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Mutual Exclusivity analysis of genomic aberrations contributes to the exploration of potential synthetic
lethal (SL) relationships thus guiding the nomination of specific cancer cells vulnerabilities. When mul-
tiple classes of genomic aberrations and large cohorts of patients are interrogated, exhaustive genome-
wide analyses are not computationally feasible with commonly used approaches. Here we present Fast
Mutual Exclusivity (FaME), an algorithm based on matrix multiplication that employs a logarithm-
based implementation of the Fisher’s exact test to achieve fast computation of genome-wide mutual
exclusivity tests; we show that brute force testing for mutual exclusivity of hundreds of millions of aber-
rations combinations can be performed in few minutes. We applied FaME to allele-specific data from
whole exome experiments of 27 TCGA studies cohorts, detecting both mutual exclusivity of point muta-
tions, as well as allele-specific copy number signals that span sets of contiguous cytobands. We next
focused on a case study involving the loss of tumor suppressors and druggable genes while exploiting
an integrated analysis of both public cell lines loss of function screens data and patients’ transcriptomic
profiles. FaME algorithm implementation as well as allele-specific analysis output are publicly available
at https://github.com/demichelislab/FaME.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Synthetic lethality (SL) is a type of genetic interaction in which
simultaneous perturbation of two genes results in cell death [1].
Initial evidence of this process was found in Drosophila [2], and
further studied in yeast models [3]. Importantly, SL plays a key role
in cancer biology as it translates into ad hoc search for tumor cell
vulnerabilities [1,4] that can ultimately lead to novel cancer cell
specific therapies [5]. Remarkable examples are represented by
the use of PARP inhibitors for BRCA2 mutant ovarian and breast
cancers [6–7] and by PRMT5 inhibitors in the context ofMTAP dele-
tion [8–9]. Over the past few years, additional SL relationships
were nominated and validated in vitro and/or in vivo [10–12].
Genetic rearrangements of ERG were demonstrated to induce syn-
thetic sickness upon point mutations (or inhibition) in SPOP in
prostate cancer cell line models as well as in patients derived xeno-
grafts [13]. WRN showed to be selectively essential in multiple
micro satellite instability cancer models [14]. In the light of the
ever-increasing availability of large-scale genomic data of human
tumors and the importance of SL interactions towards the ultimate
goal of personalizing cancer patient’s treatment, extensive and
comprehensive genomic searches are becoming mandatory. In fact,
tumor data from large collections of genomic profiles can be agnos-
tically explored to search for potential SL interactions through the
identification of mutual exclusive (ME) aberrations (i.e. aberrations
that co-occur significantly less often than expected); the underly-
ing principle is that cancer cells that have lost both genes of an
SL pair do not survive, thus SL interactions can be identified by
analyzing somatic copy number alterations (SCNA) and somatic
mutation data that co-occur significantly less than expected (ME
events) [15]. Methods for detecting ME from large genomic data-
sets have been combined with transcriptomics approaches [16–
17], pathway and network analysis [15,18], metabolic models
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[19–20], and validated through cell-lines screenings and clinical
outcome data [16–17]. Although some methods with improved
performance and statistical framework for ME detection have been
proposed in the past years [21–22], the hurdle of comprehensively
testing for mutual exclusivity (or co-occurrence) of aberrations
across the whole genome has not been addressed in a computa-
tional efficient manner. Some approaches leverage on protein–pro-
tein interaction networks [23] or mutations impact and molecular
annotation [24] to reduce the computational burden. Optimization
of computational performance becomes especially relevant when
multiple types of aberrations are considered, therefore increasing
the number of combinations to be tested. For instance, a gene
can be perturbed by loss-of-function single nucleotide variants
(SNV), by DNA loss of both alleles (homozygous deletion), or, in
case of haploinsufficiency, by the loss of a single allele (hemizy-
gous deletion); similarly, gain of function mutations and genomic
gain of one or multiple copies of DNA can associate with oncogenic
gene perturbation. Further, allele-specific copy number alterations
can add complexity to this scenario as in the case of copy number
neutral loss of heterozygosity, CN-LOH [25], recently proved as rel-
evant in the context of cancer vulnerabilities [26]. A brute force
approach for the agnostic detection of ME instances (or co-
occurrence) while considering a spectrum of mutational states
and their combinations would lead to a combinatorial explosion
that affects its feasibility. Here we present FaME (Fast Mutual
Exclusivity), a tool that addresses such efficiency problems. FaME,
as opposed to other methods for ME detection [23–24], can be
applied to any binarized data and does not need any additional
prior information. We demonstrate its performance by testing for
ME across allele-specific copy number states from the TCGA collec-
tion, provide a catalog of ME pairs from 27 tumor type studies, and
finally corroborate our approach towards SL interactions nomina-
tion through the integration of matched transcriptomics and cell
line-based loss-of-function data.
2. Material and methods

The description of the core algorithm proposed in this work is
reported in section 3 Calculation.
2.1. TCGA studies inclusion criteria and data preprocessing

Whole Exome Sequencing (WES) BAM files of the TCGA collec-
tion available on January 2018 were downloaded (N.
BAM = 22,196) through the Genomic Data Commons (GDC) [27]).
The study inclusion criteria [25] led to the selection of a total num-
ber of 8,183 normal-tumor pairs across 27 tumor types (see
Table S1, S2). Briefly, samples were excluded if one of the following
applied: kit annotation was ambiguous, gender information was
not available, MuTect2 SNV calls from GDC were not available,
the genetic distance check [28] for the verification of the correct
annotation of paired samples failed, or no primary tumor data
was available. If more than one pair of samples was available for
the same patient, we retained the one with the highest tumor pur-
ity. Last, we excluded studies with < 60 patients, prior to tumor
ploidy and purity correction [29]. Quality filters on tumor purity
identified 4,950 pairs as adequate for downstream mutual exclu-
sivity investigations exploiting allele specific profiles and stratifi-
cation for allele specific ploidy (asP) [25]. The in house SPICE
allele specific pipeline was applied to generate a comprehensive
analysis of matched normal and tumor WES aligned data
(https://github.com/demichelislab/SPICE-pipeline-CWL) and auto-
somal data were retained for downstream analyses. Briefly, lever-
aging the allele specific gene classification by CLONETv2 [29], we
had extended the conventional five-level classification of copy
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number status (Amp, Gain, WT, Hemi del, Homo del) to a ten-
level allele-specific copy number classification (Fig. S1, introducing
CN-LOH (2,0), Gain-LOH (3,0 and 4,0), Amp-LOH (5+,0), Gain-Unb
(3,1), and Amp-Unb (4,1; 4,2; 5,1; 5,2; 5,3;...). We label as unbal-
anced (Unb) all the events involving autosomal chromosomes in
which the difference between the number of copies of the two alle-
les is greater or equal to two and each allele copy number is greater
or equal to one. Expression data for each TCGA study were
obtained from recount2 project [30] and scaled counts were used.
Genomic data used in this work can be downloaded from https://
github.com/demichelislab/SPICE-pipeline#pre-computed-data.

2.2. Tumor suppressor genes, oncogenes and druggable gene lists

Lists of tumor suppressors (TS) and oncogenes (OG) were
obtained from Futreal et al and Zhao et al [31–32]. For TS, only
genes present in both lists were kept (Table S3). Druggable genes
list is based to Pharmgkb database (https://www.pharmgkb.org/)
[33] and Dgi database (http://www.dgidb.org/) [34] (Table S4).
The utilized gene model is reported in Table S5.

2.3. Analysis of mutually exclusive pairs of genomic events

2.3.1. Analysis of experimentally validated SL pairs selected from the
literature

First, we selected SL events from the literature by strictly con-
sidering manuscripts with in vitro and/or in vivo experimental val-
idation (see Table S6). Although likely not exhaustive, this list
provides SL events for a first benchmark of FaME. The FaME algo-
rithm was applied to the set of 30 pairs and to random pairs of
genes with similar aberration frequencies as comparison. We pro-
ceeded as follows: one thousand sets of pairs of random genes
were generated from the SPICE processed data; genes on the same
chromosome as the corresponding literature gene were excluded
at each iteration. To control for the aberration frequency distribu-
tions, a similarity was calculated using the mean absolute error as
distance and selecting the closest 10 genes, each one from a dis-
tinct cytoband. The number of significant results from the litera-
ture pairs was compared to the distribution of the percentage of
significant pairs from the random sets using a T test statistics
(p < 0.005). The allele-specific states Amp-LOH, Amp-Unb, Gain-
LOH were excluded from the computations due to low incidence.
Genes with low allele specific copy number (asCN) quality signal
(corresponding to the lower 5th percentile of asCN available calls
per genes) were excluded from the computations.

2.3.2. Tumor suppressors and druggable gene pairs genomic-
transcriptomic integrated analysis

For the analysis of TS and druggable genes we proceeded as fol-
lows: 1. performed study-specific FaME analysis on diploid sam-
ples using hemizygous deletion and CN-LOH status; 2.
significantly mutually exclusive pairs at the genomic level were
then tested for corresponding transcripts. We therefore quantified
for each transcript the 3rd quartile of the expression range by using
aberrant samples only; those values were then used to subdivide
the expression space, this time considering all the samples, in 4
quadrants (g1_low-g2_low, g1_low-g2_high, g1_high-g2_low, and
g1_high-g2_high). 3. we performed a co-independence test and
use Pearson’s residuals to define gene pairs for which the
g1_low-g2_low expression quadrant is depleted.

2.3.3. Validation of genomic-transcriptomic nominated pairs on cell
lines screen data

Synthetic lethal candidate pairs were analyzed using data from
Project Achilles (https://doi.org/10.1101/720243); briefly, for each
pair we stratified diploid cell-lines (defined using Picnic score [35])
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by the status of the tumor-suppressor gene and extracted the
CERES scores for the druggable gene [36]. CERES is a computational
method to estimate gene-dependency levels from essentiality
screens while accounting for the copy number–specific effect. For
each tumor suppressor gene of a nominated pair, we then calcu-
lated the odds-ratio (OR) and the enrichment significance for the
number of homo- and hemizygous deletions in cell-lines with
CERES scores lower than the first quartile of the distribution of
scores (i.e. the cells for which the presence of the gene is more
essential) for the corresponding druggable gene with respect to
all the other cell-lines.
2.3.4. Correction for multiple hypothesis
As FaME performs multiple tests, FDR correction is applied by

default considering all tests in each run. In this study, for the explo-
rative genome-wide exhaustive analyses, we applied FDR per
tumor-type and aberration combination (Table S7) on all results
with OR < 1 (i.e. putative ME pairs).
2.4. Benchmarks

2.4.1. FaME performance assessment
To compare FaME against a baseline runtime, we created a

naive implementation of the core elements of the method (compu-
tation of contingency tables and Fisher’s exact tests). This naive
implementation computes the contingency tables and iteratively
tests one pair at a time without leveraging either one of matrix
multiplication, fast Fisher’s test function or parallelism (it still uses
R vectorized operations to compute the counts of the single tests).
A single randomly generated 1000 � 1000 (‘‘genes” x ‘‘samples”)
matrix was used as input, so that about 30% of the cells are set
to 1 while the rest are 0. For the comparative analysis against
the naive implementation, the core of the FaME method (computa-
tion of contingency tables and Fisher’s exact tests) was run on the
same input and without any parallelism.

As both the Fisher’s exact test and the Matrix multiplication are
influenced by sample size (due to the Fisher’s exact test performing
a number of iterations that depends on the values specified in the
contingency table), we calculated the runtimes for the main phases
of FaME while varying the number of samples. For each run we
randomly generated a matrix of binary values (with probability
to select 1 at 0.3 i.e. ~ 30% of the entries in the matrix are expected
to be set to 1) of 1000 � 100000 ‘‘genes”� ‘‘samples” and used it as
input for both the Matrix multiplication and the Fisher’s exact test.
We subset the columns in order to change the number of samples.
Both phases were run in parallel using 40 cores; each phase was
run 10 times for each different setting.

We then ran an exhaustive evaluation of FaME performance
while varying the number of samples and of genes. We created
two input matrices sampled from pan-cancer TCGA data for both
homozygous deletions and amplifications. The matrices were cre-
ated to have size equal to the maximum combination that we
tested (30000 � 10000 – genes � samples) and were then subset
to simulate smaller datasets. We tested all the possible combina-
tions of the following sizes genes: {10, 100, 1000, 10000, 15,000
20000, 25000, 30000} and samples: {1000, 2500, 5000, 10000}.
For each combination, we ran the computation 10 times and we
collected the duration of the computation. This test was run by
using a linux HPC machine with 40 cores and 256 Gb of memory
(we tested the runtime using 10 and 20 cores as well). The com-
plete results of the performance characterization are available in
Table S17 where we report all the runtimes for each combination
of parameter and each replicate.
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2.4.2. Comparison with other tools and databases
For the ME detection performance comparative analyses, we

focused on de-novo approaches that do not require a-priori infor-
mation such as protein interaction networks [37], in line with
FaME. Specifically, we opted for WesME [38] and WeXt [39]. The
former introduces a heuristic approach for the computation of
ME between gene pairs, accounting for mutation frequencies. The
latter implements a permutation-based method, aimed at the iden-
tification of modules of mutually exclusive genes. We tested FaME
ability to identify mutually exclusive pairs (compared to WesME)
and mutually exclusive triplets (compared to WeXt). To do that,
we followed the work of Liu, Sisheng, et al. [24] and constructed
in-silico binary matrices, with genes in rows and patients in col-
umns, mimicking the presence or absence of mutations. At each
of 100 iterations, we introduced a perfect mutually exclusive pair
or triplet of genes aberrations and applied each of the three tools,
ranking the output accordingly to each tool-specific ME measure.
In the case of FaME, we considered (1- p_value)*sign(log(OR)) as
ranking procedure to also distinguish between mutual exclusive
or co-occurring observations. Tests’ p-values were used for WesME
and WeXt. We then explored the tools’ ability to rank the in silico
mutual exclusive event in the top ranked results, upon different
coverage (i.e. fraction of patients with a mutation on either one
of the mutually exclusive genes) settings and overall mutations
probabilities. Every other mutation was added by sampling each
gene mutation probability from a uniform distribution with a pri-
ori defined mean. For each setting, we generated matrices of 200
samples and 100 (for pairs) or 50 (for triplets) genes. As FaME is
implemented to inspect gene pairs, we measured triplets ME as
the mean OR of all pairs involved in each possible triplet, aggregat-
ing their p-values according to Fisher’s method (https://doi.org/10.
2307/2681650). We finally benchmarked time performance at
each iteration (we included FaME triplet computation in the tri-
plets benchmarking) and for different matrix sizes.

To inspect FaME’s ability to detect ME events corresponding to
known SL pairs, we downloaded collections of synthetic lethal and
non-synthetic lethal pairs from the SynLethDb database [40] (at
14/07/2021). Considering the broad collection of pairs, we selected
the top 100 synthetic-lethal and non-synthetic lethal pairs, based
on the SynLethDb statistical score, to use as positive and negative
controls. A pair was considered as identified if with p-value < 0.05
and OR < 1 in at least one tumor type. We evaluated FaME perfor-
mance considering the combinations of the following aberration
states: SNV, Homo-del, Hemi-del, CN-LOH, Gain-LOH, Amp-LOH.

2.5. A web app gene pairs visualizer

A web application based on the shiny R library was created to
allow users to explore the processed genomic data and pair-wise
mutual exclusivity between groups of selected genes within one
or multiple tumor types. The app uses the R bindings for the
python Altair library (a library to create interactive web plots
based on the Vega plotting standard) to show an interactive visu-
alization of the allele specific status of one or more selected genes.
The user can select specific sets of samples using the lineup.js data
interactive visualization. The app will show a representation of the
chosen set of samples and aberrations for the selected genes. The
plot shows the data with samples sorted to highlight potential
relationships between the selected genes (either mutual exclusiv-
ity or co-occurrence). The web application computes the p-values
of the Fisher’s exact tests between all the possible pairs of selected
genes. Each sample is considered aberrant based on its status with
respect to the aberration type(s) specified by the user and non-
aberrant otherwise. Libraries include: Shiny: https://shiny.rstu-
dio.com/, Altair for R: https://vegawidget.github.io/altair/; Altair
for python: https://altair-viz.github.io/; Vega: http://vega.github.
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Fig. 1. FaME schematics and performance (A) Example of computation according to the FaME method to compute independence tests between all possible gene pairs given
a gene-based aberration matrix. Matrix multiplication is leveraged to compute the contingency tables upon binary transformations based on aberration type(s) of interest. A
fast implementation of the Fisher’s exact test to compute the p-values is then applied. Direction indicates if the test returns a putative mutually exclusive pair (ME, OR < 1) or
a co-occurrent pair (CO, OR > 1). (B) Visualization of the runtime of a naive implementation of the method core via sequential Fisher’s exact tests versus the FaME
implementation (based on the number of analyzed genes). Each test has been run 3 times for the naive Fisher’s exact test and 10 for FaME. The points show the mean values.
The curves behind the points are a loess regression fitted through the points. (C) Computation time per pair as a function of the number of tested genes and samples. By
increasing the number of genes to test, the overhead of the computation is distributed among more pairs. (D) Visualization of the average and standard deviations of the
execution time of 10 FaME runs (not considering I/O time) when either the number of tested samples or genes is changed.
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io/vega-lite/; Lineup js: https://lineup.js.org/. The web app gene
pairs visualizer is available at the address http://apps.demichelis-
lab.eu/fame. Fig. S8 shows an example of analysis performed using
the web app.
3. Calculation

The ability of FaME to run mutual exclusivity tests for genomic
aberrations on billions of gene pairs builds on few key elements. As
testing for independence one gene pair at a time through the plain
computation of a contingency table would require a prohibitive
amount of time, we shifted the problem to a working framework
that exploits matrix product computations (Fig. 1A) and leverages
highly optimized libraries to considerably speed up such
computation.

Specifically, we first express the aberration status for a set of
samples as a binary vector, where 1 indicates aberrant and 0 non-
aberrant status. By computing the dot product of two such vectors,
the result will correspond to the number of co-occurring elements
(i.e. the number of samples in which both genes are aberrant). For-
mally, let smk 2 0;1f gbe a binary variable that is equal to 1 when
the k-th sample, with k 2 1; � � � ;nf g , harbors an aberration on
the m-th gene and 0 otherwise and let gm ¼ sm1; sm2; :::; smn½ � be
the vector of aberration statuses of all samples for the m-th gene.
To count how many aberrations are co-occurring between genes
giand gj where i; j 2 1; � � � ; pf g, one can simply compute the dot

product of the gene vectors, as gi � gj ¼
Pn

k¼1siksjk ¼ si1sj1þ
si2sj2 þ :::þ sinsjn , with siksjk product is equal to 1 only when both
sik and sjk are equal to 1. In order to compute the other components
of a contingency table, we applied proper inversion of the aberra-
tion vectors. For instance, to compute the number of samples that
are non-aberrant in either gene, we compute 1� gið Þ � 1� gj

� � ¼Pn
k¼1 1� sikð Þ 1� sjk

� � ¼ 1� si1ð Þ 1� sj1
� �þ 1� si2ð Þ 1� sj2

� �þ :::þ
1� sinð Þ 1� sjn

� �
, whereby only samples where both sik and sjk are

equal to 0 will contribute to the result. Similarly, by computing
gi � 1� gj

� �
and 1� gið Þ � gj, we can obtain the number of samples

where only either the first or the second gene is aberrant. In sum-
mary, we can compute all the elements of a contingency table by
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performing the following four dot-products of the gene aberration
vectors:

n11 ¼ gi � gj

n10 ¼ gi � 1
!
�gj

� �

n01 ¼ 1
!
�gi

� �
� gj

n00 ¼ 1
!
�gi

� �
� 1

!
�gj

� �

where 1
!

is a vector with the same length as the gmwhere all the
elements are set to 1.

To further improve the computation speed (performance) of the
algorithm, we used binary aberration matrices and their products
instead of vectors; indeed, each element of a matrix product results
from the dot product of the corresponding row and columns of two
input matrices.

Formally let

A ¼

s11 s12 � � � s1n
s21 s22 � � � s2n

..

. ..
. . .

. ..
.

sp1 sp1 � � � spn

0
BBBB@

1
CCCCA

be the binary matrix that describes the aberration status for all the
genes to test, when considering aberration type A. Each row con-
tains the aberration status for all the samples of a specific gene
and each column contains the aberration status for all the genes
in a specific sample. To compute the number of co-occurring sam-
ples when we compare aberration type A to aberration type B for
all the combination of genes, we can compute the matrix multipli-
cation ABT .

The result will be the matrix:

ABT ¼

gA
1 � gB

1 gA
1 � gB

2 � � � gA
1 � gB

p

gA
2 � gB

1 gA
2 � gB

2 � � � gA
2 � gB

p

..

. ..
. . .

. ..
.

gA
p � gB

1 gA
p � gB

2 � � � gA
p � gB

p

0
BBBBB@

1
CCCCCA
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Fig. 2. Literature-based SL pairs analysis in the study cohort (A) Representation of main variables of 4,950 tumor samples across 27 tumor types from the study cohort.
Processed data and variables as in Ciani et al. [25]. (B) Circos plot of literature-based synthetic lethal pairs; black lines highlight those scored as mutually exclusive by FaME in
the study cohort (left). For each of the latter, a pan-cancer oncoprint color-coded based on tumor allele specific genomic status and significant tumor type (center) is shown.
Boxplot report the statistics for mutual exclusivity of all genomic combinations in the specific tumor type or at the pan-cancer level (Sign. dataset column). Gain, hemi
deletions, CN-LOH, SNVs were considered.
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Similarly, we can compute the contingency tables for all the
pairs of genes using the following four matrix multiplications:

N11 ¼ ABT

N10 ¼ A Jp;n � B
� �T

N01 ¼ Jp;n � A
� �

BT

N00 ¼ Jp;n � A
� �

Jp;n � B
� �T

where Jp;n denotes the p� n matrix where each element has value
equal to 1.

N11;N10;N01;N00 will correspond to the number of samples
where both genes are aberrant, only the first gene is aberrant, only
the second gene is aberrant, and both the genes are non-aberrant,
respectively, for all the possible pairings of genes.

To account for occurrences where a specific gene aberration sta-
tus is not possible to determine (i.e. NA), we redefine the sik so that
when an aberration is undefined the binary variable is always
equal to 0.

Formally

sik ¼
1 if aberrant
0 if non-aberrant
0 if NA

8><
>:

and, in order to properly exclude that instance from the contin-
gency table calculation, similarly we set

1� sik ¼
0 if aberrant
1 if non-aberrant
0 if NA

8><
>:

These modified binary variables ensure that all the products of
NA variables will be 0 and will never be counted.

To boost the performance of FaME in computing the matrix
products, we use OpenBLAS (https://www.openblas.net/) instead
of the default R BLAS library as it is highly optimized for the use
of available hardware accelerations and parallelism to quickly
compute the matrix multiplications. Further, the N11;N10;N01;N00

values (corresponding to a contingency table) are then used to
compute the Fisher’s exact test p-values using the HighSpeedStats
library, an R library that implements a very fast version of the Fish-
er’s exact test based on logarithm. Fisher’s exact test is a statistical
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exact test used in the analysis of contingency tables: the test
returns the sum of hypergeometric probabilities of all arrange-
ments of the data that are equal or more extreme than the input
contingency table, assuming the given marginal totals, on the null
hypothesis that the two variables are independent. The test also
returns the OR for each pair (denoted as ‘‘direction” in Fig. 1A),
which can be used to discriminate ME pairs (OR < 1) from co-
occurrent (CO) pairs (OR > 1).

Parts of the code of FaME are computed in parallel to accelerate
the computation, although most of the computation time is due to
memory allocation (large memory is required) that doesn’t benefit
from multiple cores usage. The FaME’s method can be applied to
any type of binary matrix, therefore testing for ME starting from
any binary information such as gene SNVs, LOH state, epigenomic
states. FaME speed will enable the exhaustive exploration of the
entire genome and open the possibility to test different aberrations
or combinations of aberrations. The current implementation of
FaME does not have any command line parameter or different
modes of execution and the algorithm is deterministic. The code
of FaME is available at https://github.com/demichelislab/FaME.
4. Results

4.1. FaME computation performance

FaME provides a simple and fast solution to perform Mutual
Exclusivity analysis of genomic aberrations based on the complete
set of Fisher’s exact tests for all the possible combinations of input
elements. The novelty of FaME is in the use of matrix multiplica-
tion to speed up the computation of the contingency tables thus
providing powerful boost (about 100 fold) in terms of computa-
tional time with respect to the naive computational strategy of
sequentially performing single Fisher’s exact tests (Fig. 1B). More-
over, exploiting matrix multiplication and vectorized operations,
we are able to decrease the computation time for each pair by dras-
tically reducing calculation overhead. For instance, upon increase
of the number of tested genes from 10 to 10,000, the computing
time goes from 139.6 to 0.0007 ms (on a set of 2,500 samples)
(Fig. 1C). Further, the computation on 40 cores for 900 million gene
pairs is comparable between 10 and 1,000 samples (612.9 s and
635.5 s) and increases less than double for 10,000 samples

https://www.openblas.net/
https://github.com/demichelislab/FaME


Fig. 3. Mutual exclusivity search results for loss of function related aberration types in diploid tumors. The combination Homo-del, Hemi-del, CNLOH, SNV, returned
significant results (FDR < 10%) for four tumor types, namely breast adenocarcinoma (BRCA), bladder adenocarcinoma (BLCA), glioblastoma (GBM), and low grade glioma (LGG,
not shown). Red highlighted lines correspond to the gene pairs reported for each tumor type. Full genomic pairs data is available in Table S8. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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(1,032.4 s) (Fig. 1D). When increasing the number of samples, both
matrix multiplication and Fisher’s exact tests become more com-
putationally intensive (Fig. S2D), since the calculation of the Fish-
er’s exact test is based on a number of iterations that depends on
the values in the contingency table. Compared with other tools
for mutual exclusivity detection using synthetic data, as shown
in Fig. S3, FaME produces comparable results when identifying
ME events, at the same time outperforming the other tools in terms
of calculation time. To our knowledge, FaME is the first tool based
on matrix multiplication allowing for fast detection of mutually
exclusive events.
4.2. Application of FaME to literature-based SL gene pairs

We first sought to test the mutual exclusivity of genomic events
corresponding to the set of 30 gene pairs previously reported in
in vitro and/or in vivo studies as implicated in SL interactions (gene
pairs and references in Table S6). Briefly, FaME was applied to the
TCGA whole exome sequencing data upon in house processing;
matched tumor/normal pairs of data were processed and adjusted
for tumor ploidy and tumor purity to retain high quality data for
downstream computations, while also including allele-specific
copy number states such as CN-LOH. The complete cohort of tumor
samples is depicted in Fig. 2A,which shows annotations for clinical
and genomic variables, including the allele specific ploidy (asP)
metric, which is used to stratify low ploidy (low asP), diploid and
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polyploid samples (high asP). The literature-based analysis
resulted in the detection of mutual exclusivity evidence for 12
out of 30 pairs (40%), 7 of which at pan-diploid level (23.3% of
tested pairs) (Fig. 2B, Fig. S4A). To verify the significance of this
result, we computed one thousand iterations using random pairs
of genes from pan-diploid samples while keeping alteration fre-
quencies comparable to the set of 30 literature pairs and built
the distribution of percentages of mutual exclusivity evidence. This
showed that the results obtained by FaME on the 30 gene pairs
result corresponded to the 99.99 percentile of the random distribu-
tion (Fig. S4B), largely supporting its significance beyond chance.
Considering as input mutation matrices obtained from the combi-
nation of several mutational states, we compared the obtained
results with SynLethDB [40], a database including evidences for
synthetic lethal pairs, and observed that the introduction of LOH
events improved the sensitivity of the tool ranging from 7% to
13%, while maintaining a good specificity (84 – 86% range) (Fig. S5).
4.3. Genomic based detection of mutually exclusive gene pairs

We next leveraged the FaME algorithm to test for mutual exclu-
sivity of gene pairs in different allele-specific aberrations combina-
tions: a total of 4,836 runs were computed including all tumor
types and all meaningful aberration combinations (Table S7). For
each run all the combinations of genes were tested. Overall, 275



Fig. 4. Allele-specific status elicits the identification of mutually exclusive alterations (A) FaME workflow of mutually exclusive pairs of tumor suppressors and druggable
genes at the genomic and transcriptomic level in the study cohort. Circos plot of significant mutually exclusive pairs at the genomic level; colors indicate whether a pair is
detected using either Hemi-del or CN-LOH lesions or both. (B) Validation of FaME output in independent cell line database using Project Achilles data. (C) A representative
pair is shown based on OR and significance. The rainfall plot of the dependency scores (CERES scores) upon KO of the druggable gene in diploid cells color coded by the tumor
suppressor genomic copy number status (top) and gene expression level density plot across samples (log scaled RPKM values) (bottom) is shown; dotted lines delineate the
quadrant of concomitant low expression (lower left quadrant) based on FaME mutually exclusive genomic events.
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runs returned at least one significant ME genes pair at 10% FDR,
222 of which from diploid based analyses (Table S8, Table S9).

Only four significant results were detected that exclusively
involved SNVs, in line with the modest frequency of non-
synonymous point mutations within the overall landscape of geno-
mic disruption of human tumors. Three and one ME SNV-based
pairs were detected in Low Grade Glioma (LGG) and in Uveal Mel-
anoma (UVM), respectively (Fig. S6); results included mutations of
TP53 and CIC that have been recently observed in different sub-
clones and involved in parallel evolution of LGG through multi-
sampling analysis [41]. On the contrary, when including all types
of genomic aberrations tested on a gene base, FaME returned more
extensive significant results. As expected, based on the non-focal
nature of the vast majority of somatic genomic lesions [42], we
overall observed the involvement of genes that are adjacent to
each other, therefore often contributing to signal that spans entire
or sets of contiguous cytobands (Table S10). For instance, the
mutual exclusivity search involving point mutations and/or partial
or complete loss of DNA (i.e. combination Homo-del – Hemi-del -
CN-LOH - SNV for loss-of-function events) returned significant
(FDR < 10%) results for four tumor types, namely breast adenocar-
cinoma (BRCA), bladder adenocarcinoma (BLCA), glioblastoma
(GBM), and low-grade glioma (LGG) (Fig. 3). While exploring the
mutual exclusivity obtained for the loss of DNA/function aberra-
tions, we observed the inclusion of certain gene pairs with pub-
lished indications of SL. In the BLCA results, we observed loss-of-
function mutations of RB1 and CDKN2A as mutually exclusive.
These two genes are among the most frequently mutated in blad-
der cancer [43] and their SL relationship has been suggested in
other tumor types, such as in lung cancer through knockdown of
the RB1 gene in CKDN2A-mutant cell lines [44]. The BRCA signifi-
cant pairs included mutual exclusivity between CDH1 and ROS1,
CDH1 deficient tumors were suggested to carry SL relationships
with inhibition of the tyrosine kinase ROS1 leading to new possible
therapeutic strategies [45]. The GBM data analysis revealed mutual
exclusivity between TP53 and CDKN2A,RB1 and CDKN2A and IDH1
and PTEN, as already observed using an information theoretic
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method to identify combinations of mutations that promote
glioblastoma [46] (https://doi.org/10.1093/jmcb/mjv026). Notably,
IDH1 mutations are mutually exclusive with loss of heterozygosity
of chromosome 10q; the former associated with good prognosis
and the latter to bad prognosis in glioblastoma and gliomas [47–
48].

Although, this analysis certainly includes a wide set of signals
related to the presence of tumor subtypes and therefore not related
to potential SL interactions, we reasoned that mutual exclusivity
analysis of genomic aberrations can serve as backbone for the
nomination of yet unreported potential SL events and that data
integration through multiple omics layers can help shortlist and
prioritize the best candidates.

4.4. Integrated characterization of nominated mutually exclusive gene
pairs

We built FaME to perform exhaustive fast ME analyses of geno-
mic data. As combination with other sources of biological informa-
tion could guide the filtering and prioritization of the results, we
here opted to pursue a case study focused on the integrated anal-
ysis on TS and druggable gene (Table S3 and S4) pairs. Such events
could in principle be exploited in therapeutic frameworks and,
given the relatively high frequency of TS loss, become relevant
for a significant fraction of patients. In particular DNA repair genes,
a specific class of TS genes, have gained attention for their thera-
peutic potential after the identification of the synthetic lethality
between BRCA1/2 loss and PARP inhibition [11,49].

First, through a diploid samples based analysis of LOH events
(CN-LOH and Hemi-del) of TS and of alterations in druggable genes,
FaME identified 23,080 (Fisher’s exact test, FDR < 0.05; 0.2% of total
analyzed combinations) study-specific mutually exclusive rela-
tionships. Of note, 1,714 emerged only by leveraging CN-LOH sta-
tus data (Table S11). As ME gene pairs related to SL interactions
rarely show concomitant impairment at the transcript levels [21],
we queried the corresponding transcript levels to ultimately short-
list gene pairs where concomitant expression impairment is rarely/

https://doi.org/10.1093/jmcb/mjv026
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never observed (Table S12, S13 and S14) and found evidence for
mutual exclusivity at both genomic and the transcriptional levels
for 1,027 gene pairs (4.6% of the genomic level combinations)
(Fig. 4A).

To seek orthogonal support towards SL involvement for the
nominated pairs, we turned to a totally independent source of
experimental cell line-based knockouts data from Project Achilles
[50]. Specifically, for each pair we focused on the dependency
results for the druggable gene, while stratifying for the genomic
status of the corresponding TS (Table S15). We detected indepen-
dent significant support (Chi-squared, FDR < 0.1, OR > 1) for 20
of the pairs initially nominated by FaME at both genomic and tran-
scriptomic level (Fig. 4B, Fig. S7, Table S16). The shortlist includes
the TP53 and CAMK2G pair with both genes previously associated
with survival and time to progression in glioblastoma patients in
multiple studies [51–53] and identified as key genes characterizing
colon and rectal cancer [54].

Furthermore, it includes the ATM and PPIH druggable gene pair
(Fig. 4C), a potential novel vulnerability for cancer patients with
ATM deficiency (mutated in 5–20% of human tumors based on
TCGA data). ATM is a central regulator of the response to DNA dam-
age, that demonstrated synthetically lethal interaction with PARP
[55], although not all cancer patients with ATM loss respond to
PARP inhibition [56]. It has been suggested that ATM mutated gene
copies proportion, protein expression levels, and epigenetic regula-
tion should also be considered when defining the selection criteria
for PARP inhibitor-based therapy [57]. PPIH, a member of the pro-
tein family of cyclophilins with prolyl isomerase activity, interacts
with spliceosomal proteins and is necessary for proper spliceo-
some assembly and catalytic function in vitro [58–59]. Interest-
ingly, ATM-dependent DNA repair pathway is also activated by
transcription-blocking DNA lesions [60]. Given their function in
transcription-related processes, we might speculate that impair-
ment (either by mutation or pharmacological inhibition) of PPIH
might reduce transcription processivity and induce DNA lesions,
which would not be timely and correctly repaired by the cell in
absence of ATM, thereby generating genotoxic stress and poten-
tially inducing cell death.

These results highlight the potential of our approach that com-
bines high-quality allele-specific data and correspondent tran-
script levels with fast and comprehensive genome-wide mutual
exclusivity calculation.
5. Discussion

We propose a framework for the fast computation of mutual
exclusivity that allows to efficiently test billions of genomic aber-
ration pairs. We here demonstrate that through the application
of FaME on allele-specific genomic data we recapitulate previously
reported SL gene pairs and provide proof of concept that an
exhaustive mutual exclusivity genomic analysis coupled with
matched transcriptomics can potentially shortlist novel SL candi-
dates, although requiring ad hoc experimental validation. Multiple
biological scenarios not related to SL could also lead to the detec-
tion of mutual exclusive genomic aberrations. These include
instances of distinct cancer subtypes, each characterized by speci-
fic genomic features resulting from different cells of origin or initi-
ating mechanisms that drove tumorigenesis. Furthermore, in the
presence of a true positive SL pair, a brute force gene-based analy-
sis might also nominate a set of false positives due to genomic
proximity and aberrations that span multiple genes. Further, any
data driven search for mutual exclusivity is limited by the size of
the cohort and by the frequencies of the inspected aberrations.
When a large set of tests is performed, the multiple hypothesis cor-
rection can penalize the nomination of SL related pairs. One such
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example of pairs that did not emerge through the integrated char-
acterization analysis due to thresholds on FDR is the case of SPOP
mutation and ERG translocation (proxied by interstitial deletions;
(p-value 0.00236, FDR at 13%)) that was recently reported in pros-
tate cancer [13]. Although a brute force genomic based approach
likely returns multiple hits that do not relate to SL events per se,
we expect that the ability to exhaustively inquire large well char-
acterized genomic datasets provides the backbone for the identifi-
cation of therapeutic targets for anticancer therapy [5,11,49,61].
Interestingly, the application of FaME can be potentially extended
to any binary data representing gene states thus allowing for fast
and efficient integration of multi-omics information.
6. Conclusions

We introduce FaME, a computational framework that allows for
brute force exploration of mutual exclusivity across multiple fine-
grained genomic alterations. Importantly, this strategy opens up to
the interrogation of all gene pairs without requiring a priori selec-
tion regarding, for instance, the type of alterations considered, in
order to relieve the computational burden. Thus, FaME empowers
the nomination of mutually exclusive events in a previously
uncharted territory and represents a valuable tool towards discov-
ery of synthetic lethality interactions.
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