Skip to main content
. 2021 Aug 9;19:4404–4411. doi: 10.1016/j.csbj.2021.08.006

Table1.

The main layers in the proposed CVAE architectures.

Main layer Parameters
Input layer Stack of integrated omics data
Convolutional layer filters = 32, kernel_size = 3, strides = 1, padding = ‘same’, activation = ‘tanh’.
Convolutional layer filters = 64, kernel_size = 3, strides = 1, padding = ‘same’, activation = ‘tanh’.
Dense layer units = 256, activation = ‘tanh’, kernel_regularizer = ‘l2’, bias_regularizer = ‘l2’.
Mean layer units = 100
Standard deviation layer units = 100
Sampling layer (latent vector) units = 100
Dense layer units = 256, activation = ‘tanh’, kernel_regularizer = ‘l2’, bias_regularizer = ‘l2’.
Deconvolutional layer filters = 32, kernel_size = 3, strides = 1, padding = ‘same’, activation = ‘tanh’.
Deconvolutional layer filters = 32, kernel_size = 3, strides = 1, padding = ‘same’, activation = ‘tanh’.
Output layer (reconstructed input) Stack of reconstructed integrated omics data