding is based on the k nearest neighbour graph (K-
NNG) where every node is connected to its k nearest (strongest) neighbours®”.
Local thresholding works by searching the closest lower K-NNG, closest to the
desired edge density, and the method adds extra edges to each node until the
desired cost or the next K-NNG is reached!2. Software to construct networks by
local thresholding is provided in a public repository as supplementary material, see
the data and code availability section.

As a consequence, the local threshold allows the inclusion of weaker
connections in order to maintain the rule of k-nearest neighbours and favours
integration of communities and segregation of modules within the network.
Indeed, a previous investigation noted that constructing networks by local
threshold enhances the identification of communities®. Nevertheless, the weaker
connections added by the local threshold construction regime would not be present
when using a global threshold approach, and the structure of both binarised
networks will differ mainly at these weaker connections!®. A toy example for the
differences between local and global threshold construction methods is shown in
Supplementary Fig 1 and a neurophysiological interpretation is shown in Fig. 9.

Optimal cohort edge density selection. The optimal cohort edge density was selected
as the density that maximised the difference between the participant’s network
modularity and an equivalent random network modularity statistic, Q—Qyand®. The
modularity of the equivalent random network was estimated as the average
modularity statistic of 40 randomised thresholded weighted matrices using the
BCT function randmio_und_connected.m. A range of densities for each participant
(from the NCL, NKI, and TFC cohorts) and atlas parcellations (100, 200, 247, and
451 ROIs) was explored for optimal edge density. From 0.3-25% (with 100 equally
spaced increments) for the 100-ROI parcellation, from 0.2-10% (with 73 equally
spaced increments) for the 200 and 247-ROI parcellations, and from 0.08-5%
densities (with 51 equally spaced increments) for the 451-ROI parcellation. For
optimal edge density discovery, we opted for Newman’s algorithm® instead of
Louvain’s because the former is faster to compute, and at this step, we were not
interested in the community structure per se but the edge density where the
modularity statistic is maximally higher when compared with an equivalent ran-
dom network. Once the optimal density was found, Louvain’s algorithm was
implemented instead.

Connection length and strength comparisons. In order to test for connectivity dif-
ferences in Euclidean distance and strength profile between groups, all weighted
connections from the locally thresholded matrices at optimal edge density (see the
previous section on optimal edge density) were investigated with multiple linear
regression models. For each group comparison, a linear model to test for differ-
ences in the intercept and slope of the distance-vs-strength regression lines between
the two groups was implemented. This model was defined as:

strength ~ B, - distance + f3, - group + f3; - group * distance

2
+ B, - age+ s - sex + B - study + 1 @

where the coefficients 8, and f; account for group differences in intercept and
slope respectively. However, because the correlation values within the weighted
connectivity matrices |r;| did not follow a normal distribution, bootstrapped linear
models were implemented instead’?. At each iteration, 20% of the total distance-
strength connection population was randomly sampled without replacement
together with their respective covariates for age, sex and study/site (if applicable).
The total distance-strength connection population comprises all network edges per
group. For each group comparison, 10,000 bootstrapping iterations were run, linear
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model coefficients were estimated and the coefficient histograms were analysed to
assess if these coefficients, which represent differences in slope and intercept, were
significantly different from zero (p-value < 0.05).

Modular variability and modular dissociation. Modularity is defined as the ability
of the system to be decomposed into communities or subsystems!!. Functional
modules are highly variable between and within individuals®3, and previous
investigations have proposed novel methods to study network modules, and their
variability or heterogeneity in shape across time!® and even neuroimaging
modalities’!. Here, we are proposing two approaches to study modular variability
(MV) between groups and between network construction methods (local and
global threshold) which we have named modular dissociation (MD).

MV measures the module affiliation variability of a respective node s72. Given a
node s and two modular partitions obtained from two participants or methods i,
its variability MV (i, /) is defined as:28

X0 N X1 1X(D) N X
Xl X001

MV (ij) =1~ ®

where |X,(i) N X,(j)| represents the number of nodes in common between
communities X (i) and X (j), and |X (i) represents the number of nodes within
community X (i), where node s belongs to in the network i and similarly for
1X,(j)|. MV ranges from 0 to 1, where 1 means no overlap between communities
and 0 means no change in the node-set comprising both communities”2.

MD measures the variability between community definitions of two networks
from the same participant but constructed using two thresholding regimes, i.e.
modular variability between two networks constructed by local and global
thresholding methods. Computation of MD is the same as for MV, but between
network construction methods and consequently, MD will measure community
allegiance between a global threshold which allows the strongest connections
within the weighted matrix and a local threshold regime which allows weaker
connections but favours community segregation by connecting the nearest
neighbours. Also, note that both networks will have by definition the same edge
density or cost. A toy example of MD estimation is shown in Supplementary Fig 1,
and the detailed estimation procedure is shown in Fig. 1.

Statistical analysis and reproducibility. MV was assessed between study groups
using locally thresholded networks!2. This was decided because the modularity Q is
not statistically different between groups in the NCL and NKI cohorts using this
network construction method. Furthermore, the optimal edge density is reached a
higher connectivity cost and led to higher Q statistics, compared with the global
threshold, for the three databases in this study, see Supplementary Fig 2.

The analyses in this investigation are static analyses, which differs from
previous investigations where MV has been assessed as the community change
across time!0. In order to test MV between two groups, we estimated the group’s
community consensus’3 with the Network Community Toolbox (NCT, http://
commdetect.weebly.com/). This approach is more accurate than estimating
communities from the group’s mean weighted connectivity matrix. The consensus
community is estimated from the optimal communities obtained with Louvain’s
algorithm, which was applied to all participants from the two groups. Then, MV for
each participant and node is estimated as the difference between the participant’s
Louvain community and the two-group consensus community. However, since
none of our groups is perfectly balanced, i.e. we do not have an equal number of
participants in all groups, there is a high risk that the consensus community is
biased towards the largest group. To resolve this, we estimated MV with a
bootstrapping approach. Having two groups of size A and B were B< A, we
randomly choose without replacement B participants from each group, their
consensus community estimated and nodal MV computed for each participant.
This procedure was repeated 500 times. At each of these bootstrapped iterations,
nodal MV differences between groups were assessed with nonparametric
permutations (5000 permutations) after regressing out age, sex and study
covariates. For the NKI and TFC cohorts, the age covariate was demeaned within
groups only, in order to correct for age variances without losing the group effect
(YA vs. OA). For the TEC cohort, study covariates could only be regressed within
OA and within YA groups since neuroimaging acquisition for these two groups
were recorded at different sites?>>7. For the NCL cohort, we added the study
covariate, and the NKI analysis did not use a covariate for different studies. All
results from the 500 iterations were averaged to obtain meta-results: p-valuemeta
and meta Z-score differences Z,... For the Z scores, the mean and variance from
the nonparametric permutations were used for normalisation.

From the previous analyses, a meta-consensus community was estimated for each of
the study cohorts. For this, a community consensus was estimated again from all 500
consensus communities that resulted from the bootstrapping operation.

In order to estimate between-group differences for MD, the bootstrapping
approach is not necessary because MD is computed within participants. Differences
between groups for MD were assessed directly with nonparametric permutations
(5000 permutations) after regressing out age, sex and study covariates in a similar
fashion as MV. MV and MD results were corrected for multiple testing using false
discovery rate (FDR) with the Benjamini and Hochberg procedure in Matlab;
mafdr.m function at p-value < 0.05 for significance level.

Additionally, mean modular comparisons were also investigated relative to the
OA groups; MD,p,. For this, nodal MD values from a group of interest were
concatenated with values from the OA group (from the same cohort) to create a
two-group MD vector [G; G,] per node, where G; represents the OA values. Age,
sex and study covariates were regressed out and a residual node vector [R; R,] was
obtained. From this regression, mean nodal MD was estimated and values
referenced to the mean OA residuals; [R; R,J—E(R;), where E stands for expected
value. This latter step allows to compare MD between different cohorts, e.g. NCL
and NKI, and define MD,p4 = MDg,—MDyg;, where MDyg; are the regressed nodal
MD values of the OA groups and MDg, are the nodal MD values of the second
group of interest. Differences between OA and the groups of interest were assessed
with nonparametric two-sided rank-sum tests; here nodes were treated as
independent observations and results corrected for multiple tests.

Participant motion within the MRI scanner may drive spurious results when
comparing young vs older adults; it is known that older adults tend to move more
than young adults during the acquisition of neuroimages. The motion was assessed
by estimating Framewise displacement, FD74 which integrates the six motion
parameters estimated during the motion correction step by FSL-FLIRT. Framewise
displacement is defined as:

FD; = |Ax,| + | &y + | Az + |Aq,] + |Aby] + |Ac;] (4)

where Ax; = x;,_; — x; and similarly for the other rigid body parameters [y; z; a;,
b;, ¢;]. Rotational displacement was calculated on a surface of a 65-mm radius
sphere. In order to test the motion effect, the mean FD was added as a covariate of
no interest together with sex and gender in the replication analysis. Besides, a 451-
ROI atlas for NKI and NCL cohorts at edge density 3.24% were also used for
comparison. More details are shown in Supplementary Discussion.

The use of in-house parcellations assure there is no bias introduced by including the
same cohorts under analysis (NCL and NKI) for atlas estimation and no bias
introduced by the study site. Although evidence has shown that the measures of
network segregation and integration seem to be robust to the underlying parcellations’>,
it’s unclear if the findings are also obvious in well-established brain parcellations. To this
end, a replication analysis was conducted by using a multi-modal atlas-Human
Brainnectome Atlas®? which in total included 210 cortical, 36 subcortical and 28
cerebellar subregions. The mean FD, sex, and age were added as covariates of no interest
in analysis. More details are present in Supplementary Discussion.

Visualisation of results. Sphere brains were plotted using the BrainNet Viewer
Toolbox’®. For both MD and MV, results were nonlinearly mapped for visuali-
sation, and visualisation only, with an exponential function:

MD' = 100MP (5)

MV’ = 100MY (6)

where the prime symbol indicates visualised. This transformation mapped results
from a 0-1 scale to a nonlinear 1-100 scale. A similar approach was followed for
the visualisation of the between-group comparison maps:

pvalue’ = 1001 Pralue) 7)
Colours were implemented with diverging colour maps from blue to red colours”.
Identification of significant structures in MNI space was implemented with the

brain anatomical database within the xjView toolbox (http://www.alivelearn.net/
xjview/), and the cuixufindstructure.m function in Matlab.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The Enhanced Nathan Kline Institute (NKI) Rockland Sample is available at http://
fcon_1000.projects.nitrc.org/indi/enhanced/index.html, and the 1000 Functional
Connectome (TFC) resting-state matrices are publicly available at http://
umcd.humanconnectomeproject.org. The source data of graphs and charts are
shown in Supplementary_Data.zip. Other data are available from the corresponding
authors (wmtmdlove@163.com; Joseph.necus@nottingham.ac.uk) and senior author
john-paul.taylor@newcastle.ac.uk on reasonable request.

Code availability

Matlab codes for MV, MD estimation and network construction by local thresholding are
available at https://github.com/LuisPerazaRo/modulardissociation and by contacting the
corresponding authors wmtmdlove@163.com; Joseph.necus@nottingham.ac.uk and
senior author john-paul.taylor@newcastle.ac.uk. All software used within this study is
stated in the Methods sections. With exception of Matlab, all software used is free and all
Matlab toolboxes are open source.
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