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Large-scale and high-resolution mass
spectrometry-based proteomics profiling defines
molecular subtypes of esophageal cancer for
therapeutic targeting

Wei Liu 1'2'7, Lei Xie”, Yao-Hui He 3'4'7, Zhi-Yong Wu5'7, Lu-Xin Liu”, Xue-Feng Bai6, Dan-Xia Deng1,
Xiu-E Xu!, Lian-Di Liao!, Wan Lin', Jing-Hua Heng', Xin Xu', Liu Peng', Qing-Feng Huang', Cheng-Yu Li,
Zhi-Da Zhang1, Wei Wangz, Guo-Rui Zhang6, Xiang Gao 34 Shao-Hong Wang5, Chun-Quan Li®,

Li-Yan Xu® '™, Wen Liu® 34> & En-Min Lie '™

Esophageal cancer (EC) is a type of aggressive cancer without clinically relevant molecular
subtypes, hindering the development of effective strategies for treatment. To define mole-
cular subtypes of EC, we perform mass spectrometry-based proteomic and phosphopro-
teomics profiling of EC tumors and adjacent non-tumor tissues, revealing a catalog of
proteins and phosphosites that are dysregulated in ECs. The EC cohort is stratified into two
molecular subtypes—S1 and S2—based on proteomic analysis, with the S2 subtype char-
acterized by the upregulation of spliceosomal and ribosomal proteins, and being more
aggressive. Moreover, we identify a subtype signature composed of ELOA and SCAF4, and
construct a subtype diagnostic and prognostic model. Potential drugs are predicted for
treating patients of S2 subtype, and three candidate drugs are validated to inhibit EC. Taken
together, our proteomic analysis define molecular subtypes of EC, thus providing a potential
therapeutic outlook for improving disease outcomes in patients with EC.

1Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer
Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China. 2 College of Science, Heilongjiang Institute of
Technology, Harbin, Heilongjiang, China. 3 State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen,
Fujian, China. 4 Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian,
China. ® Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, Guangdong, China. © School of Medical Informatics, Daging
Campus, Harbin Medical University, Daging, Heilongjiang, China. These authors contributed equally: Wei Liu, Lei Xie, Yao-Hui He, Zhi-Yong Wu, Lu-Xin Liu.
Memail: lyxu@stu.edu.cn; w2liu@xmu.edu.cn; nmli@stu.edu.cn

| (2021)12:4961 | https://doi.org/10.1038/s41467-021-25202-5 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25202-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25202-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25202-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25202-5&domain=pdf
http://orcid.org/0000-0002-5496-3641
http://orcid.org/0000-0002-5496-3641
http://orcid.org/0000-0002-5496-3641
http://orcid.org/0000-0002-5496-3641
http://orcid.org/0000-0002-5496-3641
http://orcid.org/0000-0002-8235-8924
http://orcid.org/0000-0002-8235-8924
http://orcid.org/0000-0002-8235-8924
http://orcid.org/0000-0002-8235-8924
http://orcid.org/0000-0002-8235-8924
http://orcid.org/0000-0002-3774-1852
http://orcid.org/0000-0002-3774-1852
http://orcid.org/0000-0002-3774-1852
http://orcid.org/0000-0002-3774-1852
http://orcid.org/0000-0002-3774-1852
http://orcid.org/0000-0002-1618-4292
http://orcid.org/0000-0002-1618-4292
http://orcid.org/0000-0002-1618-4292
http://orcid.org/0000-0002-1618-4292
http://orcid.org/0000-0002-1618-4292
http://orcid.org/0000-0003-3434-4162
http://orcid.org/0000-0003-3434-4162
http://orcid.org/0000-0003-3434-4162
http://orcid.org/0000-0003-3434-4162
http://orcid.org/0000-0003-3434-4162
http://orcid.org/0000-0001-6375-3614
http://orcid.org/0000-0001-6375-3614
http://orcid.org/0000-0001-6375-3614
http://orcid.org/0000-0001-6375-3614
http://orcid.org/0000-0001-6375-3614
mailto:lyxu@stu.edu.cn
mailto:w2liu@xmu.edu.cn
mailto:nmli@stu.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

sophageal cancer (EC) is one of the most aggressive cancer

types and is the fourth leading cause of cancer-related

deaths in Chinal2. Although treatments have greatly
improved in the past years, the 5-year overall survival (OS) rate of
EC remains in the range of 15-25%; patients largely benefit from
early diagnosis. Several genomic analyses in EC have been per-
formed to link genomic alterations with phenotypes, revealing
several driver genes, such as TP53, RBI, ZNF750, NOTCHI,
FATI1, and NFE2L2, with high frequencies of mutations*-S.
Genomic alterations are largely translated into changes in protein
levels, and protein functions are further modulated by post-
translational modifications (PTMs). Both protein levels and
PTMs are major determinants of cell phenotypes. Therefore,
proteomic and phosphoproteomic analyses may provide addi-
tional insights into tumor biology that cannot be deciphered by
genomic analysis. Large-scale, mass spectrometry (MS)-based
proteomics have identified novel cancer subtypes and therapeutic
targets for patients with colon, ovarian, breast, gastric, and liver
cancers’20, and provided valuable resources that have expanded
our understanding of these cancers. However, the proteomic
landscape of EC has not been characterized in a large cohort of
patients. Furthermore, unlike breast and gastric cancer, no
molecular subtypes based on proteomics study have been iden-
tified for EC that can assist patient stratification and therapeutic
development?1-23,

Here, we perform proteomic analysis of 124 paired EC tumor
and the corresponding adjacent non-tumor tissues (cohort 1).
Proteomic analyses reveal a catalog of proteins, phosphosites, and
pathways that are dysregulated in ECs. Proteomic subtyping
identify two subtypes that are associated with patient survival.
Subtype diagnostic and prognostic models are constructed for
clinical utilization. Furthermore, several potential drugs that
specific for malignant subtype S2 are predicted and verified by
functional experiments, which might provide new therapeutic
opportunities to improve treatment outcome of EC.

Results

Large-scale proteomic and phosphoproteomic analysis of eso-
phageal cancer (EC). We performed isobaric tandem mass tag
(TMT)-based proteomic analysis for 124 pairs of EC tumor and
the corresponding adjacent non-tumor tissues (cohort 1), which
identified 14,252 proteins in total, with 10,399 proteins per group
on average (five pairs/group) (Fig. la-d and Supplementary
Fig. 1a-b and Supplementary Data 1a). Of these 14,252 proteins,
9300 and 6468 proteins were quantifiable in at least half of the
samples and all samples, respectively (Supplementary Fig. 2a, b
and Supplementary Data 1b). The protein expression ratios
showed a globally homogeneous distribution among the groups.
No clear quantitative shifts were observed, especially so for pro-
teins quantifiable in all samples (Prot5), which had fewer outliers
(Supplementary Fig. 2¢, d). Principal component analysis and
hierarchical clustering revealed that tumors could be well sepa-
rated from non-tumors. Additionally, no batch effects were
observed among groups, supporting the high quality of our
proteomic data (Fig. le, f). As protein functions are often
modulated by PTMs, especially phosphorylation, we performed
label-free phosphoproteomics for 31 pairs of tumor and non-
tumor esophageal tissues. The phosphoproteomics procedure was
highly reproducible (Supplementary Fig. 2e, f). In total, we
identified 73,651 phosphosites in 7943 proteins (Fig. la and
Supplementary Figs. 1b, 2g and Supplementary Data 1c¢), of which
67,393 phosphosites in 7494 proteins were quantifiable (Fig. 1b).
The cumulative number of phosphosites (phosphoproteins)
increased steadily and approached a plateau when the sample size
reached approximately 36 (18 pairs), suggesting that 31 paired

samples were sufficient to capture the phosphoproteomic land-
scape in EC (Supplementary Fig. 2h, i). A case-by-case inspection
revealed that although the number of phosphosites identified in
each patient did not differ much, like the phosphoproteins, tumor
samples in general had a higher number of phosphosites than
non-tumor samples (Supplementary Fig. 2j, k). We then analyzed
the subcellular distribution of the quantified proteins and phos-
phoproteins, revealing that most of them were mainly distributed
in the nucleus, plasma membrane, cytosol, mitochondria, and
extracellular space, which was consistent with previous reports
(Fig. 1g and Supplementary Data 1d)!°.

Dysregulated proteins and pathways were identified by pro-
teomic analysis. We next sought to identify the proteins that
were differentially expressed between tumor and non-tumor
samples. Among the 9300 proteins that were quantifiable, 4125
(44.4%) and 3,140 (33.8%) were significantly upregulated and
downregulated, respectively, in tumors compared to paired non-
tumors (Benjamini-Hochberg (BH) adjusted P < 0.01, Wilcoxon
signed-rank test). Of these, 1531 proteins exhibited a fold-change
larger than 1.5, with 784 and 747 being up-regulated and
downregulated in tumors, respectively (Fig. 2a and Supplemen-
tary Data 2a). Interestingly, the proteins that were altered in
tumors were exceptionally enriched in proteins that were loca-
lized in the extracellular matrix (34.7%) and extracellular space
(24.7%) (Fig. 1g and Supplementary Data 1d), suggesting that the
tumor microenvironment had undergone drastic changes during
tumorigenesis. In addition, we found that most of the esophagus-
specific proteins annotated in the Human Protein Atlas such as
KRT4, KLK13, KRT78, SPINKS5, SPINK7, and CRNN (Supple-
mentary Fig. 3a), were significantly downregulated in tumors
(Fig. 2b and Supplementary Data 2b), indicating loss of esopha-
gus identity as a characteristic of EC. We also assessed the dif-
ferences in the abundance of phosphosites between the 31 pairs of
tumor and adjacent non-tumor samples. Among the 61,471
phosphorylation sites quantifiable in at least half of the samples,
3932 (6.4%) and 3,002 (4.9%) were significantly upregulated and
downregulated in tumors compared to paired non-tumors,
respectively (BH adjusted P < 0.01, Wilcoxon signed-rank test).
Of these, 5107 phosphosites exhibited a fold-change larger than 2,
with 2776 and 2331 being upregulated and downregulated in
tumors, respectively (Fig. 2c and Supplementary Data 2c). The
fold-change of phosphorylation on the vast majority of phos-
phosites was greater than that of the corresponding protein levels
(Fig. 2d).

Functional enrichment analysis of differentially expressed
proteins revealed that cell cycle, DNA repair, immune response,
and epidermal mesenchymal transition (EMT) pathways, among
others, were over-represented in proteins that were upregulated
in tumors. Whereas, metabolism and estrogen response-related
pathways were over-represented in the proteins that were
downregulated (Fig. 2e and Supplementary Fig. 3b and
Supplementary Data 2d). The downregulation of estrogen
response-related  proteins was consistent with previous
studies?»2°, suggesting a potential link between estrogen signaling
and EC. In addition to proteins involved in the cell cycle, EMT,
and estrogen response-related pathways, the phosphoproteomic
data revealed that proteins in the spliceosome were often highly
phosphorylated in tumors (Fig. 2f and Supplementary Data 2e).
The representative differentially expressed proteins with implica-
tions in proliferation, immune response, metastasis, and meta-
bolism as well as hyperphosphorylated proteins with implications
in spliceosome are shown (Fig. 2g, h and Supplementary Data 2f,
g). A number of interferon-stimulated genes (ISGs) were found to
be highly induced in tumor compared to non-tumor samples,
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Fig. 1 Large-scale proteomic and phosphoproteomic analysis of esophageal cancer (EC). a Summary of EC samples and cell lines for proteomic,
phosphoproteomic and/or immunohistochemical analysis. One hundred and twenty-four paired EC tumor and adjacent normal samples (cohort 1) were
divided into 25 groups for TMT proteomics, and 31 paired samples were subjected to lable-free phosphoproteomics. EC tumor samples from 295 patients
(cohort 2) were used for immunohistochemistry. b The overlap of proteins and phosphoproteins. Seven thousand one hundred and fifty-one proteins were
identified with 66,446 phosphosites. Seven thousand one hundred and one proteins were identified with only their non-phosphorylated forms. Three
hundred and forty-three proteins were identified with only their phosphorylated forms. Prot1: proteins with quantified values in at least one of those 25
groups of samples used for proteomic analysis as shown in a; Phos2: phosphorylation sites with quantified values in at least one of those 31 pairs of
samples used for phosphoproteomics analysis as shown in a. ¢ Cumulative number of proteins quantified in 25 groups of samples. d Distribution of the
number of groups in which the proteins were quantifiable. Ten thousand six hundred and ninety-three proteins were identified in >10 groups, and 7545
proteins were quantified in all 25 groups. e Principle component (PC) analysis of the TMT proteomic data separated tumor samples from non-tumor
samples, and no batch effects were observed. Samples analyzed in different TMT groups (batches) are shown with different shapes. Tumor and non-tumor
samples are colored in red and green, respectively. The ellipse presents the 0.9 confidence intervals for each type. Var.: variation. f Hierarchical clustering
of the 124 paired tumor and non-tumor samples. g Subcellular distribution of all proteins, upregulated proteins, downregulated proteins, and
phosphoproteins detected.
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such as GBP1, CAMP, PTGS2, GOLIM4, IFIT3, MX1, LTF, and
CYBB (Fig. 2g). The expression of representative ISGs including
MX1, OAS3, and IFIT1 was found to be significantly higher in
tumor cells compared to stroma cells (Supplementary Fig. 3c).
Interestingly, for many proteins such as CDK1, TP53, STMN1,
MKI67, TOP2A, and KIF23, not only their expression levels, but
also the rates of phosphorylation were significantly upregulated in
tumors. Spliceosomal proteins including SRSF1, SRSF2, SRSF7,
SRSF8, and SRSF10 were found to be hyperphosphorylated; the

4

phosphorylation of these proteins often occurred on serine
residues such as S199, S202, S234, and S238 of SRSF1, and S206,
$208, S212, and S220 of SRSF2, in the RS domain (Supplementary
Data 2c). Phosphorylation in this functional domain is well
known to be important in regulating the assembly and
disassembly of spliceosomes, and alternative splicing in
genes2®27. Our data strengthened the notion that phosphopro-
teomics could complement proteomics in understanding the
biology of EC.
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Fig. 2 Dysregulated proteins and pathways were identified by proteomic analysis. a VVolcano plot indicating proteins upregulated or downregulated in
tumors. Light red and green colors represent proteins with BH adjusted P value (< 0.01) (Sig), whereas red and green represent proteins with BH adjusted P
value (< 0.01) and more than 1.5-fold change. Other proteins are colored in gray. P values were calculated using the two-sided Wilcoxon signed-rank test.
b Box plot of log,-transformed fold change of esophageal-specific proteins (Tumor, n = 124; Non-tumor, n = 124). P value was calculated using the two-
sided Wilcoxon rank-sum test. In the box plots, the middle bar represents the median, and the box represents the interquartile range; bars extend to 1.5x
the interquartile range. ¢ Volcano plot indicating phosphosites upregulated and downregulated in tumors. Colors are the same as describe in a except that
red and green represent proteins with more than 2-fold change. d Comparison of the changes of phosphosite abundance (FC.Phos) with those of the
corresponding protein abundance (FC.Prot). The red dashed line indicates the diagonal line. Green and light green colors indicate significantly
downregulated phosphosites (BH adjusted P value < 0.01 and FC.Phos < 0.5), whereas green further requires FC.Phos < FC.Prot. Red and light red colors
indicate significantly upregulated phosphosites (BH adjusted P value < 0.01 and FC.Phos > 2), whereas red further requires FC.Phos > FC.Prot. Other
phosphosites are colored in gray. P values were calculated using the two-sided Wilcoxon signed-rank test. e Enriched KEGG pathways for differential
proteins colored by red and green as shown in a. Pink bars indicate pathways enriched in the upregulated proteins (n = 784). Blue bars indicate pathways
enriched in the downregulated proteins (n =747). f KEGG pathways (top) and hallmark get sets (bottom) enriched for differential phosphoproteins. Pink
bars indicate pathways enriched in the upregulated phosphoproteins (n =1040). Blue bars indicate pathways enriched in the down-regulated
phosphoproteins (n = 576). g Heat map representation of the expression levels of selected, differential expressed proteins between tumor and non-tumor
samples (FC >1.5 or <0.67). Functional categories related to selected proteins are denoted beside the heat map. The right panel shows the proteins whose
expression levels changed larger than 2-fold between tumor and non-tumor samples, and that are significant correlated with patient risk. The two-sided
log-rank P values (without correction for multiple testing) were calculated by the Xtile method. h Heat map representation of the phosphorylation levels of
differential phosphosites. The right panel shows the phosphoproteins that changed larger than 2-fold in phosphorylation abundance between tumor and
non-tumor samples. i Protein expression variations of significantly mutated genes (SMGs). Left, log,-transformed fold change between paired tumor (n =
124) and non-tumors (n = 124) (mean in red). Middle, the red points indicate the overall survival hazard ratios of SMGs, and the endpoints represent lower
or upper of the 95% confidence intervals. Right, the red points indicate the disease-free survival hazard ratios, and the endpoints represent lower or upper
of the 95% confidence intervals. *Cox P value < 0.1. The two-sided Cox P values (without correction for multiple testing) were calculated using the Cox

PH model.

We then performed PTM-SEA analysis for differential
phosphosites between tumor and non-tumor samples. Our results
revealed that 16 signatures were significantly upregulated, while
65 were downregulated in tumor samples (paired two-sided
Student’s t-test, BH adjusted P < 0.01) (Supplementary Fig. 3d, e).
Among these significantly changed signatures, 45, 21, and 15 were
perturbation signatures, kinase-substrate signatures, and signa-
tures of molecular signaling pathway, respectively (Supplemen-
tary Fig. 3d, e). For instance, kinase-substrate signatures including
CDK1, CDK2, CDC7, CHEK2, MELK, CDK?7, IKK, PIM1, and
CK2A1 were upregulated, while RET, PKCZ, FYN, AXL, SGK1,
MKK4, p90RSK, MEK1, ABL1, LCK, EGFR, and EPHA2 were
downregulated in tumor compared to non-tumor samples
(Supplementary Fig. 3e).

We next compared our proteomics and phosphoproteomics
data to previously published genomic data. Genomic analysis has
identified a large number of frequently mutated genes and
pathways in EC%>7:28-32_ Of the 35 significantly mutated genes
(SMGs) we collected from the literature®>7-28, 30 of them were
quantifiable in our proteomics data (Fig. 2i and Supplementary
Data 3a). Seventeen SMGs showed a fold-change greater than 1.2
in protein expression between tumors and non-tumors. In
particular, TP53 was upregulated, whereas ERBB2 and ZNF750
were downregulated in tumors (fold-change >1.5) (Supplemen-
tary Data 2a). Downregulation of ZNF750 was consistent with
previous studies showing that ZNF750 is expressed at a very low
levels via truncating mutations and functions as a tumor
suppressor in EC>7. Of those 30 SMGs quantifiable in our
proteomics data, nine were associated with survival outcomes.
Specifically, cell cycle regulators, TP53 and CDKN2A; epigenetic
regulators, KMT2D, EP300, and BAP1; and transcription factors,
ZNF750 and SOX2, were positively correlated, while transcription
factors, PTEN and YAPI1, were negatively correlated with
survival risk.

Signaling pathways including the cell cycle, RTK-PI3K, Wnt,
and Notch pathways are frequently mutated in EC*7. Based on
our proteomic data, a large cohort of cell cycle-related proteins
such as CCND1I and CDKG6; or TP53, RB1, CDKN2A, CHEKI, and
CHEK?2, regardless of whether they were amplified or mutated at

the genomic level, were upregulated (Supplementary Fig. 3f, g and
Supplementary Data 3b). With the integration of our phospho-
proteomic data, we found numerous functional phosphosites in
these proteins to be hyperphosphorylated in tumors. For instance,
the phosphorylation of TP53 at S315, which could enhance TP53
transactivation potential through nuclear retention and promote
MDM2-dependent proteolysis of TP533334, was increased
dramatically in tumors (fold-change >10) (Supplementary
Data 3c). In addition, RB1, a tumor suppressor which prevents
cell proliferation by inhibiting E2F transcriptional activities, was
negatively regulated by its phosphorylation3>. Phosphorylation of
T373 and S795 on RBI increased significantly in tumors
(Supplementary Data 3c), suggesting that RB1 phosphorylation
might counteract its overexpression!2. Despite proteins in the
RTK / PI3K pathway exhibiting minor changes at the protein
level, the phosphorylation levels were significantly altered in the
tumors (Supplementary Fig. 3f). The upregulation of EGFR
protein expression was consistent with its amplification in ECs.
Although mutations and amplifications for proteins downstream
of the EGFR signaling cascade, including KRAS, MRAS, RAFI,
AKT1, SOS1, SOS2, and PIK3CA, occur in 50.6% of cases in EC,
no significant changes in protein expression were observed?.
Genomically altered genes in the Wnt pathway such as CTNNBI,
SFRP4, and DAAM?2, were also altered at the protein level.
Although genomic alterations have been reported for genes in
Notch signaling such as NOTCH1, NOTCH2, and NOTCH3, no
significant changes were observed (Supplementary Fig. 3f, g).
We also compared our proteomics and phosphoproteomics
data for those variable metastasis and immune response-related
genes shown in Fig. 2g to previously published genomic data. It
should be noted that only the percentage of SNV/Indel, but not
that of amplification or deletion, is available for these genes. No
genomic alterations were found for many of the metastasis and
immune response genes such as MMP1, MMP2, MMP3, MMP9,
MX1, IDO1, IFIT1, and IFIT3 (Supplementary Fig. 3h, i). The
amplification of genes such as COL5A1, IDOI, and GOLIM4
were in accordance with their higher expression in tumor samples
(Supplementary Fig. 3h, i), whereas no significant change of
protein or phosphorylation levels was observed for genes with
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genomic amplification, such as CD4, CD7, LIME1, UNC93B1,
C1S, CIR, or C8G. Similarly, frequently mutated genes such as
BTN2A1 (3.4%), RHOA (2.3%), and EPHB4 (2.3%) exhibited no
changes at protein level®. This further highlights the necessity of
performing proteomic study to uncover targets for cancer therapy
that are undetectable by genomic sequencing. In addition, it is
worth-noting that the protein expression and phosphorylation
levels of a large cohort of epigenetic regulators such as histone
methyltransferase and demethylases KDM1A, KDM3A, KDM3B,
KDM5C, ASHIL, NSD2, and NSD3; histone acetyltransferase
EP300, CREBBP, and KMT2D; and chromatin structure modifier
ARID1A, SMARCC1, and SMARCC2, were upregulated in
tumors, and their expression levels were positively correlated
with survival risk®>7-28-32 (Fig, 2i and Supplementary Fig. 3f).
However, we also observed that the increased expression levels of
some proteins which have been reported to harbor frequent
inactivating mutations such as EP300, CREBBP, BAP1, KMT2D,
KMT2C, and KMT6A, were inconsistent with their genomic
alterations”-30-3637, Collectively, the connections and discor-
dances between proteomic and genomic alterations provided
valuable clues to decipher the pathogenesis of EC.

Proteomic analysis stratified patients into two subtypes, the
low-risk S1 subtype and the high-risk S2 subtype. We next
sought to investigate if the tumor samples could be stratified into
clinically relevant molecular subtypes based on our proteomic
analysis. Principal component analysis (Fig. le) and hierarchical
clustering (Fig. 1f) of our proteomics data demonstrated a clear
distinction between tumor and non-tumor tissues, which further
highlighted the heterogeneity among tumor samples that under-
pins our subtyping analysis. We employed consensus clustering
for the top 25% of the most variable proteins, and identified two
major subtypes that had maximal average silhouette width, which
we named as SI and S2 subtypes (Fig. 3a, b and Supplementary
Fig. 4a). The S1 and S2 subtypes contained 61 and 63 tumor
samples, respectively (Supplementary Data 4a). Patients with the
S2 subtype had worse OS and disease-free survival (DFS) out-
comes compared to those in the S1 subtype (Fig. 3c). Specifically,
the OS median was 1841 and 655 days for S1 and S2 subtypes,
respectively (log-rank P = 6.3 x 10-3), and the DFS median was
1244 and 510 days for S1 and S2 subtypes, respectively (log-rank
P = 0.016) (Fig. 3¢c). Cox regression analysis revealed that the
subtypes we defined were significantly correlated for both OS
(Hazard ratio = 1.899, Cox P = 7.25x 103) and DFS (Hazard
ratio = 1.726, Cox P value = 0.017), and could be used as an
independent prognostic factor for both OS (P = 4.25 x 10~3) and
DFES (P = 7.81 x 10-3) (Supplementary Data 4b). In addition,
except for the N stage (P = 0.0496), there were no significant
differences between the clinicopathological characteristics of
patients in the S1 and S2 subtypes (Fig. 3d and Supplementary
Data 4c).

To further characterize the two subtypes, we performed
differential expression analysis for the 6468 proteins that were
quantifiable in the 124 paired samples with high confidence
(Supplementary Fig. 2a). A total of 984 and 1012 proteins were
significantly upregulated and downregulated, respectively, in the
S2 subtype compared to S1 subtype (BH adjusted P < 0.01,
Wilcoxon rank-sum test). Of these, the expression levels of 230
proteins were altered by more than 1.5-fold, with 137 and 93
being upregulated and downregulated in the S2 subtype,
respectively (Fig. 3e and Supplementary Data 4d). Of the 31 EC
patients chosen for label-free phosphoproteomics, 15 patients
belonged to S1 and 16 belonged to the S2 subtype (Supplementary
Data 4a). Among the 61,471 phosphorylation sites quantifiable in
at least half of the samples (Supplementary Fig. 2g), 1446 and

1415 sites were significantly increased and decreased, respectively,
in the S2 samples (P < 0.01, Wilcoxon rank-sum test). As the vast
majority of these significantly altered phosphosites exhibited fold
changes larger than 2, it was not due to the change in the
corresponding protein levels (Fig. 3f and Supplementary Fig. 4b
and Supplementary Data 4e).

A heat map analysis of differentially expressed protein expression
between S1 and S2 (Fig. 3d), revealed that the S2 subtype exhibited
an extreme expression pattern; the upregulated proteins were
expressed at an extremely high level, while downregulated proteins
were expressed at an extremely low level. Indeed, there was a
significant overlap between the differentially expressed proteins
found in tumor versus non-tumor samples and those in S2 versus
S1 subtypes (P = 2.02 x 10713 and < 2.2 x 10716 for upregulated
and downregulated proteins, respectively; Supplementary Fig. 4c).
The upregulated proteins in S2 were enriched in pathways such as
mRNA processing, DNA replication, DNA repair, E2F targets, and
G2/M checkpoint (Fig. 3d, g and Supplementary Fig. 4d and
Supplementary Data 4f), which were also enriched in proteins
upregulated in tumor samples when compared to non-tumor
samples. This indicated that the activity of these pathways was
progressively enhanced from non-tumor to S1 subtype-tumor to
S2 subtype-tumor, which might lead to the malignant phenotype in
subtype S2. The myogenesis-related pathway enriched in down-
regulated proteins also showed a similar trend (Fig. 3d, h and
Supplementary Fig. 4d). Strikingly, focal adhesion and EMT-related
pathways were found to be enriched with upregulated proteins in
tumor samples versus non-tumor samples. However, in the S2
versus S1 subtype, they were enriched in downregulated proteins
(Figs. 2e and 3g). The downregulation of many of these proteins
such as ITGA7°8%9, TIMP34041, ABI3BP#2, MYLK, and MYL9*?
(Supplementary Fig. 4d), have been reported to be associated with
proliferation, invasion, and migration in various types of cancers—
suggesting that this might serve as a potential mechanism
underlying the malignant S2 subtype.

For proteins with differential phosphorylation in S2 versus
S1 subtype, they were enriched in spliceosomes, adherens
junctions, and mitotic spindle-related pathways, which were
similar to those observed for proteins with differential phosphor-
ylation in tumor versus non-tumor samples (Fig. 3h and
Supplementary Data 4g). This indicated that aberrant phosphor-
ylation of these pathways might play an important role in both
the initiation and development of EC.

We then performed PTM-SEA analysis for differential
phosphosites between the two subtypes. Our results revealed that
13 signatures were significantly upregulated, while 14 were
downregulated in S2 subtype (unpaired two-sided Student’s ¢-test,
P < 0.05) (Supplementary Fig. 4e, f). Among these significantly
changed signatures, 10 and 17 are perturbation signatures and
kinase-substrate signatures, respectively. No signatures of mole-
cular signaling pathway were found to be significantly different
between S1 and S2 subtype (Supplementary Fig. 4f). For instance,
kinase-substrate signatures including AMPKA2, PKCI, MST2,
PDK1, DYRK2, CDC7, and DYRKIA were upregulated, while
CK1A, DNAPK, GSK3A, p70S6K, LYN, IKKA, CK1D, GSK3B,
ATR, and p38A/MAPK14 were downregulated in S2 subtype
compared to S1 subtype (Supplementary Fig. 4f).

Subtype diagnostic signature composed of ELOA and SCAF4
were identified in EC. We next sought to identify subtype
diagnostic signatures which might be usable in a clinical setting.
To this end, we performed feature selection with the maximum
number of features set to 1, 2, 3, or 4. Using the maximum area
under the ROC curve (AUC) as the criterion, 11 unique sig-
natures were identified, among which signature “ELOA, SCAF4”

6 | (2021)12:4961 | https://doi.org/10.1038/s41467-021-25202-5 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25202-5

ARTICLE

Silhouette width s, 2 3 4 5 6
! Average silhouette width: 0.73 Number of clusters (k)

N stage Bl N stage (P = 0.0496)
2 clusters C NO IR IRIE BRI B Tumor location (P =0.13)

J N1 T stage (P = 0.55)
£ N2 1 181 Tumor grade (P =0.11)
2o7 N3 pTNM stage (P = 0.20)
el . Pathomorphological (P = 0.54)
) Tumor location 1 11 Alcohol (P =0.83)
@ Upper (Rl || | 1 Ml Smoke (P =0.15)
306 Middle LA ] W | | |INEEE Gender, Male (P = 0.07)
2 W Lower ] Age (258) (P = 0.11)
@ T stage Proteomic subtype
o High
g 0.5 T W Hig
5 T2 =
[ . Low

|-02 02 06 10 Zoa4 mT3

Tumor grade
Well
Moderate

mRNA processing
DNA replication

M Poor DNA repair
c 0S DFS PTNM stage Translational initiation
1.004 1.00 | Mitotic cell cycle checkpoint
n ::I DNA-templated transcription, elongation
2075 2075 Pathomorphological - Cell divisian
g % Ulcerative
g 2 Medullary
§0.50 50.50 M Fungating
] ] B Constritive Extracellular structure organization
s = Clinical feature Extracellular matrix organization
5 ) ) .
® 0251 __ g1 n=p1 @025{ __ S1. n=61 No Triglyceride catabolic process
— S2,n=63 — $2,n=63 :m:;ic wwbtvoe PPAR signaling pathway
0.00] Logrank test, P=6.3x10° 000 Logrank test, P=0.016 = VP8 Focal adhesion
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 ™ S2
Survival time in days Survival time in days
e Global proteomics f Phosphoproteomics 9
] 57 . ) Ribosome E2F TARGETS
Down . Down L N Up Spliceosome G2M CHECKPOINT
Sig:1012 (15.7%) ~.Up Sig: 1415 (2.3%) | Sig: 1446 (2.4%) Mismatch repair . EMT
9istouies Sig: 984 (15.2%) 2-fold: 1168 _2-fold: 1166 )
° 1.5-fold: 137 ° S [ Focal adhesion I ADIPOGENESIS
[ ’ ’ @ 44 [N PPAR signaling pathway [ MYOGENESIS
=2 T T T T T T T T T T T T
2 6 E] - 2 1 0 12 3 6 4 2 o 2 4
L :
= & . -log,(FDR) -log,(FDR)
g =
: g2
34 5 h
RNA transport
Spliceosome - MITOTIC SPINDLE
01 . . . 01 Adherens junction I MITOTIC SPINDLE
. . . = = 2 . - o
-1 0 1 -10 0 10 2 1 0 1 10 5 0 5 10
log,(FC), S2 vs S1 log,(FC), S2 vs S1 -log,(FDR) -log,,(FDR)

Fig. 3 Molecular subtypes of EC were defined by proteomic analysis. a Consensus clustering of EC tumor samples. The left panel shows consensus
matrices of the 124 EC samples with two clusters (k = 2). Consensus clustering was performed on the top 25% most-variant proteins in Prot5 as described
in Supplementary Fig. 2a. The right panel shows the silhouette-width plot. b Average silhouette-width plot. The average silhouette width takes the
maximum value when number of clusters was 2 (k = 2). ¢ Kaplan-Meier curves of overall survival (left) and disease-free survival (right) for subtype S1and
S2. P values were calculated by two-sided log-rank test. d Heatmap representation of the relative protein abundance of differentially expressed proteins
between S2 and S1 (BH adjusted P value < 0.01, FC > 1.5 or <0.67). The upper panel shows the association between molecular subtypes and
clinicopathologic characteristics. GO (gene ontology) biological functions related to these proteins are denoted on the right. The P values were calculated
by chi-squared test. e Volcano plot indicating proteins upregulated and downregulated in subtype S2. Light red and green colors represent proteins with BH
adjusted P value < 0.01 (Sig), whereas red and green represent proteins with BH adjusted P value < 0.01 and fold change more than 1.5. Other proteins are
colored in gray. P values were calculated using the two-sided Wilcoxon rank-sum test. f Volcano plot indicating phosphosites upregulated and
downregulated in subtype S2. Colors are the same as in e except that red and green represent proteins with fold change more than 2. P values were
calculated using the two-sided Wilcoxon rank-sum test. g KEGG pathways (left) and hallmark get sets (right) enriched in differentially expressed proteins
between subtype S1 and S2. Pink bars indicate pathways enriched in the upregulated proteins (n =137). Blue bars indicate pathways enriched in the
downregulated proteins (n=93). h KEGG pathways (left) and hallmark get sets (right) enriched for phosphoproteins with differential phosphorylation
between subtype S1 and S2. Pink bars indicate pathways enriched in the upregulated phosphoproteins (n = 541). Blue bars indicate pathways enriched in

the downregulated phosphoproteins (n = 519).

had the highest frequency (Fig. 4a and Supplementary Data 5a).
Five hundred cross-validation experiments showed that signature
“ELOA, SCAF4” yielded a favorable predictive performance
(mean AUC = 0.970) (Fig. 4b and Supplementary Data 5b).
ELOA, also known as elongin A, is a component of the SIII
complex, which activates RNA polymerase II elongation by
suppressing transient pausing of the polymerase at many sites
within transcription units**. SCAF4, also known as splicing fac-
tor, arginine/serine-rich 15, belongs to the splicing factor SR
family. It may act to physically and functionally link transcription
and pre-mRNA processing?>46. Taking the number of features,
stability (frequency), and prediction performance into con-
sideration, we selected “ELOA, SCAF4” as the subtype diagnostic
signature for subsequent analysis. Both ELOA and SCAF4
exhibited significantly higher expressions in the S2 subtype than

in S1 (P = 1.18 x 10712 and 4.58 x 10~!3 for ELOA and SCAF4,
respectively; Wilcoxon rank-sum test) (Fig. 4c). An SVM classi-
fication model with ELOA and SCAF4 as features was con-
structed for subtype prediction (http://www.licpathway.net/
ECSubtype/analysis_diagnostic.html), and an AUC of 0.976 was
obtained for the 124 patients we performed proteomics analysis
on (Cohort 1) (Fig. 4d).

To further validate the subtype diagnostic model, we quantified
the nuclear expression of ELOA and SCAF4 in an independent
cohort of EC patients (n = 295, Cohort 2) by immunohisto-
chemistry (IHC) (Supplementary Data 5c¢). Via this model, 97
patients were predicted to be of the S1 subtype and 198 patients
of the S2 subtype (Supplementary Data 5d). IHC revealed that
ELOA and SCAF4 exhibited stronger staining in S2 compared to
S1 subtype (P < 2.2x 10716 and P = 5.23 x 10~8 for ELOA and
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Fig. 4 Subtype diagnostic signature composed of ELOA and SCAF4 were identified in EC. a Bar plots of the frequency of the signatures in 100 times
feature selections. Red, green, cyan, and purple indicate that the maximum number of features is 1, 2, 3, and 4, respectively. b Box plots of the cross-
validation AUCs (area under the ROC curve, n = 100) of the 11 signatures shown. ¢ Box plots of log,-transformed protein expression ratios of ELOA (left)
and SCAF4 (right) (S1, n = 61; S2, n = 63). P values are calculated by the two-sided Wilcoxon rank-sum test. d ROC curve of the SVM model with
signature 4 (ELOA, SCAF4). e Representative IHC (immunohistochemistry) images of ELOA and SCAF4 protein expression in the independent EC Cohort
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SCAF4, respectively; Wilcoxon rank-sum test) (Fig. 4e, f). The
subcellular localization of these two proteins remains unchanged
between the two subtypes, with both predominantly localized in
the nucleus of cells (Fig. 4e). Furthermore, Kaplan-Meier curves
showed that patients with the S2 subtype had worse OS (OS
median = 1414 and 855.5 days for S1 and S2, respectively; log-
rank P = 0.012) (Fig. 4g) and DFS outcomes (DFS median =
1150 and 639.5 days for S1 and S2, respectively; log-rank P =
0.03) (Fig. 4h) than those in the S1 subtype, indicating that the
subtype diagnostic model we constructed could accurately predict
EC subtypes.

As the defined subtypes are based on proteomic data that are
independent of the pTNM stage, we further investigated if the
integration of the pTNM-defined subtypes can better stratify EC
patients. We first constructed a prognostic model using Cox

proportional hazards (Cox PH) model, in which the subtype and
pTNM stage served as independent variables and survival
information as dependent variable (referred to as “pTNM
+Subtype” model). For patient stratification, we further con-
structed a “pTNM+Subtype 3¢” model via k-means clustering
(k = 3) on the risk scores predicted by “pTNM+Subtype” model
(see “Methods” section for details on the two models; http://www.
licpathway.net/ECSubtype/analysis_prognostic.html). At any
time frame, ranging from one to seven years, both “pTNM
+Subtype” and “pTNM+-Subtype 3¢” models showed larger time-
dependent AUCs*” compared to the pTNM stage alone for both
OS and DFS prediction (Supplementary Fig. 5a, b). ROC curves
of the pTNM stage, “pTNM+Subtype”, and “pTNM+Subtype
3¢” model for OS and DFS at five years were shown in
Supplementary Fig. 5c¢, d. Furthermore, compared with the
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pTNM stage, “pTNM+Subtype 3¢” model yielded a more
significant (log-rank P value: 2.13x 1074 < 4.70 x 10~3 for OS
and 1.20x107% < 8.80x10~% for DFS) and reasonable
stratification, allowing more patients being grouped under the
low risk classification to avoid unnecessary treatment (Supple-
mentary Fig. 5e-h). For those 295 patients in Cohort 2, although
pTNM stage alone had provided an excellent stratification (Log-
rank P = 1.34x107% for OS and 1.66 x 10~% for DFS), the
“pTNM-+Subtype 3¢” model exhibited better stratification for OS
(log-rank P value: 7.92 x 10~7 < 1.34 x 1075 low risk n: 79 vs. 24)
(Supplementary Figs. 5i-1), suggesting “pTNM+Subtype 3c”
model to be of potential clinical value in improving the pTNM
staging system.

Drug prediction and validation for EC based on molecular
subtype defined. To seek therapeutic strategies for EC patients,
we selected proteins that were differentially expressed between
tumor and non-tumor samples (BH adjusted P < 0.01, Wilcoxon
signed-rank test, FC > 2 or < 0.5) for drug prediction. This led to
the identification of 189 upregulated and 271 downregulated
proteins in tumor samples (Supplementary Data 6a), which were
used as the query signature and subsequently mapped to the
Connectivity Map (CMAP)*3 (Supplementary Figs. 6a, b). A high
negative connectivity score indicated that the corresponding
perturbagen could reverse the expression of the query signature.
The top five candidate drugs with the highest negative con-
nectivity scores from the mapped drugs are 1-(2,4-Dichlor-
obenzoyl)-1H-benzimidazole, =~ HC  toxin,  chlorphenesin,
cytochalasin B, and 2-Benzoylbenzene-1,4-diyl bis(4-bromo-3-
nitrobenzoate) (Supplementary Fig. 6a, b and Supplementary
Data 6b). We also searched therapeutic strategies more specific
for patients with the S2 subtype, we selected proteins that were
differentially expressed between both subtypes (BH adjusted P <
0.01, Wilcoxon signed-rank test, FC >1.5 or <0.67) and were
significantly correlated with OS (Cox P < 0.05) for drug predic-
tion. This led to the identification of 86 upregulated and 24
downregulated proteins in the S2 subtype (Supplementary
Data 6¢), which were used as the query signature and subse-
quently mapped to the Connectivity Map (CMAP) (Fig. 5a-b).
We selected six candidate drugs with the highest negative con-
nectivity scores from the mapped drugs for experimental ver-
ification in the current story (Fig. 5a and Supplementary
Data 6d).

We first investigated the effects of the six drugs on six EC cell
lines—KYSE30, KYSE150, KYSE450, TE1, TE3, and TE5—for cell
viability. These six EC cell lines belong to the S2 subtype based on
consensus clustering (Supplementary Fig. 7a). Meanwhile,
immunoblotting analysis results revealed that ELOA and SCAF4
were highly expressed in these cell lines (Supplementary Fig. 7b).
All six drugs could effectively inhibit the proliferation of all tested
EC cell lines, with GW8510, Menadione, and Sulconazole being
the most effective (Fig. 5c and Supplementary Data 6e). The
effects of these three drugs on cell growth were further confirmed
using a colony formation assay (Fig. 5d). Furthermore, to verify
the effects of these drugs in mice, GW8510, menadione, or
sulconazole were injected intraperitoneally into nude mice with
xenograft tumors from KYSE30 and KYSE150 cells; tumor
growth was markedly reduced (Fig. 5e-h).

To test if the effects of these three drugs on EC cell growth
could be linked to their regulation of differentially expressed
proteins in the S1 and S2 subtypes, proteomic analysis of
KYSE150 cells following drug treatment was performed. Strik-
ingly, all three drugs exhibited a remarkable impact on the vast
majority of proteins that were differentially expressed in the S1
and S2 subtypes (Fig. 6a and Supplementary Data 6f-6i).

Specifically, for the 124 upregulated proteins in S2, GW8510,
Menadione, and Sulconazole treatment led to the downregulation
of 95, 65, and 77 proteins, respectively. Meanwhile, for the 78
downregulated proteins in S2, 65, 69, and 67 proteins were
activated in response to GW8510, Menadione, and Sulconazole
treatment, respectively (Fig. 6b). The proteins altered by the three
drugs contained a large number of subtype-risk proteins such as
STK17B, ZMAT2, STMN1, TIMMI13, MRPS18A, and CISDI,
with 72, 52, and 59 proteins altered by GW8510, menadione, and
sulconazole, respectively (Fig. 6b and Supplementary Data 6g-6i).
These results suggested that GW8510, Menadione, and Sulcona-
zole could serve as potential drugs for EC patients belonging to
the S2 subtype by targeting dysregulated proteins in the
S2 subtype.

Discussion

Genomic analysis has broadened our understanding of the
molecular events in EC*828 Herein, global proteomic and
phosphoproteomic analysis provided new insights into the biol-
ogy of this malignancy. In addition to affirming some genomic
alterations, the proteomic analysis has found alterations at the
protein level that were inconsistent with the genomic analysis.
Meanwhile, previously unknown alterations, such as increased
protein expression and increased phosphorylation levels of
numerous epigenetic regulators, were revealed, thus highlighting
the importance of proteomic analysis to better understand EC.

Our quantitative proteomic analysis of paired tumor and non-
tumor esophageal tissues revealed that the altered proteome in EC
was highly similar to that in gastric cancer, including upregulated
EMT, DNA replication, cell cycle, E2F targets, and G2/M
checkpoint, and downregulated drug metabolism, fatty acid
metabolism, and oxidative phosphorylation. This suggest that EC
and gastric cancer pathogeneses may share common
characteristics!, and analogous therapeutic approaches could
therefore be considered. Moreover, phosphoproteomics revealed
the hyperphosphorylation of many SR proteins in the spliceo-
some. Reversible phosphorylation regulates almost all functions
of SR proteins, including interaction with other proteins, sub-
nuclear localization, spliceosome assembly and disassembly, and
nucleus-cytoplasm  shuttling activity?>?’.  The hyperpho-
sphorylation of SR proteins in tumor samples may lead to the
misregulation of alternative splicing and eventually contribute to
EC tumorigenesis. The mechanistic links between SR protein
hyperphosphorylation and EC tumorigenesis warrant further
investigation.

Unlike many other types of cancers, EC has no defined
molecular subtypes to guide clinical treatment>%21-23, Here, we
divided EC patients into two subtypes, a high-risk subtype S2 and
a low-risk subtype S1, which could provide guidance for clinical
treatment. Compared with the subtype S1, the subtype S2
exhibited expression profiling associated with stronger prolifera-
tion. The expression of proteins involved in E2F targets, G2/M
checkpoint, and spliceosome gradually increased in the subtype
S2 compared with the non-tumor, subtype S1 (Supplementary
Fig. 4d), indicating that these proteins might account for the
development of EC. Numerous proteins involved in ribosome and
oxidative phosphorylation were specifically dysregulated in the
subtype S2 (S2-specific proteins), indicating that these proteins
might be related to the deterioration of EC. Although enhanced
EMT has been often associated with tumor deterioration, EMT
was enriched in the down-regulated proteins in the malignant
S2 subtype, all of which were S2-specific. These proteins include
TIMP3, ABI3BP, MYLK, and MYL9 (Supplementary Fig. 4d),
whose downregulations have been reported to promote cell
proliferation, invasion, and metastasis®?-43, In contrast, most of
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least half samples (Supplementary Fig. 2a, Prot 3, n = 9300). The
top 25% of the most variable proteins (n = 2325) were selected
for consensus clustering. Again, two major subtypes were iden-
tified that had maximal average silhouette width (0.69), which we
named as S1-Prot3 and S2-Prot3 subtypes (Supplementary
Fig. 8a-8c). It is worthy of noting that the average silhouette

these downregulated proteins were upregulated in the KYSE150
cells following GW8510, menadione, or sulconazole treatment
(Supplementary Data 6g-i), suggesting that these S2-specific
proteins may play an important roles in the development of EC.
We also performed consensus clustering for the tumor samples
based on proteins that are quantifiable with high confidence in at
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Fig. 5 Drug prediction and validation for EC based on molecular subtype defined. a Workflow of drug prediction. Volcano plot indicates proteins that are
differentially expressed between S1 and S2 and significantly associated with overall survival (Cox P value < 0.05). The two-sided Cox P values (without
correction for multiple testing) were calculated using the Cox PH model. Red and green represent proteins with fold change larger than 1.5 between S1and
S2. Other genes are colored in gray. The 86 upregulated and 24 downregulated proteins were used as the query signature to match the reference profiles
of perturbagens in CMAP to calculate connectivity scores. Perturbagens are sorted by connectivity score in increasing order, and the top perturbagens are
predicted as candidate drugs. b Protein-protein interaction network of the query signature in a. The protein-protein interactions were obtained from the
STRING database. The width of the line indicates the edge confidence. Upregulated proteins are colored in red, and downregulated proteins in blue. Several
significantly enriched biological processes are highlighted by different colors. ¢ Viabilities of six EC cell lines treated with six candidate drugs at
concentrations as indicated for 24 h. Representative data from four biological repeats was shown (mean £ SD). d Colony formation assays of six EC cell
lines treated with DMSO or three drugs as indicated. Representative data from three biological repeats was shown (mean £ SD). P values were calculated
by unpaired two-sided Student's t-test. Sulconazole, 50 pM; Menadione, 20 pM; GW8510, 15 uM. e, g Tumor growth in KYSE30 (e) and KYSE150
(g)-derived tumor xenograft mouse models treated with DMSO or three drugs as indicated. GW8510, 5 mg/kg; Menadione,10 mg/kg; Sulconazole, 10 mg/
kg. f, h Growth curve of tumors as described in e and g (n = 5 independent animals). Data are presented as mean = SD. P values were calculated by

unpaired two-sided Student's t-test.

width based on Prot3 (0.69) was smaller than Prot5 (0.73). The
S1-Prot3 and S2-Prot3 subtypes contained 35 and 89 tumor
samples, respectively (Supplementary Fig. 8a). Strikingly, the
tumor samples in S2 subtype we originally defined (n = 63) were
all included in S2-Prot3 subtype (Supplementary Fig. 8d). 26
tumor samples in S1 subtype were now in S2-Prot3 subtype, but
they clearly had lower consensus values (light blue) than other
tumor samples in S2-Prot3 subtype (Supplementary Fig. 8a, d).
Patients with the S2-Prot3 subtype had worse OS and disease-free
survival (DFS) outcomes compared to those in the S1-Prot3
subtype (Supplementary Fig. 8e). Specifically, the OS median was
1338 and 920 days for S1-Prot3 and S2-Prot3 subtypes, respec-
tively (log-rank P = 0.24), and the DFS median was 1215 and
655 days for S1-Prot3 and S2-Prot3 subtypes, respectively (log-
rank P = 0.35) (Supplementary Fig. 8e). Altogether, the differ-
entially expressed proteins and pathways in the two identified
subtypes might help us to better understand the mechanisms
underlying EC progression, and facilitate the identification of new
therapeutic strategies.

Based on the differentially expressed proteins in tumor sam-
ples, we sought to identify potential drugs that may beneficial for
EC patients. The top five candidate drugs with the highest
negative connectivity scores from the mapped drugs are 1-(2,4-
Dichlorobenzoyl)-1H-benzimidazole, HC toxin, chlorphenesin,
cytochalasin B, and 2-Benzoylbenzene-1,4-diyl bis(4-bromo-3-
nitrobenzoate) (Supplementary Fig. 6a, b and Supplementary
Data 6b). 1-(2,4-dichlorobenzoyl)-1H-benzimidazole is a member
of the class of benzamides obtained by the formal condensation of
1H-benzimidazole and 2,4-dichlorobenzoic acid. Benzimidazole
derivatives have a variety of biological activities such as antic-
ancer, antiviral, antibacterial, antifungal, antiparasitic, anti-
inflammatory, proton pump inhibitors, anticoagulants, etc#%>0.
Both DNA and RNA viruses have been shown to activate the
innate immunity in host cells through activating the cGAS/
STING and RIG-I/MAYVS signaling pathway, respectively, to
induce the expression of type I interferons (IFNs) and type I
interferon-stimulated genes (ISGs)>!>3. A number of I1SGs were
found to be highly induced in tumor compared to non-tumor
samples, such as MXI1, IDOI1, IFIT3, IFIT1, EPSTI1, GBPS5,
CAMP, GBP1, and OAS3 as shown in Fig. 2g and Supplementary
Data 2a. Meanwhile, chronic fungal infection, Fusobacterium
nucleatum (F. nucleatum) and Porphyromonas gingivalis infec-
tion, and activation of endogenous retroviruses have been linked
to esophageal carcinogenesis and chemoresistance®*->%. There-
fore, whether the over-presentation of those ISGs in EC is linked
to the above mentioned fungi, bacteria, and retroviruses, and the
interferon signaling pathway could represent a targetable avenue
for EC treatment remains as an interesting topic for future
investigation. HC toxin is a potent, cell-permeable histone

deacetylase (HDAC) inhibitor, which has certain inhibitory
effects on breast cancer, colon cancer, and other tumors. In
particular, HC toxin has a better anti-tumor effect in mature
neuroblastoma than other HDAC inhibitors, which has been
linked to cell cycle arrest, apoptosis induction and cell
differentiation®’=>°. Chlorphenesin is an antigen-associated
immunosuppressant that inhibits IgE-mediated histamine
release. It is also used as an antimycotic agent®%61. Cytochalasin B
is a cell-permeable mycotoxin binding to the barbed end of actin
filaments, disrupting the formation of actin polymers®2:63, 2.
benzoylbenzene-1,4-diyl ~ bis(4-bromo-3-nitrobenzoate) is a
member of the class of benzophenones that is benzophenone
substituted by (4-bromo-3-nitrobenzoyl)oxy groups at positions 1
and 4. It has been shown to have anticancer potential in breast
and prostate cancer cells in vitro®%. We also identified potential
drugs that may specifically target patients belonging to the
S2 subtype based on the differentially expressed proteins asso-
ciated with subtype S2. Among them, menadione exhibited the
most dramatic effects on cell proliferation. Menadione is a syn-
thetic analog of vitamin K, which has been reported to exhibit
anticancer activity against various types of cancers®®. It can
impair mitochondrial DNA replication and repair by inhibiting
DNA polymerase gamma and induce reactive oxygen species-
mediated apoptosis in human cancer cells®®. Moreover, mena-
dione has been shown to induce G2/M arrest in gastric cancer
cells®” and G1 arrest in renal cell carcinoma®8. This is consistent
with the enrichment of DNA replication and repair and cell cycle-
related pathways in proteins upregulated in EC. Importantly,
menadione had minimal toxicity to human primary colon epi-
thelial cells and non-tumorigenic HEK293 and HaCaT cells®%70.
Another potential drug that may specifically target patients
belonging to the S2 subtype was GW8510, which is a CDK2
(cyclin-dependent kinase 2) inhibitor. Drug repositioning found
that it can be used to treat human colorectal cancer and lung
squamous cell carcinoma by inhibiting RRM27172, an oncogenic
protein in multiple cancer types’3-76. We found that RRM2 was
also upregulated in EC tumor samples. Meanwhile, GW8510 was
not capable of inducing the apoptosis of normal human
fibroblast””. Azole drugs, especially imidazole drugs, have shown
antitumor efficacy in several cancer types, including lung cancer,
prostate cancer, colon cancer, and breast cancer’3-82, Sulcona-
zole, a typical azole anti-fungal drug, is in the imidazole class and
has been recently shown to inhibit cell proliferation, tumor
growth, and cancer stem cell formation in human breast cancer
stem cells®3. However, the molecular mechanisms underlying the
anticancer activity of azole drugs remain to be fully uncovered.
Nevertheless, it has been reported to suppress invasion through
the inhibition of MMP982, Interestingly, MMP9 was upregulated
in our EC tumor samples. The mechanism by which sulconazole
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inhibits the proliferation and migration of EC cells is also worthy  including AMPKA2, PKCI, ST2, PDK1, DYRK2, CDC7, and
of further study. The drugs we identified are potentially more DYRKIA was significantly upregulated in S2 subtype compared
specific to patients belonging to the subtype S2, and their clinical to S1 subtype. Testing the effects of inhibitors targeting these
use might avoid the overtreatment of S1 patients. PTM-SEA  kinases on the growth of cells in S1 and S2 subtypes remains as an
analysis results revealed that the activity of several kinases interesting topic for future investigation. Our study highlights the
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Fig. 6 The effects of Sulconazole, Menadione and GW8510 on EC cell growth were linked to their regulation of differentially expressed proteins in the
S1 and S2 subtypes. a The expression of proteins differentially expressed between ST and S2 subtype in response to the three drugs as indicated in
KYSE150 cells. Three biological repeats were performed. b Altered proteins in KYSE150 cells treated with three drugs. Light green indicates proteins that
are up-regulated in S2 (n = 137) but downregulated by drug treatment. Light red indicates proteins that are downregulated in S2 (n = 93) but upregulated
by drug treatment. Green and red indicate proteins that had fold change more than 1.2 in response to drug treatment. Other proteins are colored in gray.
Representative subtype-risk proteins are marked. All P values were calculated by unpaired two-sided Student's t-test. *P < 0.05, **P < 0.01, ***P < 0.001,
ns, not significant. ¢ Schematic of the proteomic analyses of esophageal cancer (EC). A large-scale, high-resolution mass spectrometry-based proteomic
and phosphoproteomics profiling of paired non-tumor and esophageal cancer samples was reported. Genomic information and tissue arrays were
integrated with the proteomic data for proteogenomic analysis, proteomic subtype definition, diagnostic/prognostic model construction, drug prediction,
and validation. The analysis defined subtypes and subtype signature of EC, and provided molecular basis for finding potential treatments for EC.

advantage of discovering drugs using the molecular subtypes
defined by proteomic analysis.

In summary, our study revealed the dysregulated proteins and
pathways in EC tumors, based on which two clinically relevant
molecular subtypes, S1 and S2, were defined. Furthermore,
diagnostic and prognostic subtype signatures composed of ELOA
and SCAF4 were identified. We uncovered the differential pro-
teome between the two subtypes and provided potential drugs,
that can be utilized for the treatment of patients with the more
aggressive S2 subtype.

Methods

Clinical sample acquisition. Paired tumor and adjacent non-tumor esophageal
tissues from a cohort of 124 ESCC (esophageal squamous cell carcinoma) patients
(Cohort 1, Supplementary Data la) were obtained from the Shantou Central
Hospital. The adjacent non-tumor esophageal tissues were taken at least 5 cm away
from the tumors. All the patients underwent curative resection from June 2011 to
December 2013. The second independent cohort (Cohort 2) included 295 EC
patients that underwent curative resection from November 2007 to January 2011 at
the Shantou Central Hospital (Supplementary Data 5c). After resection, the tissue
samples were snap-frozen in liquid nitrogen within 30 min and then stored in a
—80 °C refrigerator before use. All the cases were classified according to the seventh
edition of the American Joint Committee on Cancer (AJCC) pTNM system84.
Clinical information on smoke, alcohol, and histopathological factors was obtained
from the medical records. Overall survival (OS) was defined as the interval between
surgery and death from tumors or between surgery and the last observation taken
for surviving patients. Disease-free survival (DFS) was defined as the interval
between surgery and diagnosis of relapse or death. Ethical approval was obtained
from the ethical committee of the Central Hospital of Shantou City and the ethical
committee of the Shantou University Medical College. Only resected samples from
surgical patients with written informed consent were included.

Cell lines and reagents. ESCC cell lines (KYSE30, KYSE150, and KYSE450) were
established by Dr. Shimada Yutaka (Faculty of Medicine, Kyoto University, Kyoto,
Japan)®. The TE cell lines (TE1, TE3, and TE5) were established by Dr. Nishihira
(Institute of Development, Aging and Cancer, Tohoku University School of
Medicine, Sendai, Japan)86. All cells were tested for mycoplasma contamination
and cultured in RPMI-1640 medium supplemented with 10% FBS, penicillin (100
mg/mL) and streptomycin (100 mg/mL), respectively. All cells were maintained
under the humidified 5% CO, atmosphere at 37 °C. 8-Azaguanine (HY-B1468),
Sulconazole nitrate (HY-B1460A), Menadione (HY-B0332), and Campathecin
(HY-16560) were purchased from MedChem Express. GW8510 (sc-215122) was
purchased from Santa Cruz Biotechnology. Thioguanine (S1774) was purchased
from Selleck Chemicals.

LC-MS/MS analysis

Protein extraction and digestion. The tissue and EC cell line samples were processed
according to the Filter Aided Sample Preparation (FASP) method. The tryptic
peptides were desalted by StageTips and lyophilized followed by labeling with
TMT-11plex (Pierce) according to the manufacturer’s instructions. For the
“internal reference” mixed sample used in TMT labeling, 60 pairs of tumor and
adjacent non-tumor samples were randomly selected and mixed in equal protein
amount. The peptides of mixed samples were divided into 35 pg per EP tube for
each set of TMT labeling experiment as the internal reference. Two hundred
microgram labeled peptides were off-line fractionated by bRP using a Waters
XBridge BEH C18 5 pm 4.6 x 250 mm column (Waters) on an Ultimate 3000 high-
pressure liquid chromatography (HPLC) system (Dionex) operating at 1 mL/min.
Buffer A (5 mM ammonium formate) and buffer B (5 mM ammonium formate,
90% (v/v) ACN) were adjusted to pH 10 with ammonium hydroxide. Peptides were
separated by a linear gradient from 5% B to 40% B in 90 min followed by a linear

increase to 70% B in 6 min. A total of 96 fractions were collected. The 96 fractions
were concatenated to 32 fractions, and all the peptide fractions were lyophilized.

TMT 11-plex labeling. The 124 paired tumor and non-tumor esophageal tissue
samples were labeled in 25 groups of TMT 11-plex experiments for LC-MS/MS
analysis. For each TMT 11-plex experiment, the mixed peptides were labeled with
channel 131C as the internal reference, and five pairs of tumor and non-tumor
esophageal tissue samples were labeled with the other ten channels (Tumor eso-
phageal tissues labeled with 127N, 128N, 129N, 130N and 131N; non-tumor
esophageal tissues labeled with 126, 127C, 128C, 129C, and 130C).

Phosphopeptide enrichment and fractionation. Three microgram protein of each
selected samples were digested with Lys-C (1:100, w/w, Wako) for 6 h at 37°C
followed by trypsin (1:50, w/w, Promega) overnight at 37 °C. The resulting peptide
mixture was acidified (pH 2-3) with formic acid, loaded onto Sep-Pak tC18 car-
tridges (Waters), desalted and eluted with 70% acetonitrile. The phosphopeptide
enrichment was performed using High-Select Fe-NTA kit (Thermo Scientific,
A32992) according to the manufacturer’s instructions. The eluates were collected
for speed-vac and dried for fractionation. The Phospho-peptides were separated
using high-pH reversed-phase chromatography (Hp-RP). In brief, the pipette tip
was blocked using a layer of Empore 3M C8 disk and then filled with 5 mg of C18
reverse-phase medium (3 um, Durashell, Agela Technologies). The tip was washed
twice with 100 uL. ACN and then with 100 uL 0.1% FA in water. The phospho-
peptides were re-dissolved in 1% FA in water and loaded onto the tip and cen-
trifuged at 1200 x g for 5 min to remove the liquid. Then, 100 pL water was loaded
onto the tip and centrifuged at 1200 x g for 5 min to remove the liquid. The bound
peptides were eluted with six gradients of elution buffer. The phosphopeptides were
eluted with 100 pL of elution buffer 1 (15% ammonia) at 600 x g for 5 min, elution
buffer 2 (15% ammonia, 2% ACN) at 900 x g for 5 min, elution buffer 3 (15%
ammonia, 5% ACN) at 1100 x g for 5 min, elution buffer 4 (15% ammonia, 8%
ACN) at 1400 x g for 5 min, elution buffer 5 (15% ammonia, 10% ACN) at 1400 x g
for 5min and elution buffer 6 (15% ammonia, 40% ACN) at 1400 x g for 5 min.
The elutions were collected, and the fractions were combined into three fractions as
follows: fraction 1 with 6, fraction 2 with 4 and fraction 3 with 5. Thus, three final
fractions of eluted phosphopeptides were obtained and instantaneously dried in a
SpeedVac concentrator at 45 °C, and stored at —80 °C before usel®.

Proteomic LC-MS/MS analysis. TMT MS experiments were performed on a
nanoscale EASY-nLC 1200UHPLC system or nanoU3000UHPLC system (Thermo
Fisher Scientific) connected to an Orbitrap Fusion Lumos equipped with a
nanoelectrospray source (Thermo Fisher Scientific). Mobile phase A contained
0.1% formic acid (v/v) in water; mobile phase B contained 0.1% formic acid in 80%
acetonitrile (ACN). The peptides were dissolved in 0.1% formic acid (FA) with 2%
ACN and separated on a RP-HPLC analytical column (75 pm x 25 cm) packed
with 2 pm C18 beads (Thermo Fisher Scientific) using a linear gradient ranging
from 9 to 32% ACN in 100 min and followed by a linear increase to 50% B in 20
min at a flow rate of 300 nL/min. The Orbitrap Fusion Lumos acquired data in a
data-dependent manner alternating between full-scan MS and MS2 scans. The
spray voltage was set at 2.2kV and the temperature of ion transfer capillary was
300 °C. The MS spectra (350—1500 m/z) were collected with 60,000 resolution,
AGC of 4 x 10° and 50 ms maximal injection time. Selected ions were sequentially
fragmented in a 3 s cycle by HCD with 38% normalized collision energy, specified
isolated windows 0.7 m/z, 50,000 resolution. AGC of 1 x 10> and 105 ms maximal
injection time were used. Dynamic exclusion was set to 30 s. Unassigned ions or
those with a charge of 14+ and >7+4 were rejected for MS/MS.

Phosphoproteomic LC-MS/MS analysis. For phosphoproteomic analysis, The MS
system was the same as above. The spray voltage was set at 2.2 kV and the temperature
of ion transfer capillary was 300 °C. The MS spectra (350—1500 m/z) were collected
with 120,000 resolution, AGC of 4 x 10° and 50 ms maximal injection time. Selected
ions were sequentially fragmented in a 3 s cycle by HCD with 30% normalized collision
energy, specified isolated windows 1.6 m/z, 30,000 resolution. AGC of 5 x 10* and 80
ms maximal injection time were used. Dynamic exclusion was set to 30 s. Unassigned
ions or those with a charge of 1+ and >7+ were rejected for MS/MS.
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MS data analysis. The data were collected using Xcalibur software (Thermo Fisher
Scientific, version 3.0). Raw data were processed using Proteome Discoverer (PD,
version 2.2), and MS/MS spectra were searched against the reviewed SwissProt
human proteome database. All searches were carried out with precursor mass
tolerance of 20 ppm, fragment mass tolerance of 0.02 Da, oxidation (Met)
(415.9949 Da), TMT6plex (Lys) (229.163 Da) and acetylation (protein N-termi-
nus) (+42.0106 Da) as variable modifications, carbamidomethylation (Cys)
(457.0215 Da), TMT6plex (N-terminal) (229.163 Da) as fixed modification and
three trypsin missed cleavages allowed. In EC phosphorylation data analysis,
phospho (STY) was chosen as a variable modification. Only peptides with at least
six amino acids in length were considered. The peptide and protein identifications
were filtered by PD to control the false discovery rate (FDR) <1%. At least one
unique peptide was required for protein identification.

Global proteomic data analysis

Data normalization. The protein expression ratio was calculated as the ratio of the
sample abundance to the abundance of the “internal reference” mixed sample. To
mitigate systematic, sample-specific bias in the quantification of protein levels!2,
the protein expression ratios were log,-transformed and normalized using the
mean centering method across all proteins. In the normalized samples, the proteins
should have a log,-transformed expression ratio centered at zero.

Data filtering. The proteomic data was filtered to five datasets at different levels
according to the following criteria (Supplementary Fig. 2a). (1) Dataset 1 (Protl)
included all proteins that quantified in at least one of the 25 TMT groups. (2) For
dataset 2 (Prot2), proteins were required to be quantified in high confidence in at
least one of the 25 TMT groups. (3) Dataset 3 (Prot3) included proteins that
quantified with high confidence in at least half samples. (4) Dataset 4 (Prot4)
included proteins quantified in all 124 paired samples. (5) Dataset 5 (Prot5)
included proteins quantified with high confidence in all 124 paired samples.

Batch effect analysis. The unsupervised principle component analysis (PCA) and
hierarchical clustering were performed on protein expression ratios of common
proteins in Prot5 to assess the batch effect due to TMT multiplexes in R v.3.6.2.
The assessment is mainly based on two variables: sample class (Tumor and non-
tumor) and group (Batch 1-25). For PCA, the leading PCs of the protein
expression data well separated the tumor from non-tumor samples, and the
samples in the same group did not clustered together, indicating that there is no
obvious batch effect. The R package ggbiplot v.0.55 was used to show the con-
fidence intervals. For hierarchical clustering, we used the complete linkage algo-
rithm with Euclidean distance as the distance measure. Samples with high
similarity tend to cluster together. If the samples are clustered together pre-
dominantly depending on sample classes rather than sample groups, the batch
effect is negligible relative to biological differences. The hierarchical clustering was
performed using the R package pheatmap v.1.0.12.

Tumor versus non-tumor differential proteomic analysis. Tumor versus non-tumor
differential proteomic analysis was performed on 9300 proteins that are quantified
in at least half samples with high confidence (Prot3). The Wilcoxon signed-rank
test was performed on overlapping samples to assess the statistical significance P
value of protein expression difference between paired tumor and non-tumor
samples. Proteins with BH adjusted P value < 0.01 and fold change (FC.Prot,
expressed as ratio of average protein expression ratio between tumor and non-
tumor samples) >1.5 or <0.67 were considered to be significantly upregulated or
downregulated proteins in tumor samples (Supplementary Data 2a).

Correlation between protein expression ratios and clinical outcome. We used two
methods to evaluate the association between protein expression ratios and patient
risk. (1) Cox PH model. A univariate Cox PH model was used to estimate the
hazard ratio (HR), confidence interval, and Cox P value of each protein. HR >1
means that the expression of the protein is positively correlated with patient risk,
while HR <1 means a negative correlation. The correlation is considered significant
if Cox P value < 0.05. Correlation with OS and DFS are estimated separately. (2)
The X-tile method®”. The EC patients were divided into two groups according to
the expression values of the protein by the X-tile method. A log-rank P value is
calculated by a log-rank test on survival difference of the two groups. For each
protein, the protein expression is considered to be positively correlated with patient
risk, if the average survival time of the group with high protein expression is
shorter than that of the group with low protein expression, and vice versa. The
correlation is considered significant if log-rank P value < 0.05. The X-tile method
was used to estimate the correlation between protein expression and OS in

this study.

EC-associated risk proteins. A protein is defined as an EC-associated risk protein if
it meets the following two criteria: (1) The protein is significantly upregulated or
downregulated in tumor samples compared to non-tumor samples (FC.Prot >1.5
or <0.67, and BH adjusted P value < 0.01); (2) The protein expression is sig-
nificantly correlated with OS according to the X-tile method (log-rank

P value < 0.05).

Phosphoproteomic data analysis

Quantification and normalization of phosphosites. The expression abundance of
each phosphopeptide was determined by the sum of the three final fractions of
eluted phosphopeptides, and the phosphosite abundance was determined by the
median abundance for all phosphopeptides matching that site. The expression
abundance of the phosphosites was subjected to quantile normalization®® imple-
mented in the R package limma v.3.42.2. Missing values were imputed with the
minimum value across the phosphoproteomic data.

Phosphoproteomic data filtering. The phosphoproteomic data was filtered to three
datasets at different levels according to the following criteria (Supplementary
Fig. 2g). (1) Dataset 1 (Phosl) included 73,651 highly reliable phosphosites (FDR <
1%). (2) Dataset 2 (Phos2) included 67,393 phosphosites with quantified values. (3)
Dataset 3 (Phos3) included 61,471 phosphosites that quantified in at least half
samples.

Tumor vs. non-tumor differential phosphoproteomic analysis. Tumor vs. non-tumor
differential phosphoproteomic analysis was performed on 61,471 phosphosites that
quantified in at least half samples (Phos3). The Wilcoxon signed-rank test was
performed on overlapping samples to assess the statistical significance P value of
phosphosite abundance difference between paired tumor and non-tumor samples.
Phosphosites with BH adjusted P value < 0.01 and fold change (FC.Phos, expressed
as ratio of average phosphosite abundance between tumor and non-tumor samples)
>2 or <0.5 were considered to be significantly upregulated or downregulated
phosphosites in tumor samples (Supplementary Data 2c). The proteins with sig-
nificantly upregulated or downregulated phosphosites in tumor samples are con-
sidered as differential phosphoproteins in tumor vs. non-tumor samples.

Proteomic subtyping analysis

Consensus clustering for proteomic data. The normalized protein expression ratios
of 124 tumor samples in Prot5 were used to identify molecular subtypes in EC
using the consensus clustering method® implemented in the R package Con-
sensusClusterPlus v.1.50.0. The proteins were sorted according to their coefficients
of variation, and the top 25% of the most variant proteins (1617) were selected for
consensus clustering. The consensus clustering was implemented using the fol-
lowing detailed settings: maximum cluster number (maxK) = 6, number of repeats
(reps) = 1000, proportion of items to sample (pItem) = 0.8, proportion of features
to sample (pFeature) = 0.8, cluster algorithm (clusterAlg) = “hc¢” (hierarchical
clustering), and distance="“spearman”. The optimal number of clustering was
determined by the average silhouette width, which was calculated using the R
package cluster v.2.1.0. The average silhouette width for k = 2 was larger than

k = 3,4, 5, and 6 (Fig. 3b). Thus, the EC patients were finally clustered into two
molecular subtypes S1 and S2.

Correlation between molecular subtype and clinical outcome. Kaplan-Meier curves
and log-rank tests were used to evaluate the OS and DFS difference between two
molecular subtypes S1 and S2. A univariant Cox PH model was used to evaluate the
prognostic power of molecular subtype (S1 = 1/52 = 2) on OS and DFS, respec-
tively (Supplementary Data 4b). The independence between molecular subtypes
and clinicopathological factors (Age, Gender (Female = 0/Male = 1), Smoke
(No = 0/Yes = 1), Alcohol (No = 0/Yes = 1), and pTNM stage (I = 1/II = 2/IIl =
3)) was estimated by a multivariate Cox PH model. A significance level of 0.05
was used.

Correlations between molecular subtype and clinicopathologic factors. The correla-
tion between molecular subtypes and clinicopathologic factors was examined by y2-
test or Fisher’s exact test for categorical variables, and Wilcoxon rank-sum test for
continuous variables (Supplementary Data 4c).

S2 vs. S1 differential proteomic analysis. Proteomic subtype S2 vs. S1 differential
proteomic analysis was performed on 6468 common proteins that are quantified
with high confidence in all 124 paired patients (Prot5). The Wilcoxon rank-sum
test was performed to assess the statistical significance P value of protein expression
difference between S2 and S1. Proteins with BH adjusted P value < 0.01 and fold
change (FC.Prot, expressed as ratio of average protein expression ratio between S2
and S1) >1.5 or <0.67 were considered to be significantly upregulated or down-
regulated proteins in samples belonging to S2 (Supplementary Data 4d).

S2 vs. S1 differential phosphoproteomic analysis. Subtype S2 vs. S1 differential
phosphoproteomic analysis was performed on 61,471 phosphosites that quantified
in at least half samples (Phos3). The Wilcoxon rank-sum test was performed to
assess the statistical significance P value of phosphosite abundance difference
between S2 and S1. Phosphosites with P value < 0.01 and fold change (FC.Phos,
expressed as ratio of average phosphosite abundance between S2 and S1) >2 or <0.5
were considered to be significantly upregulated or downregulated phosphosites in
samples belonging to S2 (Supplementary Data 4e). The proteins with significantly
upregulated or downregulated phosphosites in samples belonging to S2 are con-
sidered as differential phosphoproteins in S2 vs. S1 subtypes.
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Subtype-risk proteins. A protein is defined as a subtype-risk protein if it meets the
following two criteria: (1) The protein is significantly upregulated or down-
regulated in S2 subtype compared to S1 (FC.Prot >1.5 or <0.67, and BH adjusted P
value < 0.01); (2) The protein expression is significantly correlated with OS (Cox P
value < 0.05).

Functional enrichment analysis. Functional enrichment analysis was performed
using Metascape? to infer dysregulated KEGG pathways, Hallmark gene sets, and
GO biological functions that enriched on differential protein sets, including (1)
upregulated or downregulated proteins in tumor vs. non-tumor samples (Supple-
mentary Data 2d); (2) upregulated or downregulated phosphoproteins in tumor vs.
non-tumor samples (Supplementary Data 2e); (3) upregulated or downregulated
proteins in S2 vs. S1 subtype (Supplementary Data 4f); and (4) upregulated or
downregulated phosphoproteins in S2 vs. S1 subtype (Supplementary Data 4g). The
statistical significance P value was evaluated by hypergeometric test, and adjusted
by BH correction. Significant calls were obtained on the basis of a BH adjusted P
value (g value) cut-off of 0.05.

PTM-SEA analysis. PTM signatures database (PTMsigDB, v1.9.0) was first
downloaded from http://prot-shiny-vm.broadinstitute.org:3838/ptmsigdb-app/.
The implementation of PTM-SEA on GitHub was used (https://github.com/
broadinstitute/ssGSEA2.0). The following parameters were used to run PTM-SEA.
sample.norm.type: rank; weight: 0.75; statistic: area.under.RES; output.score.type:
NES; nperm: 1000; min.overlap: 5; correl.type: z.score.

Tissue microarrays (TMAs) and immunohistochemistry (IHC). TMAs con-
struction and IHC staining were based on standard techniques as previously
described®!. TMAs were constructed using 295 tumor esophageal tissues from
Cohort 2. The clinical information of the 295 EC patients was provided in Sup-
plementary Data 5¢c. Markers that were used in this study included ELOA, SCAF4,
MX1, OAS3, and IFIT1. Rabbit anti-ELOA polyclonal antibody (NBP1-87040,
Novus), anti-SCAF4 polyclonal antibody (PA5-36611, Thermo fisher), and anti-
MX1 polyclonal antibody (13750-1-AP, Proteintech) were diluted at 1:200. Rabbit
anti-OAS3 polyclonal antibody (21915-1-AP, Proteintech) and mouse anti-IFIT1
monoclonal antibody (TA500948S, Origene) were diluted at 1:50. Immunostaining
was performed by an automated quantitative pathology imaging system (Perkin
Elmer, Waltham, MA, USA)?2. Firstly, we used the Vectra 2.0.8 for automated
image acquisition, and obtained the color images. Secondly, the spectral libraries
were built by the Nuance 3.0 software. The color images were then evaluated by
inform 1.2 software following three steps: (1) Segmented tumor region from the
tissue compartments; (2) Segmented cells from the tumor region; and (3) Calcu-
lated H-score based on the optical density. H-score (= (% at 0) * 0 + (% at 14) *
1+ (% at2+) * 2 + (% at 3+) * 3) produces a continuous protein expression value
in the range of 0-300.

Western blotting. Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) was used
to lyse cells and extract total protein. The total protein was resolved by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and then trans-
ferred onto polyvinylidene fluoride membrane. The membrane was blocked with
5% skimmed milk powder diluted with Tris-buffered saline Tween-20. Rabbit anti-
ELOA polyclonal antibody (NBP1-87040, NOVUS) and anti-SCAF4 polyclonal
antibody (PA5-36611, Thermo Fisher) were diluted at 1:1000. B-Actin monoclonal
antibody (66009-1-Ig, Proteintech) was diluted at 1:5000. Immunoblotting was
imaged by Chemodoc MP (Bio-Rad, Hercules, CA, USA) system.

Subtype diagnostic model

Signature identification. To identify signature proteins that classify molecular
subtypes, the differential proteins in S2 vs. S1 subtype were used as the initial
feature set for signature identification. Feature selection was implemented on the
initial feature set using the R package mlr v.2.17.0. In order to facilitate clinical
utility, we limit the maximum number of features to no more than 4. Support
vector machine (SVM) was used as the classifier because it is characterized by good
generalization ability. Other parameters were set as follows: feature selection
method = “sfs” (sequential forward search), resampling algorithm = “Subsample”,
number of resampling = 50, and performance measures = “auc”. We set the
maximum number of features (“max.features”) to 1, 2, 3, or 4, and repeated the
feature selection process 100 times. Feature combinations that are frequently
identified during feature selection are considered as robust signatures (Supple-
mentary Data 5a).

Signature evaluation. Five-fold cross-validation was used to evaluate the classifi-
cation performance of each signature. The 124 EC samples in Cohort 1 were
randomly split into five subsets with equal size. Four subsets were used as the
training set to train the SVM model for each signature, and the remaining one
subset was used as the test set. The performance of the signature was measured by
evaluating its AUC and accuracy on the test set. Each subset was used in turn as the
test set. For an unbiased evaluation, we repeated the above process 100 times. The
average AUC and accuracy of the resulting 500 AUCs and accuracies were reported

to evaluate the overall predictive performance of the signature (Supplementary
Data 5b).

Construction of subtype diagnostic model. The signature 4 (ELOA and SCAF4;
Supplementary Data 5b) was selected as the subtype diagnostic signature. We
performed z-score transformation for the protein expression of each protein so that
the mean value of the protein expression on all 124 tumor samples is 0, and the
variance is 1. Using the SVM model implemented in the R package mlr v.2.17.0, the
subtype diagnostic model was constructed based on the normalized protein
expression of ELOA and SCAF4 and the known molecular subtypes of the 124 EC
patients in Cohort 1.

Subtype prediction. For 295 EC patients in Cohort 2, the H-scores of ELOA and
SCAF4 were log,-transformed and further normalized by z-score transformation.
For each patient, the normalized H-scores of ELOA and SCAF4 were subjected to
the subtype diagnosis model, and the probability that the patient belongs to sub-
type S1 or S2 was predicted. For EC cell lines, the protein expression ratios of
ELOA and SCAF4 quantified by TMT 11-plex were normalized by z-score trans-
formation and then subjected to the subtype diagnosis model for subtype predic-
tion. The patient or EC cell line was classified into the subtype with greater
probability.

Subtype prognostic model

“pTNM+-Subtype” model. As molecular subtype and pTNM stage are independent
prognostic factors (Supplementary Data 4b), we combined the two factors to
improve the prognostic power of the pTNM staging system. For OS, a Cox PH
model was constructed using the molecular subtype and pTNM stage as inde-
pendent variables and the OS information as dependent variable (referred to as
“pTNM-+-Subtype” model) based on the EC patients in Cohort 1. The risk score for
OS of a new patient can be predicted based on the molecular subtype and pTNM
stage of the patient by the “pTNM-Subtype” model. For DFS, the “pTNM
+Subtype” model was constructed in the same way except using the DFS infor-
mation as dependent variable.

“pTNM+Subtype 3c” model. The “pTNM+Subtype 3¢” model was an EC staging
system based on the “pTNM+Subtype” model. The EC patients in Cohort 1 were
clustered into three groups using k-means clustering (k = 3) on the risk scores
predicted by the “pTNM-Subtype” model. The three groups of EC patients were
classified as low-risk, medium-risk, and high-risk according to their average risk
scores from low to high. A new patient will be predicted to be low-risk, medium-
risk, or high-risk based on its risk score using the nearest neighbor method.

Evaluation of subtype prognostic model. As clinical outcomes are time dependent,
we used time-dependent ROC curve (TDROC) for censored data and AUC??
implemented in the R package survcomp v.1.36.1 to evaluate the predictive per-
formance of prognostic models. Larger AUC at time ¢ indicates better predictability
of time to event (patient risk) at time t. We plotted AUCs ranging from 1 to 7 years
to compare the overall predictive performance of prognostic models at any time ¢
ranging from 1 to 7 years.

CMAP-based drug prediction. We first constructed query signatures and then
mapped the query signatures to CMAP4S. CMAP is a resource that uses tran-
scriptional expression data from cultured human cells treated with perturbagens to
probe relationships between diseases, cell physiology, and therapeutics. Each
reference gene-expression profile in CMAP is represented as a rank-ordered gene
list. The query signature is compared to each rank-ordered list to determine
whether upregulated proteins tend to appear near the top of the list and down-
regulated proteins near the bottom (“positive connectivity”) or vice versa (“negative
connectivity”), yielding a “connectivity score” ranging from +1 to —1. To predict
candidate drugs for EC patients, the proteins that were differentially expressed
between tumor and non-tumor samples (BH adjusted P < 0.01, Wilcoxon signed-
rank test, FC >2 or <0.5) were selected as the query signature. To predict candidate
drugs for patients with the S2 subtype, the proteins that meet the following two
conditions were selected as the query signature: (1) The protein expression is
upregulated (FC.Prot > 1.5) or downregulated (FC.Prot < 0.67) in subtype S2; and
(2) The protein expression is significantly correlated with OS (Cox P value < 0.05).
The connectivity score of each perturbagen was calculated using the query sig-
nature. We sorted perturbagens according to their connectivity scores in increasing
order. As a high negative connectivity score indicates that the corresponding
perturbagen reversed the expression of the query signature, the top drugs with the
highest negative connectivity scores were predicted as potential drugs.

Cell viability assay (MTS assay). The cells were digested and cultured in a
medium containing 10% serum to form a single cell suspension. The cells were
counted and inoculated into 96-well plates with 10,000 cells per well. The volume
of the medium per well was 100 puL. The cells were cultured for 12 h to adhere to
the cell wall, and then the culture medium with different drug concentration was
changed. After 24 h of continuous culture, 20 uL MTS (G3581, Promega) was
added into each well, and then incubation was continued for 2 h. The absorbance
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value of each pore was measured at the wavelength of 492 nm selected by MK3
enzyme scale of Thermo Scientific company. The cell viability at different drug
concentrations was calculated and then mapped with GraphPad prism 7 software.

Colony formation assay. In the 12-well plates, 500 cells per well were inoculated.
After the cells adhered to the wall, the corresponding concentration of drug was
added to the cell culture medium for 24 h. The culture medium was replaced with
the normal one for 2 weeks. After washing with 4 °C precooled PBS, the culture was
fixed with 4 °C precooled methanol and glacial acetic acid 3:1 for 20 min and
stained with crystal violet for 15 min. The colony was photographed with the
ChemiDoc Touch (Bio-Rad) and the colony numbers was calculated with Image ]
software (US National Institutes of Health, Bethesda, MD, USA). Each experiment
was made in triplicate.

Xenograft assay in nude mice. Animal experiments were carried out according to
the program approved by the Medical Animal Care and Welfare Committee of
Shantou University Medical College. Nude mice (Vital River Laboratories Animal
Technology, Beijing, China) aged 3-5 weeks were randomly divided into four
groups. KYSE30 (2 x 10°) and KYSE150 (1 x 10°) cells were injected into the
armpit of mice, respectively. Drugs injection began when the average volume of
tumor reached 50mm3. GW8510 (5 mg/kg), menadione (10 mg/kg) and sulcona-
zole (10 mg/kg) were injected intraperitoneally every 3 days. The tumor volume
was measured every 3 days and calculated according to the following formula
(width? x length)/2. The tumor was resected and weighed after the mice were
euthanized with excessive CO, 30 days after inoculation. The feeding conditions
were specific pathogen free animal laboratory with 28 °C and 50% humidity,
providing sufficient water and diet.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study—including clinical information, and
proteome and phosphoproteome data—are available within the paper and its
Supplementary Information. The raw files of proteome and phosphoproteome datasets
can be obtained from PRIDE database (accession number PXD021701)% or iProX
database (accession number IPX0002501000)%>. PTM signatures database (PTMsigDB,
v1.9.0) was downloaded from http://prot-shiny-vm.broadinstitute.org:3838/ptmsigdb-
app/. Source data are provided with this paper.
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