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Cisplatin-mediated activation of glucocorticoid
receptor induces platinum resistance via MASTT
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Agonists of glucocorticoid receptor (GR) are frequently given to cancer patients with
platinum-containing chemotherapy to reduce inflammation, but how GR influences tumor
growth in response to platinum-based chemotherapy such as cisplatin through inflammation-
independent signaling remains largely unclear. Combined genomics and transcription factor
profiling reveal that MAST1, a critical platinum resistance factor that reprograms the MAPK
pathway, is upregulated upon cisplatin exposure through activated transcription factor GR.
Mechanistically, cisplatin binds to C622 in GR and recruits GR to the nucleus for its acti-
vation, which induces MAST1 expression and consequently reactivates MEK signaling. GR
nuclear translocation and MAST1 upregulation coordinately occur in patient tumors collected
after platinum treatment, and align with patient treatment resistance. Co-treatment with
dexamethasone and cisplatin restores cisplatin-resistant tumor growth, whereas addition of
the MASTT inhibitor lestaurtinib abrogates tumor growth while preserving the inhibitory
effect of dexamethasone on inflammation in vivo. These findings not only provide insights
into the underlying mechanism of GR in cisplatin resistance but also offer an effective
alternative therapeutic strategy to improve the clinical outcome of patients receiving
platinum-based chemotherapy with GR agonists.
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latinum-based compounds, such as cisplatin or carboplatin,

have been the most active clinical drug class for the treat-

ment of a variety of solid tumors including cancers of the
ovary, lung, and head and neck for decades!~3. However, sig-
nificant challenges remain with regard to their activity as it is
often accompanied by therapy resistance and side effects. Glu-
cocorticoids are first-line antiemetics that are administered dur-
ing platinum-based chemotherapy regimens*°. The main actions
of glucocorticoids occur through the activation of glucocorticoid
receptor (GR), also known as nuclear receptor subfamily 3 group
C member 1 (NR3C1), which is a ligand-dependent transcription
factor belonging to the superfamily of nuclear receptors®. GR is
typically found in the cytoplasm as a GR-hsp90 heterocomplex,
which is assembled by a multiprotein chaperone machinery
hsp90/Hop/hsp70/hsp407-°. The steroidal ligand occupying GR
in the ligand-binding domain (LBD) recruits GR to the
nucleus®1%. Multiple factors are involved in nucleocytoplasmic
shuttling of the GR. Abelson helper integration site 1 (Ahil) and
tetratricopeptide-repeat (TPR) domain proteins are known to
hinder GR nuclear accumulation, while SIRT2 accelerates nuclear
translocation of GR by altering hsp90 acetylation that mediates
dissociation of hsp90 from the GR complex!!-13. The nuclear
transported homodimer form of GR binds to glucocorticoid
response elements (GRE) in the promoters of glucocorticoid
responsive genes to activate their transcription!4. GR induces or
represses the transcription of target genes and a series of these
target genes are involved in inflammation and immune
response!>~17. Therefore, synthetic derivatives of glucocorticoid
such as dexamethasone are widely used for their anti-
inflammatory and immune-suppressive properties to relieve
symptoms, including hypersensitivity, allergic reactions, edema,
nausea, vomiting, and other discomforts that may arise during
platinum-based treatment!>18:19,

Despite the wide usage of GR agonists for co-medication in
cancer chemotherapy as supportive care, a precise role of GR
activation in response to platinum-based therapy is largely
unknown. Growing evidence suggests that dexamethasone may
reduce anti-tumor activity of chemotherapeutic agents including
paclitaxel or cisplatin. Previous studies demonstrated that dex-
amethasone treatment results in blunting cellular senescence,
which may be linked with inhibition of NF-kB activity and
p53 signaling in cisplatin-treated non-small cell lung
carcinoma2’, Moreover, treatment with a GR agonist enhanced
tumor growth and resulted in altered gene expression of anti- and
pro-apoptotic factors in a paclitaxel-treated xenograft mouse
model of breast cancer?!. Dexamethasone also attenuated anti-
tumor activity of cisplatin and increased expression of adhesion
molecules including integrin f1 in ovarian cancer cell lines?2.
Conversely, glucocorticoids had minimal effect on cytotoxicity of
cisplatin or paclitaxel in a head and neck cancer cell line UM-
SCC-14C, or even enhanced cytotoxicity of cisplatin by sup-
pressing NF-kB activation in the cervical cancer cell line SiHa
in vitro?324, Two independent groups have recently demon-
strated that the pro-tumorigenic activities including paclitaxel
resistance of GR are mediated, at least in part, by the activation of
the hippo pathway transducers YAP and TEAD4 in breast
cancer?>2%, However, studies lacked either in vivo validations or
clinical correlation assessments, and the detailed mechanisms by
which the activation of GR is specifically linked to platinum-
based therapy resistance still remain largely elusive.

A group of signaling effectors have been identified as predictive
markers of cisplatin resistance. ATPase7A/7B/11B and ERCCI
are involved in pre-target or on-target cisplatin resistance
mechanisms, respectively?’-32. We identified a microtubule-
associated serine/threonine kinase 1 (MAST1) as a common
essential driver for cisplatin resistance that provides a post-target

cisplatin resistance mechanism through managing the pro-
apoptotic pathway in human cancers, including lung, ovarian,
and head and neck cancers33. Mechanistically, MAST1 provides
cisplatin resistance by replacing the traditional kinase cRaf when
cisplatin disrupts the interaction of MEK and cRaf, which reac-
tivates the MAPK pathway and consequently controls the level of
pro-apoptotic factor BIM33, Hsp90B was found to stabilize
MAST1 by hindering CHIP-mediated ubiquitination at lysine 317
and 545 and preventing proteasomal degradation3*. In addition,
lestaurtinib was identified as a promising MAST1 inhibitor that
effectively sensitizes tumor cells to cisplatin in vitro and in vivo in
patient-derived xenograft mouse models. However, whether and
how MAST]1 is induced during treatment for acquired platinum
resistance has never been explored.

In this study, through multidisciplinary approaches, we iden-
tify a unique GR activation mechanism that is mediated by cis-
platin and demonstrate how this activation contributes to
cisplatin-resistant tumor growth through MAST1 induction. We
also offer a promising therapeutic strategy that may provide an
effective regimen for patients who need GR agonists as anti-
inflammatory medication along with platinum-based therapy.

Results

Platinum treatment induces gene expression of MAST1. To
glean insight into the genetic variation involved in acquired cis-
platin resistance, we established an in vivo model of cisplatin-
resistant cancer by administering a serial dose of cisplatin to mice
bearing KB-3-1 human carcinoma cells (Fig. 1a). Through a
whole-transcriptome analysis, we identified a large spectrum of
genes that are altered greater than 1.2-fold in tumors that
acquired cisplatin resistance compared to treatment-naive tumors
(Fig. 1b). The panel included 61 kinase genes, many of which are
important for control of chemotherapy resistant cell growth
including previously identified PDK2 and CDK20%>3%. We
identified microtubule-associated serine/threonine kinase 1
(MAST1), as one of the critical cisplatin-induced factors (Fig. 1c).
MAST1 confers cisplatin resistance by replacing cRaf to reactivate
the MAPK pathway33. Induction of the MAST1 gene in xeno-
grafted tumors after cisplatin administration in mice was further
validated by quantitative RT-PCR and immunoblotting (Fig. 1d).
In addition, the expression level of MAST1 was increased upon
cisplatin treatment in cancer cell lines including cervical cancer
KB-3-1 and ovarian cancer A2780 (Fig. le). Consistent with
observations in the preclinical setting, comparison of MAST1
expression between paired pre- and post-platinum therapy tumor
samples from head and neck squamous cell carcinoma (HNSCC)
patients who did not respond to platinum-based chemotherapy
further demonstrated that MAST1 expression is induced during
treatment (Fig. 1f, g). Non-responders refer to patients with
tumor recurrence within 2 years of cisplatin or carboplatin-based
chemotherapy. These data indicate that platinum-based drugs
such as cisplatin induce gene expression of MAST1 in human
cancers.

GR is a transcription factor that stimulates MAST1 expression
upon cisplatin exposure. To glean a comprehensive mechanistic
insight into how MAST1 is upregulated upon cisplatin exposure,
we performed transcription factor (TF) activation profiling using
cisplatin-treated or non-treated KB-3-1 cells. The TF Activation
Profiling Plate Arrays monitor activities of 96 cellular TFs,
including HIF1, p53, and NF-kB, that are known to be essential in
regulating cellular gene expression. Among the 96 TFs, six were
activated more than 1.8-fold when cells were treated with cis-
platin, including GR/progesterone receptor (PR), NFAT, ATF2,
CAR, and CBF (Fig. 2a). To investigate whether any of these TFs
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Fig. 1 Cisplatin treatment induces MAST1 in preclinical and clinical patient tumors. a Development of cisplatin-resistant model in vivo. KB-3-1 xenograft
mice were treated with 2 doses of cisplatin (0.5 and 5 mg/kg/i.p. on day 5 and 10). Tumor volumes (top) and cisplatin resistance of three representative
xenograft tumors was determined by cisplatin ICsq at the experimental endpoint (bottom). b Transcriptomic analysis of xenograft tumors collected from
mice treated with PBS or cisplatin. RNA-sequencing data are presented as a volcano plot and kinase genes are highlighted in red. ¢ A heatmap and
hierarchical clustering analysis summarizing expression profile of kinase genes with a fold change greater than 1.2. MAST1 is highlighted with an arrow. d
Quantitative RT-PCR and western blot results show increased MAST1 expression in KB-3-1 xenograft mice tumors collected from the cisplatin-treated
group (T1-T3) compared to the vehicle-treated group (V1-V3). Three representative tumors from each group were randomly selected for analyses. e The
mRNA and protein levels of MAST1 in KB-3-1 and A2780 cells treated with cisplatin (0.5 pg/ml) for the indicated times were determined as d. f IHC
staining scores of MASTT1 in paired primary head and neck squamous cell carcinoma (HSNCC) patient tumors obtained before and after platinum therapy.
Patients were considered non-responders to platinum treatment when disease recurred within 2 years after chemotherapy. Weighted index (WI) =
positive staining (%) x intensity score (0-3 + ). g Representative images of f are shown. Scale bars represent 10 mm for a and 50 pm for g. Data are mean
+ SEM for tumor volume in a upper panel (n =9 mice/group) and mean = SD for cisplatin ICsq in a lower panel (n =3 randomly selected tumors/group).
For d and e, data are mean = SD from three independent biological experiments. Statistical analyses were performed by two-way ANOVA for tumor volume
and unpaired two-tailed t-test for ICso in @ and d, one-way ANOVA for e, and paired two-tailed t-test for f. Source data are provided as a Source Data file.

which was undetectable in KB-3-1 cells, enhanced MAST1 gene
expression and cell viability upon cisplatin treatment (Fig. 2c).
Moreover, chromatin immunoprecipitation assay showed that the
MAST1 promoter interacts with GR but not PR in KB-3-1 cells
and the binding between MAST1 promoter and GR increases

activate the MAST1 promoter, we reduced the expression of the 6
potential candidates by shRNA in KB-3-1 cells and performed a
MAST1 promoter reporter assay in the presence of cisplatin.
Knockdown of GR but no other TFs attenuated MAST1 promoter
activity (Fig. 2b). In agreement, overexpression of GR but not PR,
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upon treatment with cisplatin (Fig. 2d). GR binds to the gluco-
corticoid response element (GRE) on DNA within the promoter
region and regulates genes’’. We identified a GRE within the
MAST1 promoter sequence at —44 to —58. To examine whether
GR binds to the GRE in the MAST1 promoter region and
enhances MAST1 transcription, we generated a binding-deficient
mutant form of GRE in the MAST1 promoter sequence by
mutating 6 base pairs of the MAST1 promoter reporter construct,
pMAST1-luc. Cisplatin induced WT MAST1 promoter activity.
However, when the MAST1 promoter carried the GR binding-
deficient mutation in GRE, MAST1 promoter activity was abol-
ished in cancer cells (Fig. 2e). The total amount of MAST1

4

mRNA increased by cisplatin treatment regardless of promoter
activity measured using pMAST1-luc variants (Supplementary
Fig. la). In addition, modulation of GR affected MAST1 pro-
moter activity in the presence of cisplatin as target down-
regulation or overexpression of GR, respectively, abolished or
enhanced MAST1 promoter activity and mRNA levels in a time-
dependent manner (Fig. 2f; Supplementary Fig. 1b). In line with
the changes seen in MAST1 mRNA, MAST1 protein level cor-
related with GR level in cisplatin-treated cancer cells (Fig. 2g;
Supplementary Fig. 1c). Collectively, these data indicate that
cisplatin results in activation of GR and this activated GR binds to
the GRE in the MAST1 promoter region to enhance transcription
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Fig. 2 Glucocorticoid receptor (GR), induced by cisplatin, is a transcription factor of MAST1. a Transcriptional factor (TF) activation profiling identifies
TFs whose activity is enhanced in KB-3-1 cells in response to cisplatin treatment. b MAST1 promoter activity in KB-3-1 lacking factors whose activity
increased more than 1.8-fold by cisplatin. ¢ Effect of GR or PR overexpression on MAST1 induction and cell viability in KB-3-1 cells treated with cisplatin. d
ChIP assay of GR or PR binding to MAST1 promoter in KB-3-1 cells treated with cisplatin for the indicated times. @ Comparison of MAST1 promoter activity
in cells expressing WT or glucocorticoid response element (GRE)-mutated MAST1 promoter reporter. KB-3-1 cells were transfected with WT or GRE
mutant MASTT promoter reporter and treated with cisplatin. f Effect of GR knockdown or overexpression on MAST1 promoter activity in response to
cisplatin treatment in KB-3-1 cells. g Effect of GR knockdown on MAST1 expression in KB-3-1 and A2780 cells in the presence or absence of cisplatin. h
Comparison of MAST1 gene expression in TCGA OV patients stratified by GR-dependent gene signature expression monitoring gene expression of 47
glucocorticoid regulated genes. i Effect of chemotherapy agents on MAST1 promoter activity. KB-3-1 cells carrying MAST1 promoter were treated with
sublethal doses of drugs (1 pg/ml cisplatin, 1pM mitomycin C or camptothecin). j and k Induction of MAST1 by cisplatin and dexamethasone. KB-3-1 cells
were treated with cisplatin (0.1, 0.2, 0.5 pg/ml), dexamethasone (100, 500 nM), or mifepristone (10 pM) for MAST1 promoter activity assay (j). GR
antagonist mifepristone was used as a control. KB-3-1and A2780 cells were treated with cisplatin (1 pg/ml), dexamethasone (500 nM), or combination for
MAST1 protein induction (k). Data are mean = SD from two technical replicates for a, three independent biological experiments for b-g and i-k. Statistical

analyses were performed by two-tailed t-test for h and one-way ANOVA for the rest. Source data are provided as a Source Data file.

of MASTI in cancer cells. Our finding was further validated by
analyzing a clinical database. MAST1 levels were higher in
ovarian cancer patients with high GR activity compared to
patients with low GR activity, which was determined by tran-
scriptome signature of glucocorticoid regulated genes (Fig. 2h).
Activation of MAST1 promoter was only observed in cancer cells
treated with cisplatin, but not with other DNA damaging agents
such as mitomycin C or camptothecin (CPT), demonstrating that
the MAST1 induction occurs specifically through cisplatin
(Fig. 2i; Supplementary Fig. 1d). Moreover, cisplatin activated the
MAST1 promoter, whereas, treatment with the GR agonist dex-
amethasone additively further enhanced the promoter activity
and MAST1 expression (Fig. 2j, k; Supplementary Fig. le, f).
Moreover, GR agonists including betamethasone, prednisolone,
and triamcinolone showed similar induction of MAST1 as dex-
amethasone (Supplementary Fig. 2a, b). These data suggest that
while cisplatin and GR agonists both activate GR, the activation
mechanism may differ.

Cisplatin binds to and nuclear transports GR. To explore the
molecular mechanism by which the transcription factor activity
of GR is enhanced by cisplatin treatment, we examined whether
cisplatin treatment alters the subcellular localization of GR. We
observed that GR is translocated from the cytosol to the nucleus
after cisplatin exposure in KB-3-1 and A2780 cells by immuno-
fluorescence staining and cell fractionation (Fig. 3a, b). This
observation was confirmed in vivo in xenograft mice. Adminis-
tration of cisplatin resulted in nuclear translocation of GR in
xenograft tumors (Fig. 3¢c). Furthermore, the translocation of GR
was found in paired primary HNSCC patient tumors. HNSCC
patients who did not respond to platinum-based therapy and had
disease recurrence within 2 years after therapy were considered
“cisplatin-resistant.” HNSCC patients who responded to
platinum-based therapy by showing no evidence of disease for 2
years after therapy were termed “cisplatin-sensitive.” All patients
who received platinum therapy were co-medicated with dex-
amethasone during treatment. In the case of cisplatin-resistant
patients, GR was located mainly in the cytosol in tumors collected
from patients before cisplatin or carboplatin therapy, whereas GR
was predominantly stained in the nucleus in tumors collected
from patients after the therapy. In contrast, the nuclear translo-
cation of GR was not observed in cisplatin-sensitive patient group
(Fig. 3d-f). Furthermore, nuclear localization of GR positively
correlated with MAST1 expression in HNSCC patient tumors (r
=0.823) (Fig. 3g). These data suggest that cisplatin treatment
activates GR by translocating it to the nucleus, which may trigger
MAST1 expression and acquired platinum resistance in cancer
patients.

We next explored the molecular mechanism by which cisplatin
treatment translocates GR from the cytosol to the nucleus for
activation. Through a series of biomolecular interaction analyses
including surface plasmon resonance (SPR), differential scanning
fluorimetry (DSF), and cellular thermal shift assay (CTSA), we
demonstrated that there is an interaction between cisplatin and
GR (Fig. 4a—c). Moreover, the binding affinity of cisplatin to GR
was comparable to that of GR agonist dexamethasone (Fig. 4c).
To further investigate the interaction between cisplatin and GR,
we mutated cysteine residues in the ligand-binding domain
(LBD) of GR (Fig. 4d). SPR kinetics analysis using cysteine
mutant variants of GR-LBD revealed that WT, C643A, or C736A
bound to cisplatin with similar binding strength, whereas C622A
mutation abolished the binding ability, suggesting that the C622
residue in GR is responsible for binding to cisplatin (Fig. 4e). Co-
immunoprecipitation revealed that cisplatin exposure results in
disruption of the GR-hsp90 complex, whereas the dissociation
was not observed when GR was mutated at C622 and unable to
bind cisplatin (Supplementary Fig. 3). We next investigated the
subcellular location of GR WT and C622A in response to
cisplatin or dexamethasone treatment by immunofluorescence
staining and cell fractionation. While WT GR was translocated
from the cytosol to the nucleus upon cisplatin treatment,
translocation of C622A GR was not observed. On the contrary,
dexamethasone-induced nuclear translocation of GR regardless of
C622 mutation (Fig. 4f, g). Treatment with either cisplatin or
dexamethasone alone induced MAST1 promoter activity and the
combination of these two drugs resulted in additive enhancement
of MAST1 induction. However, mutation at C622 abolished the
MAST1 promoter activation and expression induced by cisplatin
but had no effect on MAST1 induction mediated by GR agonists,
including dexamethasone, betamethasone, prednisolone, and
triamcinolone (Fig. 4h, i; Supplementary Fig. 4a—c). These data
suggest that GR undergoes dissociation from hsp90 and nuclear
translocation following cisplatin binding at C622 that conse-
quently induces MASTI1 transcription through GRE in the
MAST1 promoter region. Although both cisplatin and GR
agonists activate GR via interaction and nuclear translocation,
the interaction of cisplatin is independent of the interaction and
nuclear translocation of GR mediated by the GR agonists.

GR provides cisplatin resistance to cancer cells through
MAST1. We previously reported that MAST1 confers cisplatin
resistance by replacing cRaf and reactivating MEK signaling?3. To
explore the role of GR in cisplatin resistance and MAPK pathway
activation, we target downregulated GR using lentiviral shRNA
vector or a GR antagonist mifepristone in KB-3-1 and A2780
cells. While genetic and pharmacological inhibition of GR did not
alter cancer cell proliferation and MEK-ERK activation, GR
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Fig. 3 Cisplatin induces GR nuclear translocation. a Immunofluorescence assay of GR in KB-3-1 and A2780 cells before and after cisplatin treatment.
Nuclei were DAPI stained. b Western blots show the cytosolic and nuclear localization of GR upon cisplatin treatment in KB-3-1and A2780 cells. PARP and
B-actin were used as control markers for nucleus and cytosol, respectively. c: cytosol, n: nucleus. ¢ GR localization in KB-3-1 xenograft tumors collected
from cisplatin-treated (T1-T3) and vehicle-treated (V1-V3) mice. d and e Nuclear staining of GR in paired HNSCC patient tumor tissues collected before

and after platinum treatment. The patients were either “Resistant (cisR)" or

“Sensitive (cis®)" to platinum-based therapy. Images were quantified with

ImageJ software. f Representative GR staining images of paired HNSCC patient tumors are shown. g The correlation between MAST1 expression and GR
nuclear staining in paired tumor tissues of HNSCC patients receiving platinum therapy. Scale bars represent 10 pm for a and 50 pm for f. Data are mean +
SD from three random selected areas for a, from one and three biological replicates for b and ¢, and n = 8 (cisplatin-resistant) and n=>5 (cisplatin-

sensitive) patients for e. Three representative tumors from 13 cases are shown for each group (before/after platinum therapy) for f. Statistical analyses
were performed by unpaired two-tailed t-test for e and two-tailed Pearson's correlation coefficient for g. Source data are provided as a Source Data file.

inhibition significantly decreased cell viability and MEK-ERK
activity when the cells were treated with a sublethal dose of cis-
platin (Fig. 5a, b; Supplementary Fig. 5a, b). We then assessed the
impact of enforced GR expression or activation on cisplatin
resistance and MEK-ERK signaling in KB-3-1 and A2780 cells.
Enforced GR expression or activation by retroviral vector bearing
flag-GR or GR agonists significantly enhanced the cisplatin-
resistant cell survival potential and MAPK signaling activity

(Fig. 5¢, d; Supplementary Fig. 5c—e). The effect of GR rescue
expression on restoring cisplatin resistance was abolished when
GR harbored C622A, the cisplatin-binding-deficient mutant that
lacks the ability to induce MAST1 expression (Fig. 5e, f). To
further explore the cisplatin resistance mechanism mediated by
GR (622, we assessed cell viability, cisplatin uptake, cisplatin-
induced DNA damage, and MEK-ERK activity in cancer cells
bearing GR WT or C622A mutant treated with increasing
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Fig. 4 Cisplatin binds to C622 in GR that mediates nuclear translocation and transcriptional activation. a Interaction between GR and cisplatin was
determined by surface plasmon resonance (SPR) analysis and shown as a dissociation constant value. GR protein was enriched from 239T cells carrying
pLHCX-flag-GR. b Differential scanning fluorimetry of GR incubated with increasing concentrations of cisplatin. ¢ Cellular thermal shift assay using KB-3-1
cells treated with vehicle, cisplatin, or dexamethasone. d Coomassie-stained SDS-PAGE gel of purified recombinant GR ligand-binding domain variants, GR-
LBDm WT, C622A, C643A, and C736A. e Interaction between GR-LBDm variants and cisplatin is determined by SPR analyses. f, g Effect of cisplatin and
dexamethasone on GR nuclear translocation in KB-3-1 expressing GR WT or C622A mutant. KB-3-1 cells were treated with 1pg/ml cisplatin or 500 nM
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analyses were performed by one-way ANOVA for g-i. Source data are provided as a Source Data file.

concentrations of cisplatin. Mutation at C622 of GR attenuated
cisplatin-resistant cell survival and MEK-ERK activity. However,
cisplatin uptake or cisplatin-induced DNA damage was not
altered in cells bearing C622A GR compared to cells with WT GR
(Fig. 6a—c). These data suggest that GR may confer cisplatin
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resistance through interaction with cisplatin that mediates MAPK
pathway activation.

To further investigate whether GR confers cisplatin resistance
through MAST1, we tested whether ectopic overexpression of
MAST1 can reverse the attenuated cell viability and MAPK
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Fig. 5 GR C622 contributes to cisplatin resistance through MAST1. a, b Cell viability and MEK/ERK activity in GR target downregulated KB-3-1 and
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activity in GR target downregulated cells. Stable overexpression of
active MAST1 rescued the decreased cisplatin-resistant cell
proliferation and MEK-ERK phosphorylation in cells with GR
shRNA or mifepristone (Fig. 7a, b; Supplementary Fig. 6a, b).
Similar results were obtained in vivo when MAST1 was
overexpressed in GR knockdown tumors in xenograft mice
(Fig. 7c—e; Supplementary Fig. 6¢). On the contrary, knockdown

of MAST1 abolished cisplatin-resistant cancer cell proliferation,
tumor growth, and MEK-ERK phosphorylation obtained by
enforced GR expression or activation in vitro (Fig. 7f g
Supplementary Fig. 6d, e) and in vivo (Fig. 7h-j; Supplementary
Fig. 6f). In all, 2 mg/kg and 4 mg/kg of cisplatin was administered
to adequately study the effect of GR-MAST1 modulation on
cisplatin sensitization and resistance, respectively. These data

8 NATURE COMMUNICATIONS | (2021)12:4960 | https://doi.org/10.1038/s41467-021-24845-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a KB-3-1 A2780 b 93
& 1 ” cisplatin o Y R? n 292 ¢ (ugiml)
z ] g iRWT “ErdR e = | pMEK
S ks #{==—=——————=1 MEKI1
.g 05 g 05 = C622A
= 1 = . GR “ﬁ P —— ‘ p-ERK
I5] J o WT | 407 o s o s s e wm wm | ERK1/2
o [ o o S | GR
8 - 6 467 | B-actin
T gl c 2
i 3 4 R | p-MEK
g 41 % == === —===—] MEK1
T 5l T 2 1 GR | 0] == o o — — | p-ERK
0 0 C622A | 40 o = mow s o s wam wmm | ERK1/2
100
i 4 - " GR
<Z( 3 <Z( o — | B-actin
D,GZ-J/‘ DI..G3. KB-3-1
c 3 c 3
=70 =35 24
®© T ©T
Q® 1. a®
K 21
O o C
0 ———T— o+ %
cisplatin o YR n 292 ¢ (ugiml)
« 1.0 « 1.0 | PMEK
g | g ] 4] e == = = — — — — | MEK1
%051 £ 05 GR | * RSN P-ERK
= = WT | 4] ae o o oo s o wm wem | ERK1/2
<% 1 Q )
0 — 0 — 15 I RO . | GR
45“—-------‘ B—actin
1.0 1.0 4 %
« T e -MEK
;. ;. Em—
& u ————] MEK1
é 0.5 - 5 0.5 1 GR | ¥ [ —=— | p-ERK
ol J Y 4 CE22A [ 407 e wm e s wm wum wum mm | ERK1/2
0 ——— 0 — ¥ M————— —— = GR
751
01 2 3 4 5 01 2 3 4 5 46 [ o o e e = == | [3-actin

cisplatin (ug/ml) cisplatin (ug/ml)

A2780

Fig. 6 GR C622 is crucial for cisplatin resistance through MEK-ERK activation but not DNA damage response. a Dose-dependent analyses of cell
viability, yH2AX, cisplatin-DNA adduct, MEK and ERK phosphorylation in KB-3-1and A2780 cells carrying GR WT or C622A upon cisplatin treatment. b, ¢

Representative Western blot of MEK-ERK pathway change in KB-3-1 (b) and

A2780 (c) cells carrying GR WT or C622A upon treatment with increasing

concentrations of cisplatin. Data are from three independent experiments and mean + SEM for blot analyses and mean = SD for others. Source data are

provided as a Source Data file.

collectively suggest that GR confers cisplatin resistance by
inducing the gene expression of MAST1.

Lestaurtinib abolishes cisplatin and dexamethasone-induced
cisplatin resistance. Our findings indicate that GR agonists that
are often given with platinum-based chemotherapy, promote
acquired cisplatin resistance by enhancing MAST1 expression.
Thus, we examined the effect of targeting MAST1 with a small
molecule inhibitor lestaurtinib on cisplatin re-sensitization in
cancer cell lines and patient-derived tumor organoids treated with
GR agonists. Dexamethasone, betamethasone, prednisolone, or
triamcinolone restored cisplatin-resistant cancer cell survival and
MEK-ERK phosphorylation, whereas treatment with the MAST1
inhibitor diminished the elevated MEK-ERK activity and cisplatin
resistance in GR agonist-treated tumor cells (Fig. 8a, b; Supple-
mentary Figs. 7a-c and 8a). We next evaluated the effect of les-
taurtinib on dexamethasone-induced cisplatin-resistant tumor
growth in vivo in patient-derived xenograft (PDX) mouse models
of head and neck cancer and ovarian cancer. Administration of
dexamethasone abolished the effect of cisplatin on tumor growth
and proliferation, whereas treatment with lestaurtinib in the
dexamethasone-treated group fully revived cisplatin sensitivity
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and even further attenuated tumor growth compared to the group
treated with cisplatin alone in both PDX models bearing tumors
derived from head and neck cancer or ovarian cancer patients
(Fig. 8¢, d; Supplementary Fig. 8b, c¢). Known alternative les-
taurtinib targets including Trk and FLT3 were not expressed in
tumor cells we studied (Supplementary Fig. 9a). In addition, the
inhibitory effect of lestaurtinib on dexamethasone-induced cis-
platin-resistant cell growth was abolished in cells are lacking
MAST1 but not JAK2. (Supplementary Fig. 9b-d). These data
suggest that lestaurtinib provides cisplatin sensitivity by inhibit-
ing MAST1. Lastly, to address the effects of lestaurtinib on the
anti-inflammatory activity of dexamethasone during chemother-
apy, we established the ID8-luc syngeneic mouse model. C57BL/6
mice treated with dexamethasone and cisplatin displayed greater
tumor growth than mice that received vehicle or cisplatin. In
agreement with observations in PDX models, lestaurtinib sig-
nificantly abolished tumor growth potential in dexamethasone-
treated mice (Fig. 8e). Quantification of 12 representative pro-
and anti-inflammatory mouse cytokines in plasma revealed that
dexamethasone effectively decreased pro-inflammatory cytokines,
including IL-6, IL-23, IL-1a, TNF-a, MCP-1, GM-CSF, IFN-B
and elevated secretion of anti-inflammatory cytokines IL-27 and
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modulation mediated by dexamethasone (Fig. 8f). These data
collectively show that lestaurtinib effectively attenuates cisplatin-
resistant tumor growth that is induced by dexamethasone
without affecting the anti-inflammatory activity of dex-
amethasone in vivo.

10

While platinum-based chemotherapy is the standard front-line
therapy for patients with solid malignant tumors, treatment is
often accompanied by toxic side effects and thus glucocorticoids
are widely used as co-medication to reduce inflammation and
relieve symptoms. Despite the conventional usage of GR agonists
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Fig. 7 GR promotes cisplatin-resistant cell survival and tumor growth via MAST1-MEK-ERK. a, b Effect of MAST1 overexpression on cell viability and
MEK/ERK activity in GR attenuated KB-3-1and A2780 cells with cisplatin treatment. GR was target downregulated by GR shRNA (a) or mifepristone (10
pM) (b). MEK and ERK activity was assessed by S221 MEK and T202/Y204 ERK phosphorylation. c-e Effect of MAST1 overexpression on tumor growth of
xenograft mice bearing GR knockdown KB-3-1 cells. Mice were treated with cisplatin (2 mg/kg i.p. twice/week) from 4 days after xenograft. Tumor volume
(e), tumor weight and Ki-67 staining (d), and phosphorylation of MEK and ERK in tumors (e) are shown. f, g Effect of MAST1 knockdown on cell viability
and MEK/ERK activity in GR enhanced KB-3-1 and A2780 cells with cisplatin treatment. GR was enhanced by GR overexpression (f) or dexamethasone
(500 nM) (g). h-j Effect of MASTT knockdown on tumor growth of xenograft mice bearing GR overexpressed KB-3-1 cells. Mice were treated with cisplatin
(4 mg/kg i.p. twice/week) from 4 days after xenograft. Tumor volume (h), tumor weight and Ki-67 IHC staining (i), and MEK and ERK activity in tumors (j)
are shown. Scale bars represent 5 mm for (¢, h), and 50 um for (d, i). Data are from three independent biological experiments for (a, b, f, g) and n=8
mice/group for c-e and h-j. One representative data are shown for (right panels of d and i; e and j). Data are mean £ SD for (a, b, d, f, g, i) and mean + SEM
for ¢ and h. Statistical analyses were performed by two-way ANOVA for ¢ and h, and one-way ANOVA for others. Source data are provided as a Source

Data file.

as antiemetic regimens for chemotherapy, how GR signaling
cross-talks with platinum resistance in human cancer has not
been fully characterized. Here, we delineate a unique molecular
mechanism by which GR is activated by cisplatin and steroid, and
how the activation of GR contributes to platinum resistance in
human cancers through MAST1 using a series of preclinical
studies and analysis of platinum-treated patient tumor specimens.
We found that GR is activated upon cisplatin treatment by cis-
platin binding to GR and transporting GR from the cytosol to the
nucleus. Further activation of GR occurs by its agonists such as
dexamethasone in a cisplatin-independent manner. The activated
GR contributes to cisplatin resistance by serving as a transcription
factor of MAST1, which consequently reactivates MEK. We also
clinically validated our findings by demonstrating a correlation
between the nuclear localization of GR and MAST1 expression
levels as well as cisplatin resistance in primary tumor tissue
samples collected from cancer patients before and after treatment
with platinum-containing regimens.

We demonstrated that cisplatin induces GR activation by
binding to GR at C622, which leads to MAST1 expression and
phosphorylation of MEK and ERK. Cisplatin mediates GR
nuclear translocation and consequently promotes GR activity as a
transcription factor. We previously demonstrated that cisplatin
also binds to MEK1 at C142 that mediates disruption of the
MEK1-cRaf complex allowing MAST1 to serve as a substitute for
cRaf in MAPK signaling®3. During these processes, the tethering
of cisplatin to GR or MEK did not alter its uptake or its ability to
induce DNA damage or repair, suggesting that cisplatin has a
dual effect in cancer cells. In addition to its conventional role in
DNA crosslinking, cisplatin may serve as a signaling mediator in
cancer cells to either translocate or dissociate protein-protein
interactions that are critical in post-target mechanisms of resis-
tance. In support, other studies report interactions between cis-
platin and cellular factors38:3%.

Our study revealed that cisplatin binds to GR at cysteine 622.
Mutation at C622 abolished the interaction between cisplatin and
GR and retained GR in the cytosol, which impaired the induction
of MAST1 transcription and cisplatin resistance. However,
C622A mutation did not alter the GR agonist-mediated nuclear
translocation and transcriptional activity of GR. Therefore, cis-
platin and GR agonists such as dexamethasone may not share the
same GR interaction and activation mechanism in cells. Dex-
amethasone is a larger moiety that binds to a canonical deep
pocket in GR?0, whereas, cisplatin is a smaller molecule that
attaches to the cysteine residue, and these may lead to different
binding states. GR forms a multiprotein complex in cells with
hsp90 and others”-?. Tt is possible that cisplatin integrated into
GR alters the shape of the complex or stabilizes a state that hsp90
cannot bind. We found that MAST1 is protected from protea-
somal degradation by binding to hsp9034. However, hsp90p but
not hsp90a induced MAST1 stabilization whereas both

equivalently have chaperone activities on GR, suggesting a dif-
ferential involvement of hsp90 isoforms in MAST1 stability and
GR activation process3441, Future studies are warranted to define
the structural basis by which cisplatin and steroids coordinate GR
activation.

We demonstrated that MAST1 expression and stability are
enhanced by GR and hsp90p, respectively, upon cisplatin expo-
sure. Levels of MAST1 increased by GR and maintained by
hsp90B-mediated protection against degradation may lead to a
consequent surge in activated MAST1. It is plausible that MAST1
is further activated or inhibited via its phospho-dynamics through
cellular kinases or phosphatases in cancer cells. For instance,
potential MAST1 interacting partners from the STRING database
including membrane-associated guanylate kinase MAGI-2 or
serine/threonine-protein phosphatase PPP2R2C/B could be
alternative MAST1 regulators that drive cancer cisplatin
resistance.

Ectopic expression of MAST1 fully restored cisplatin resistance
lost by GR attenuation. In line with this result, genetic or phar-
macological enhancement of GR did not offer cisplatin resistance
to cancer cells when MAST1 was absent. These studies indicate
that although GR transcriptionally regulates a variety of genes,
GR mainly programs cisplatin-resistant pro-survival signaling in
human cancers through transcriptional regulation of MAST1.

GR signaling is engaged in a variety of functions in malignant
cells. In lymphocytes, GR is known to arrest cell growth and
induce apoptosis, thus glucocorticoids are considered effective
anti-cancer agents for lymphatic cancers*2. However, GR is
known to play a contrasting role in solid malignant tumors. For
instance, a high level of GR was linked with differential
enhancement of epithelial-mesenchymal transition and cell
adhesion in breast cancer*3. A recent study demonstrated that GR
increased tumor heterogeneity and metastasis through ROR1 in
breast cancer*’. Moreover, activation of GR caused increased
proliferation and invasion in metastatic colon cancer through
CDK1%. In our study, we provide clinical evidence that GR
nuclear translocation positively correlates with MAST1 expres-
sion and platinum resistance in head and neck cancer patients.
This suggests that the GR-MAST1 signaling axis could be a
promising predictive marker for acquired platinum resistance in
human cancer. In addition, cisplatin but not other chemother-
apeutic agents such as mitomycin C or camptothecin induced GR
activation in cancer cells, suggesting that the signaling axis may
serve as an effective biomarker specifically for patients receiving
platinum-based therapy.

Lastly, pharmacological studies using PDX and syngeneic
mouse models indicate that co-treatment with GR agonist dex-
amethasone and cisplatin fosters tumor growth. This suggests
that the frequent use of steroids as a component of supportive
oncology, namely as a major element of the cisplatin antiemetic
regimen, may need to be re-examined. Targeting MAST1 using a
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Fig. 8 Lestaurtinib suppresses dexamethasone-mediated GR-MAST1 activation and cisplatin resistance while not affecting the anti-inflammatory
property of dexamethasone. a Effect of lestaurtinib on cell viability and MAPK activity of dexamethasone and cisplatin co-treated KB-3-1and A2780 cells.
Cells were treated with 100 nM lestaurtinib, 500 nM dexamethasone, and 3 pg/ml cisplatin. b Effect of lestaurtinib on growth of ovarian cancer patient-
derived xenograft tumor organoid treated with cisplatin and dexamethasone. Images (left) and cisplatin ICsq (right) of organoids are shown. Single cell
suspended organoids were used for ICsq analysis. Scale bars represent 100 pm. ¢, d Effect of lestaurtinib on tumor growth of HNSCC (c) and ovarian cancer
(d) PDX mice receiving cisplatin and dexamethasone treatment. Cisplatin (5 mg/kg i.p. twice/week), dexamethasone (0.1 mg/kg i.p. twice/week) and
lestaurtinib (20 mg/kg s.c. daily) were treated. Tumor volume (left), tumor weight (right), and Ki-67 IHC staining of PDX tumors (bottom) are shown for
HNSCC and ovarian PDX models. Scale bars represent 5 mm for tumor images and 50 pm for Ki-67 staining. e, f Effect of lestaurtinib on tumor growth and
inflammation of ID8-luc syngeneic mice receiving cisplatin and dexamethasone treatment. Syngeneic mice were treated as PDX mice. Average photonic
flux and BLI (e) and plasma inflammation related cytokine profile (f) from 10 mice/group at week 8 are shown. Data are mean = SD from three independent
biological replicates for a and b. In vivo data are from 8 mice for ¢, 9 mice for d, 10 mice for e and f. Data are mean = SEM for tumor volume (left panels in ¢
and d) and SD for tumor weight (right panels in ¢ and d), photonic flux (e), and cytokine profiling (). Statistical analyses were performed by two-way
ANOVA for tumor volume and one-way ANOVA for the rest. Source data are provided as a Source Data file.
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well-tolerated small molecule kinase inhibitor lestaurtinib may be
a method to abrogate the possible effects of steroids on tumor
growth as treatment with lestaurtinib effectively re-sensitized
tumors to cisplatin treatment while not interrupting the anti-
inflammatory activity. Although further optimization of treat-
ment conditions in the clinic is warranted, our study provides a
mechanism by which GR agonists along with platinum drugs
induce resistance and demonstrate that use of a MAST1 inhibitor
may provide more effective platinum-based chemotherapy regi-
mens for patients receiving a GR agonist such as dexamethasone
as an anti-inflammatory drug.

Methods

Reagents. Human lentiviral short hairpin RNA (shRNA) clones targeting GR, PR,
NFAT, ATF2, CAR, CBF, JAK2, and MAST1 were obtained from Open Biosys-
tems. Human GR, GR-LBD, PR, and MAST1 were flag or myc tagged by PCR and
subcloned into pLHCX-derived or pET53-DEST Gateway destination vectors as
previously described?®. MAST1 promoter reporter was obtained from Switchgear
Genomics. MAST1 GRE mutant promoter reporter and GR-LBDm (GR-LBD-
F6025/A605V/V702A/E705G/M752T47) and its cysteine mutant variants were
generated using site-directed mutagenesis reagents from Agilent. Primer sequences
are listed in Supplementary Table 1. CellTiter-Glo Luminescent Viability assay and
LightSwitch Luciferase Assay were obtained from Promega and Active Motif,
respectively. TF Activation Profiling Array was purchased from Signosis. The
LEGENDplex Mouse Inflammation Panel was obtained from Biolegend. Cisplatin,
dexamethasone, betamethasone, prednisolone, triamcinolone, and mifepristone
were purchased from Sigma-Aldrich. Mitomycin and camptothecin were from
Selleckchem. Lestaurtinib was obtained from Tocris Bioscience. A2780 and ID8
cells were purchased from Sigma-Aldrich. KB-3-1 cells were obtained as previously
described*3. KB-3-1 is a derivative of HeLa commonly used in multiple drug
resistance studies®. 293T cells were from American Type Culture Collection. All
cell lines were authenticated by STR profiling. Ovarian PDX tumor for organoid
culture was purchased from Jackson Laboratory.

Antibodies. Antibodies against GR (12041/D6H2L), PR (3153/C89F7), phospho-
MEK1/2 (S221) (2338/166F8), MEK1/2 (9126/47E6), phospho-ERK1/2 (T202/
Y204) (4376/20G11), ERK1/2 (4695/137F5), myc (2276/9B11), hsp90 (4877/
C45G5), phospho-histone H2A.X (S139) (9718/20E3), PARP (9532/46D11), pan-
Trk (92991/A7H6R), and Jak2 (3230/D2E12) were obtained from Cell Signaling
Technology. MAST1 antibodies (NBP2-17228 and NBP1-81453) were obtained
from Novus Biologicals. Antibodies against FLAG (F7425 and F1804/M2) and f-
actin (A1978/AC-15) were purchased from Sigma-Aldrich. Antibodies against
cisplatin-modified DNA (ab103261/CP9/19) and Ki-67 (ab92742/EPR3610) were
obtained from Abcam. Anti-ATF-2 antibody (sc-242/F2BR-1) and anti-FLT3 (sc-
479/C-20) antibody were from Santa Cruz Biotechnology. Antibodies against
CEBPZ (31-163) and NFATC1 (MA3-024/7A6) were purchased from ProSci and
Invitrogen, respectively. Anti-CAR/NR1I3 antibody (PP-N4111-00/N4111) was
obtained from R&D Systems.

Cell and organoid culture. A2780 cells were cultured in RPMI 1640 medium with
10% FBS. KB-3-1, 293T, and ID8 cells were cultured in Dulbecco Modified Eagle
Medium (DMEM) with 10% EBS. Lentivirus production, infection, and stable cell
selection for gene knockdown or overexpression and protein overexpression were
previously described4%>0. Cells were treated for 48 h with 1 ug/ml and 3 pg/ml
cisplatin to study the effect of GR-MAST1 modulation on cisplatin sensitization
and resistance, respectively, unless specified. For organoid culture, ovarian PDX
tumors were minced into 1 mm diameter pieces and crushed. The homogenates
were digested with 2.5 mg/ml Type II collagenase in basal culture media [advanced
DMEM/F12 medium supplemented with 1x GlutaMAX, 1% HEPES, and 1%
penicillin-streptomycin] for 25 min at 37 °C. The cell pellets were washed twice
with red blood cell lysis buffer and resuspended in 75% Matrigel at a concentration
of 1 x 109/ml. Approximately 1.5 x 10# cells were loaded into each well of a 48-well
plate and cultured in general culture medium [advanced DMEM/F12 medium
supplemented with 100 ng/ml R-spondin 1, 100 ng/ml Noggin, 50 ng/ml, EGF, 10
ng/ml FGF-10, 10 ng/ml FGF2, 2% B-27, 10 mmol/l nicotinamide, 1.25 mmol/l N-
acetylcysteine, 1 umol/l prostaglandin E2,10 umol/l SB202190, 500 nmol/l A83-01,
and 10 pmol/l Y-27632]°1°2. Organoids were single cell suspended and cell via-
bility was measured using CellTiter-Glo Luminescent Viability Assay3>.

Transcriptome profiling and quantitative RT-PCR. RNA was isolated using
RNeasy Mini Kit (Qiagen) from tumors collected from KB-3-1 xenograft mice
treated or non-treated with cisplatin. Poly-A RNA-sequencing was conducted by
LC Sciences according to the manufacturer’s instruction. Quantitative RT-PCR was
conducted with High-Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems), Universal SYBR Green Supermix (Bio-Rad), and primers designed for
MAST]1 using PrimerBank.

Cell viability assay and cisplatin sensitivity analysis. Cells were seeded on 96-
well plates one day prior to the addition of compounds with indicated con-
centrations for 48 h. Cell viability was measured using CellTiter-Glo Luminescent
Viability Assay. Half-maximal inhibitory concentration (ICs) values were obtained
using GraphPad Prism 8 to measure cisplatin sensitivity.

Transcription factor activation profiling. KB-3-1 cells were treated with 5 pg/ml
cisplatin for 24 h and nuclear proteins were extracted. The activities of 96 essential
transcription factors were monitored by TF Activation Profiling Plate Array II
(Signosis) according to the manufacturer’s protocol>>4.

ChIP and promoter reporter assay. ChIP assays were performed using chromatin
immunoprecipitation assay (Millipore). In brief, endogenous GR or PR was
immunoprecipitated from KB-3-1 cells. The MAST1 promoter region in the DNA
eluted from immune-precipitates was amplified by PCR. For MAST1 promoter
reporter assay, MAST1 promoter variants were transfected into KB-3-1 or A2780
cells under indicated conditions and the promoter reporter activity was measured
using LightSwitch dual luciferase assay system (SwitchGear Genomics).

Surface plasmon resonance (SPR). To study cisplatin and GR interaction, 1 uM
of recombinant human GR-LBD WT or CA mutants were coupled to CM5 sensor
chip. Various concentrations of cisplatin were prepared in 0.01 M HEPES pH 7.4,
0.005% v/v Surfactant P20, and 0.15 M NaCl solution, and injected over GR-LBD at
30 pl/min speed for 3 m at 20 °C. Multiple-cycle kinetic analysis was performed to
quantify interaction between cisplatin and GR-LBD variants. The raw sensorgrams
were blank-subtracted and dissociation constant (Ky) values were obtained using
BIA Evaluation Software v2.1 (GE Healthcare).

Differential scanning fluorimetry and cellular thermal shift assay. Differential
scanning fluorimetry (DSF) was performed by incubating 10 uM of recombinant
GR with 0, 10, 20, or 30 uM of cisplatin for 10 m at 20 °C. GR-cisplatin mixture was
employed to thermal shift reactions. Fluorescence intensity was recorded by a real-
time PCR system and the data were analyzed using Protein Thermal Shift™
Software v1.3. For cellular thermal shift assay, KB-3-1 cells were treated with
DMSO, cisplatin or dexamethasone for 24 h. Collected cells were applied to 3
freeze-thaw cycles in PBS. A series of cell aliquots were heated at 50, 53, 55, 58, 61,
64, 67, and 70 °C for 3 min. The GR in the cell lysates of each aliquot was quantified
by western blot analysis3>3°.

Immunofluorescence microscopy. KB-3-1 cells seeded on glass coverslips were
immersed in PHEMO buffer (68 mM PIPES, 25 mM HEPES, 15 mM EGTA, and 3
mM MgCl,) with 0.05% glutaraldehyde, 3.7% formaldehyde, and 0.5% Triton X-
100, and blocked in PBS containing 5% goat serum?. Cells were then incubated
with GR antibody in PBS containing 2.5% goat serum followed by incubation with
Alexa Fluor 488 conjugated goat anti-rabbit IgG. Samples were washed and
mounted with antifade mounting medium with DAPI. Images were taken using
Leica SP8 confocal microscope.

Immunohistochemistry staining. Paraffin-embedded paired tumor specimens
collected from head and neck cancer patients before and after receiving platinum-
based chemotherapy were obtained from the Head and Neck Satellite Tissue Bank
of Emory University. The study in human specimens was approved by the Insti-
tutional Review Board at Emory University. The study was conducted in com-
pliance with ethical standards and good clinical practice. Clinical samples were
collected with informed consent of the individuals or their guardians under Health
Insurance Portability and Accountability Act (HIPAA) guidelines. IHC staining
was conducted as previously described>%. In brief, GR and MAST]1 staining was
performed by incubating the sections with GR antibody (1:400 dilution) and
MAST]1 antibody (1:200). Tumors collected from KB-3-1 or patient-derived
xenograft (PDX) mice were stained with Ki-67 antibody (1:1000). The final
immunoreactive score was determined by weighted index (WI) multiplying the
intensity (0-34-) and extent of positivity scores (%) of stained cells>S.

In vivo studies and cytokine profiling. Animal studies were performed according
to protocols reviewed and approved by the Institutional Animal Care and Use
Committee of Emory University. Nude mice (Hsd:Athymic Nude-Foxn1Y, female,
6-week-old, Envigo) were injected with 0.5 x 106 KB-3-1 cells. For in vivo model of
cisplatin-resistant cancer, nude mice bearing KB-3-1 xenografts were administered
with a sub-effective dose (0.5 mg/kg) and a higher dose (5 mg/kg) on day 5 and 10,
respectively. For GR functional studies, cisplatin (2 or 4 mg/kg) were administered
two times a week by intraperitoneal (i.p.) injection when tumor sizes reached up to
100 mm?. For PDX studies, head and neck cancer patient tumor was implanted
into NOD scid gamma mice (female, 6-week-old, Jackson Laboratory). Approxi-
mately 1500 mm? sized tumors were excised, evenly diced, and implanted in the
flank of nude mice. Ovarian cancer PDX model was obtained from Jacksons
Laboratory. The mice were randomly divided into groups when the tumor size
reached 100 mm?3. For syngeneic mouse model, luciferase gene was transduced into
murine ovarian ID8 cells and injected into C57BL/6 mice (female, 6-week-old,
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Envigo) by intraperitoneal (i.p.) injection. Cisplatin (5 mg/kg) and dexamethasone
(0.1 mg/kg) were given by i.p. injection twice a week. Lestaurtinib (20 mg/kg/day)
was administered by subcutaneous injection. KB-3-1 or PDX tumors were mea-
sured and volumes were calculated as 47/3 x (width/2)? x (length/2). Blinding and
allocation concealment were used. For syngeneic ID8 mouse model, tumor growth
was monitored by bioluminescence imaging (BLI) analysis as described®’. Blood
was harvested at the experimental endpoint and mouse inflammatory cytokines,
including IL-6, IL-23, IL-1a, TNF-a, MCP-1, GM-CSF, IFN-p, IFN-y, IL-17, IL-
12p70, IL-27, IL-10, and IL-1p in plasma were quantified by flow cytometry ana-
lysis. IL-1p was not detected in the C57BL/6 mice plasma.

Statistical analysis. Statistical analyses were performed using GraphPad Prism
9.0. Sample size was not predetermined by statistics. One representative experiment
of multiple experiments is shown for each immunoblotting figure panel. Error bars
represent mean + standard deviation (SD), except tumor growth curves and blot
density analysis in Fig. 6a, which denote mean + standard error of the mean (SEM).
Statistical significance was based on two-tailed Student’s t-test for Figs. 1a bottom,
1d, 1f, 2h, and 3e, Pearson’s correlation coefficient for 3g, and one-way or two-way
ANOVA for all other data of multiple-comparisons. Statistical analyses are based
on assumptions of normal distribution and homogeneity of variances. P-values of <
0.05 were regarded as statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The RNA-seq datasets generated in the course of this study are available on the NCBI
GEO database under the accession number GSE179263 Publicly available datasets
obtained from http://firebrowse.org/?cohort=OV and https://string-db.org/ were used in
the study. Source data are provided with this paper.
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